Membrane Structure of Topological Charge Fluctuations in 2D and 4D Gauge Theory

H. Thacker, S. Ahmad, and J. Lenaghan
University of Virginia

Benasque Workshop
July, 2004
Topological Charge Fluctuations in QCD:

- We have several different possible views of the QCD vacuum
 - 1. “Strong coupling” view of vacuum: color phases are disordered at large distances
 -- Naturally incorporates quark confinement
 -- chiral SB and η' mass mechanism is obscure (Aoki phases…)
 - 2. Instanton liquid model populates vacuum with localized, self-dual and anti-self-dual quantized lumps of topological $F\tilde{F}$ charge.
 -- Naturally incorporates chiral SB and η' mass.
 -- **Does not** incorporate confinement. (Too much long-range order.)
Fundamental new development in QCD: ADS/CFT duality

- 4D QCD = IIA String Theory in a black hole metric
 (See E. Witten, “Black Holes and Quark Confinement”, Current Science, V.81(2002))

 e.g. Confinement “explained” by

 QCD flux tube = holographic projection of fundamental string

 ADS/CFT also confirms Witten’s (1979) large-\(N_c\) view of topological charge:

 - Multiple vacuum states (“k-vacua”) with \(\theta_{\text{eff}} = \theta + 2\pi k\)
 - Local k-vacua separated by domain wall = membrane
 - Domain wall = fundamental 6-brane of IIA string theory wrapped around \(S_4\)
 - \(k=\text{integer}\) is a Dirac quantization of 6-brane charge in 9+1 D (Note: 6+2 = 9-1, hence 2D surface surrounds 6-brane in 9 space dimensions.)
Exactly chiral Dirac operators: A new method for studying topological charge on the lattice:

Discovery of exactly chiral Ginsparg-Wilson fermions provided a new definition of topological charge on the lattice (Hasenfratz, et al. 1998):

\[\text{local TC} \equiv Q(x) = \frac{1}{2} \text{tr} \gamma^5 D(x, x) \]

-- Overlap Dirac operator provides an effective tool for studying local topological charge structure without modifying (e.g. cooling) the gauge field.

-- Overlap construction of Q derived from structure of the chiral anomaly on the lattice. Chiral symmetry and non-ultralocality of D lead to a smoothing of short-range fluctuations allowing the possibility of observing long-range coherent structure.
Result of first study of $Q(x)$ distribution in 4D QCD (Horvath, et al, Phys. Rev. D (2004)):

Results:
-- Only small 4D coherent structures found with sizes of $O(a)$ and integrated $Q(x) \ll 1$. (No instantons.)

-- Large coherent structures are observed which are locally 3-D sheets in 4-D space (surfaces of codimension 1), typically only ~1 or 2 lattice spacings thick in transverse direction.

-- In each configuration, two sheets of opposite charge are found, which are everywhere close to each other and “crumpled,” occupying the bulk of 4D space.

⇒ Short range, negative TCh correlator (required by spectral decomposition).

(Note: Another fundamental problem with dominance of instantons or any 4D coherent structures: Positive TCh correlator violates spectral requirement that correlator <0 for all nonzero separation.)
12^4 lattice, $a = 0.110$ fm

2D slice of $Q(x)$ distribution for 4D QCD
The ADS/CFT holographic view of topological charge in the QCD vacuum has an analog in 2D U(1) theories:

-- Multiple discrete k-vacua characterized by an effective value of θ which differs from the θ in the action by integer multiples of 2π.

-- Interpretation of effective θ similar to Coleman’s discussion of 2D massive Schwinger model (Luscher (1978), Witten (1979,1998)), where $\theta = \text{background E field}$.

In 2D U(1) models (CP(N-1) or Schwinger model): Domain walls between k-vacua are world lines of charged particles:

\[\theta = 0 \text{ vac} \quad \theta = 2\pi \text{ vac} \]
Precise analogy between U(1) in 2D and SU(N) in 4D (Luscher, 1978):

- Identify Chern-Simons currents for the two theories.

\[A_\mu \rightarrow A_{\mu\nu\sigma} = -\text{Tr} \begin{split} \frac{1}{2} \epsilon_{\mu\nu\sigma} A_\nu A_\sigma + \frac{3}{2} A_\mu \partial_\nu A_\sigma \end{split} \]

\[j^{CS}_\mu = \epsilon_{\mu\nu} A_\nu \rightarrow j^{CS}_\mu = \epsilon_{\mu\nu\sigma\tau} A_{\nu\sigma\tau} \]

\[Q = \partial_\mu j^{CS}_\mu \rightarrow Q = \partial_\mu j^{CS}_\mu \]

Wilson line \rightarrow integral over 3-surface

charged particle \rightarrow charged membrane

(= domain wall) \hspace{1cm} (= domain wall)

In both cases, CS current correlator has massless pole \(\sim 1/q^2 \)

This analogy suggests that the coherent 3D structures recently found in 4D QCD should have an analog of 1D coherent structures in 2D U(1) gauge theory.
CP(N-1) models on the lattice (Seiberg, 1984)

\[S = \beta \sum_{x, \mu} z^*(x) U(x, x + \mu) z(x + \mu) + h.c \]

Here \(z \) = N-component scalar, and \(U = U(1) \) gauge field.

Monte Carlo is done with a Cabibbo-Marinari heat bath for the \(z \)'s and 10-hit Metropolis for the \(U \) links.

Overlap Dirac op is defined on the \(U(1) \) field and solved exactly using the LAPACK singular value decomposition routine.

\[\text{SVD on } D_w - 1 = U \Lambda \tilde{U} \]

Overlap is \(D = 1 + U \tilde{U} \)

Timing: Overlap calculation of topological charge on a single \(U(1) \) config:

- 20x20 1 minute
- 50x50 7 hours
Overlap $Q(x)$
Ultralocal $Q(x)$
Estimate Hausdorff dimension of largest structures on each configuration:

- Starting from each point on structure, draw a circle of radius r and count $n(r) = \text{number of points on structure inside circle}$.
- Fit to $n(r) = \text{const} \times r^d$
- Preliminary result: $d = 1.32$

For comparison, generate spin configurations for 2D Ising model slightly above T_c and adjust T so that total volume of largest domains are equal to size of topological charge structures in CPN configs.

Result: Ising $d = 1.85$

i.e. Ising domains are approximately “spherical” while CPN structures are approximately one-dimensional.
Conclusions:

- In both 4D QCD and 2D CPN, topological charge excitations exhibit long range order on surfaces of dimension D-1 (codimension 1).
- Lattice results strongly support a “membraney” view of topological charge excitations in the QCD vacuum, similar to that implied by ADS/CFT duality.
- Picture of QCD vacuum as a liquid of membranes may give a unified view of how Topological Charge, Quark Confinement, and XSB are related:

 XSB: Goldstone bosons “skate” along membranes

 QC: Unlike instantons, membranes separate space into two disjoint regions, so color phases can be incoherent on opposite sides of membrane.

 ⇒ disordered vacuum ⇒ confinement