The hidden SUSY face of QCD
 (G. Veneziano, CERN/PH-TH \& Collège de France)

based on work done with Adi Armoni and Misha Shifman (hep-th/0302163, 0307097, 0309013) and reviewed in ASV, hep-th/0403071

NB: mostly from a QFT perspective

Outline

1. Large-N exp. ${ }^{\text {ns }}$ in QCD: need one more?
2. $Q C D_{F}$ vs. $Q C D_{O R}$
3. Planar equivalence in PT and beyond 4. SUSY relics in $N_{f}=1$ QCD
4. Analytic estimate of $<\underline{\Psi} \psi>$ in QCD
5. Extensions

Unrelated Appendix:
Isospin mixing of tetra and pentaquark states?

Large-N expansions in QCD: who needs one more?

a. Planar + quenched limit ('tHooft, 1974)
$=1 / N_{c}$ expansion @ fixed $\lambda=g^{2} N_{c}$ and N_{f} Leading diagrams

Corrections: $O\left(N_{f} / N_{c}\right)$ from q-loops,
$O\left(1 / N_{c}{ }^{2}\right)$ from non-planar diagrams

Properties at leading order

1. Resonance have zero width
2. U(1) problem not solved, WV holds @ N LO
3. Multiparticle production not allowed

Theoretically, if not phenomenologically, appealing: should give the tree-level of some string theory (reason for the "accidental" discovery of the string theory we are now considering as a TOE?)
Proved hard to solve, except in $D=2 \ldots$.

BPlanar unquenched limit (GV '74--'76) = TE $=1 / \mathrm{N}$ expansion @ fixed $\lambda=g^{2} \mathrm{~N}$ and $\mathrm{N}_{f} / \mathrm{N}_{c}$

Corrections

$O\left(1 / N^{2}\right)$ from non-planar diagrams Leading diagrams include "empty" q-loops

Properties

1. Widths become $O(1)$
2. U(1) problem solved to leading order, no reason for WV to be good *)
3. Multiparticle production allowed
\Rightarrow Bare Pomeron \& Gribov's RFT
Perhaps phenomenologically more appealing than 'tHooft's but even harder to solve...
*) Better justified through a small- N_{f} expansion?

We can generalize QCD to an SU(N) gauge group in different ways by playing with matter rep.
The conventional way, $Q C D_{F}$, is to keep the quarks in fundamental + antifundamental ($\mathrm{N}+\mathrm{N}^{*}$)
The one we shall consider is called, for stringy
reasons, QCD Vecchia et al. hep-th/0407038)
Put quarks in the 2-index-antisymmetric (AS)-tensor rep. of SU(N) (+ its complex conjugate)
As in 'tHooft's expansion (and unlike in TE) N_{f} fixed NB. For $N=3$ this is still ordinary QCD
NB: In string construction: both S and $A S$ tensor reps. are possible, but the former is never ~ QCD

Leading diagrams are planar, include "filled" qloops since there are $O\left(N^{2}\right)$ quarks
Widths are zero, U(1) problem solved, no p.pr. Phenomenologically interesting? Theoretically manageable? Yes, I claim.

$Q C D_{F}$ YS. OC'D $D_{\text {OR }}$

th	YM	QCD	QCD	Large- N, $N_{f}=1$
β_{0}	$11 N / 3$	$\left(11 N-2 N_{f}\right) / 3$	$\left(11 N-2(N-2) N_{f}\right) / 3$	$3 N$
β_{1}	$17 N^{2} / 3$	$17 N^{2} / 3-$ $N_{f}(13 N / 6-1 / 2 N)$	$17 N / 2 / 3-N_{f}(N-2) \times$ $(5 N+3(N-2)(N+1) / N) / 3$	$3 N^{2}$
γ_{0}	x	$3\left(N^{2}-1\right) / 2 N$	$3(N-2)(N+1) / N$	$3 N$

QCD ${ }_{O R}$ as an interpolating theory:
@ $\mathrm{N}=2$ it coincides with pure YM (fermions decouple)
@ $N=3$ it coincides with QCD
... and at large N?

ASV claim of Planar Equivalence

In the large- N limit the bosonic sector of $Q C D_{O R}$ is equivalent to that of $Q C D_{\text {Adj }}$ i.e. of $Q C D$ with N_{f} Majorana fermions in the adjoint representation

Important corollary
For $N_{f}=1$ and $m=0, Q C D_{O R}$ is planar-equivalent to Supersymmetric Yang-Mills (SYM) theory
Some properties of the latter should show up in $N_{f}=1 Q C D \ldots$ if $N=3$ is large enough
NB: Expected accuracy is only $1 / \mathrm{N}$...
NB': For us $N_{f}=1, m=0$ defines a rather special point in parameter space... unlike for Creutz..

Perturbative Argument

 Draw a planar diagram on sphere

Differ by an even number of - signs...

Non-perturbative Argument (sketch)

> Integrate out fermions (after having included masses, bilinear sources)
$>$ Use gauge invariance of $\operatorname{det}(D+m+J)$ to express it in terms of Wilson-loops
> Use large-N factorization to write adjoint and OR Wilson loop as product of fundamental and/or antifundamental Wilson loops
> Use equality of fundamental and antifundamental Wilson loops

Before moving to SUSY..

It would be interesting to check numerically what happens to $Q C D_{O R}$ and to $Q C D_{\text {Adj }}$ as we increase N even for
$>m \neq 0, N_{f} \neq 1$,
> quenched limit
The two theories should approach each other Another numerical (analytic?) check could be comparing fermionic determinants in both theories as N is increased

SUSY relics in QCD

- Approximate parity doublets. Indeed:

SYM: $m_{S}=m_{P}=m_{F} \Rightarrow$ OR: $m_{S} \sim m_{P} \ll m_{F}$ Looks OK if can we make use of:
a) Experiments for $m_{s}(\sigma @ 600 \mathrm{MeV}$),
b) WV for $m_{p}\left(m_{p} \sim \sqrt{2}(180)^{2} / 95 \mathrm{MeV} \sim 480 \mathrm{MeV}\right.$ excluding quark masses)
Related to this: approximate absence of "activity in certain chiral correlators

$$
\left\langle\psi_{R} \psi_{L}(x) \psi_{R} \psi_{L}(y)\right\rangle \sim \text { constant }
$$

while $\left\langle\Psi_{R} \Psi_{L}(x) \Psi_{L} \Psi_{R}(y)\right\rangle$ has much activity
(1) A mass gap, no Nambu-Goldstone bosons (the only continuous axial symmetry is broken by anomaly/instantons even @ large N)
4 $+\mathrm{O}(1)$ distinct vacua characterized by the phase of the quark condensate. Indeed one expects N-2 distinct vacua. Except at $\mathrm{N}=3$, there is an enhanced symmetry @ m=0!
\Leftrightarrow Vanishing cosmological constant at leading order in spite of the fact that the planar spectrum of the OR theory is purely bosonic

Dulcis in fundo..

An analytic estimate of the quark condensate

The quank condensate in $N_{f}=1$ QCD

Claim (ASV, hep-th/0309013):

$$
\bar{\psi} \psi>_{\mu}=-\frac{3}{2 \pi^{2}} \mu^{3} \lambda_{\mu}^{-1578 / 961} \exp \left(-\frac{27}{31 \lambda_{\mu}}\right) k(1 / 3)
$$

where (all in MS)
$\lambda_{\mu}=\alpha_{s}(\mu) N / 2 \pi, k(0)=1, k(1 / 3) \sim 1 \pm 0.30$

Sketch of argument: define

$\Lambda^{*}=\operatorname{\mu exp}\left[-\frac{N}{\beta_{0}}\left(1 / \lambda_{\mu}-1 / \lambda^{*}\right)\right]\left(\frac{\lambda_{\mu}}{\lambda^{*}}\right)^{\beta_{1} / \beta_{0}^{2}}$
$<\bar{\psi} \psi>^{*}=\left(\frac{\lambda_{\mu}}{\lambda^{*}}\right)^{\gamma_{0} / \beta_{0}}<\bar{\psi} \psi>_{\mu}=\left\langle\bar{\psi} \psi>_{\Lambda^{*}}\right.$
$R^{*}=<\bar{\psi} \psi>^{*} / \Lambda^{* 3}$
both in Qceor antuln mul we want to compute the former from the latter Ratio of ratios, $R^{*}(O R) / R^{*}(S Y M)$, is a function of $1 / N, K\left(1 / N, \lambda^{*}\right) w / K\left(0, \lambda^{*}\right)=1$
$R^{*}(S Y M)$ is exactly known either from weak-coupling instanton calculations or from softly broken SW:

$$
R^{*}(S Y M)=-\frac{N^{2}}{2 \pi^{2} \lambda^{* 2}} \exp \left(-1 / \lambda^{*}\right)
$$

$$
<\bar{\psi} \psi>_{\mu}^{O R}=-\frac{N^{2} \mu^{3}}{2 \pi^{2}} \exp \left(-\frac{3 N}{\beta_{0} \lambda_{\mu}}\right) \lambda_{\mu}^{-3 \beta_{1} / \beta_{0}^{2}-\gamma_{0} / \beta_{0}} K\left(1 / N, \lambda^{*}\right) f\left(\lambda^{*}\right)
$$

$$
\frac{3 N}{\beta_{0}}=\frac{1}{1+4 / 9 N} \Rightarrow 1, \frac{\gamma_{0}}{\beta_{0}}=\frac{(1+1 / N)(1-2 / N)}{1+4 / 9 N} \Rightarrow 1
$$

$$
3 \frac{\beta_{1}}{\beta_{0}^{2}}=\frac{\left(1+19 / 9 N-4 / 3 N^{3}\right)}{(1+4 / 9 N)^{2}} \Rightarrow 1
$$

$$
f\left(\lambda^{*}\right)=\exp \left[-\frac{1}{\lambda^{*}}\left(1-\frac{3 N}{\beta_{0}}\right)\right]\left(\lambda^{*}\right)^{3 \beta_{1} / \beta_{0}^{2}+\gamma_{0} / \beta_{0}-2} \Rightarrow 1
$$

Making the assumption that $\mathrm{Kf}=(1-2 / \mathrm{N}) \mathrm{k}(1 / \mathrm{N})$
(NB: @ $N=2$ fermion decouples..)

with $k \sim 1 \pm 30 \%$ arsis $1 / \mathrm{Nives}$ the quoted result. This can also be written as

$$
<\left(g^{2}\right)^{12 / 31} \bar{\psi} \psi>=-1.1 k(1 / 3) \Lambda_{s t}^{3}
$$

Comparison with "data"

$>$ There are of course no real data on $N_{f}=1$ QCD
> Unfortunately there are no fake data either...PLEASE..

- We can try to argue about relation between $N_{f}=1$ condensate and the one of real QCD (from phenomenology or quenched lattice calculations). A typical value of latter is
to $:<\bar{\psi} \psi>_{2 G e V}=-0.016 \pm 0.005 G e V^{3}$

$$
<\bar{\psi} \psi>_{\mu}=-\frac{3}{2 \pi^{2}} \mu^{3}\left(\lambda_{\mu}\right)^{-1.63} \exp \left(-1 / \lambda_{\mu}\right)
$$

```
< }\psi\psi>>2GeV (GeV ')
```


Quark condensate at 2 GeV vs $\alpha_{s}(2 \mathrm{GeV})$

Agreement reached for $\alpha_{s}(2 \mathrm{GeV})$ ~ 0.275 ± 0.015 (see graph) a value compatible with experiments...
Encouraging but dedicated lattice calculation appears to be needed

Extension \#\#1: $N_{f}=3$

> Take OR theory and add to it two flavours in N+N*
> $A t \mathrm{~N}=3$ this is $N_{f}=3$ QCD, at $\mathrm{N}=2$ it's $N_{f}=2$ QCD
> At large N it cannot be distinguished from $O R$, fits SYM β-functions better at finite N
> Correlators for which dictionary can be established between the two theories should still coincide in large-N limit. These do not include F-condensate
$>$ Vacuum manifold, NG bosons etc. are different!
> May still work for AS condensate: if so the result used above for $N_{f}=3$ QCD is justified....

Extension \#2: More SUSY

Natural question to ask is whether we can play a similar trick in order to relate $\mathrm{N}=1$ and $\mathrm{N}=2$ theories
Example: add to SYM a chiral multiplet in the AS+AS* representation
If, at large N, this is like adding an adjoint one should recover SW theory and could copy exact results from the latter for SQCD OR (e.g. get Kahler of $\mathrm{N}=1$ theory from $N=2$ pre-potential) or, at $N=3$, for SQCD tout court.

Also in this case moduli spaces are different. One has to work with softly broken $\mathrm{N}=2$ and compare it with $N=1$ with massive matter

- Chiral and large-N limit do not commute
- If due care is taken, the comparison of the results for the condensates (here known exactly in both theories) is quite instructive and provides an example where our procedure for SYM and QCD would be fully justified including the factor $(1-2 / \mathrm{N})$ here due to the ratio of the Konishi anomaly coeff.s in the two theories

Another possible application: "technj-orientifold"

> Recent work by F. Sannino and K. Tuominen (hepph/0405209)
> Instead of making TC similar to QCD $_{F}$ they propose to make it similar to QCD

- However, in order to make it most unlike QCD $_{F}$, they chose to work with S, rather than AS, reps.
- Can have walking TC with fewer flavours (possibly solving the FCNC problem while keeping small corrections to S, 1 parameters...)

NB: NO obvious SUSY limit for this theory!

Conclusions, part I

The orientifold large- N expansion is arguably the first example where large- N considerations lead to quantitative predictions in non-SUSY, $D=4$, strongly coupled gauge theories

- More work is needed, particularly on
- Tightening the NP proof of planar equivalence
- Estimating $1 / \mathrm{N}$ corrections
\checkmark Providing numerical checks
- Extending the equivalence in various directions

Part II: Isospin mixing in narrow multiquark states?

1. Isosping mixing of narrow pentaquark states G. C. Rossi and G. Veneziano, hep-ph/0404262
2. Has isosping mixing being seen in decay of

$$
D_{S J}(2632) ?
$$

L. Maiani et al. hep-ph/0407025

1. Isosping mixing of narrow pentaquark states
G. C. Rossi and G. Veneziano, hep-ph/0404262

- Extend to pentaquarks old work on I-mixing in narrow tetraquark (baryonium) states, Phys. Lett. 70B (1980) 507
> Warning: Experiemental status of pentaquarks is still unclear...

Use (for the sake of illustration) the Jaffe-Wilczek (Nussinov) assignement of Pentaquark states to an ideally mixed 8+10
\Rightarrow six $S=-2(\Xi)$ states filling an $I=1 / 2$ and an $I=3 / 2$ multiplet If they are narrow and degenerate to within a few MeV, large I-mixing can arise (from quark masses and EM effects) in the $\mathrm{Q}=-1$ and $\mathrm{Q}=0$ sectors (two states mix in each Q sector)

Splitting and mixing angles can be computed from a small number of parameters \Rightarrow predictions

OZI violating diagrams prefer/split pure I-eigenstates

δm and $O(\alpha)$ effects prefer/split pure-flavour eigenstates

Two extreme pictures of Ξ spectrum

Small I-mixing

$$
\begin{aligned}
& \Xi-\Xi_{3 / 2}- \\
& \Xi^{+} \Xi_{3 / 2}{ }^{0}
\end{aligned}
$$

Nearly "ideal" I-mixing

$\Xi_{1 / 2}-$
$\Xi_{1 / 2}{ }^{0}$
(a)

(b)
L. Maiani, F. Piccinini, AD Polosa \& V.Riquer, hep-ph/0407025
$>$ Interpret $D_{s J}(2632)$ as a [cd][[व̄ड̄] tetraquark state that is relatively unmixed with [cu][us]
> Explains why this state does not like to decay into $\mathrm{D}^{0} \mathrm{~K}^{+}$
$>$ Predictions for $D^{+} K^{0}, D_{s} \pi^{0}$ channels
A striking example of a phenomenon suggested 24 years ago?

