

- INTRODUCTION: quark masses, weak couplings and CX in the Standard Model
- Unitary Triangle Analysis:

PAST
PRESENT
FUTURE

C, CP and CPT and their violation are related to the foundations of modern physics (Relativistic quantum mechanics, Locality, matter-fintimatter properties, Cosmology etc.]

Although in the Standard Model (SM) all ingredients are present, new sources of CP' beyond the SM are necessary to explain quantitatively the BAU

Almost all New Physics Theories

 generate new sources of CP
Quark Masses,

Weak Couplings and
CP Violation in
the Standard Model

In the Standard Model the quark mass matrix, from which the CKM Matrix and CP originate, is determined by the Yukawa Lagrangian which couples fermions and Higgs

$$
\mathcal{L}^{\text {quarks }}=\mathcal{L}^{\text {kinetic }}+\mathcal{L}^{\text {weak int }}+\mathcal{L}^{\text {yukawa }}
$$

CP invariant

C× and symmetry breaking are closely related !

QUARK MASSES ARE GENERATED BY DYNAMICAL SYMMETRY BREAKING

$$
H=\binom{\phi^{+}}{\phi^{0}}, \quad H^{C}=i \tau_{2} H^{*}
$$

$\mathcal{L}^{\text {yukawa }} \equiv \sum_{\mathrm{i}, \mathrm{k}=1, \mathrm{~N}}\left[\mathrm{Y}_{\mathrm{i}, \mathrm{k}}\left(\mathrm{q}_{\mathrm{L}}^{\mathrm{i}} \mathrm{H}^{\mathrm{C}}\right) \mathbf{U}_{\mathrm{R}}^{\mathrm{k}}\right.$

$$
\left. \pm X_{i, k}\left(q_{L}^{i} H\right) D_{R}^{k}+\text { h.c. }\right]
$$

Charge -1/3

$$
\begin{aligned}
& \sum_{i, k=1, \mathrm{~N}}\left[\mathrm{~m}_{\mathrm{i}, \mathrm{k}}^{u_{i}}\left(\bar{u}_{\mathrm{L}}^{\mathrm{i}} \mathrm{u}_{\mathrm{R}}^{\mathrm{k}}\right)\right. \\
& \left.\quad \quad+\mathrm{m}_{\mathrm{i}, \mathrm{k}}^{\mathrm{d}}\left(\mathrm{~d}_{\mathrm{L}}^{\mathrm{i}} \mathrm{~d}_{\mathrm{R}}^{\mathrm{k}}\right)+\mathrm{h.c.}\right]
\end{aligned}
$$

Diagonalization of the Mass Matrix

Up to singular cases, the mass matrix can always be diagonalized by 2 unitary transformations

$$
\begin{aligned}
\mathrm{u}_{\mathrm{L}}^{\mathrm{i}} \rightarrow \mathbf{U}^{\mathrm{ik}}{ }_{\mathrm{L}} \mathrm{u}_{\mathrm{L}}^{\mathrm{k}} & \mathrm{u}_{\mathrm{R}}^{\mathrm{i}} \rightarrow \mathbf{U}^{\mathrm{ik}}{ }_{\mathrm{R}} \mathrm{u}_{\mathrm{R}}^{\mathrm{k}} \\
\mathbf{M}^{\prime}=\mathbf{U}_{\mathrm{L}}^{\dagger} \mathbf{M} \mathbf{U}_{\mathrm{R}} & \left(\mathbf{M}^{\prime}\right)^{\dagger}=\mathbf{U}_{\mathrm{R}}^{\dagger}(\mathbf{M})^{\dagger} \mathbf{U}_{\mathrm{L}}
\end{aligned}
$$

$$
\mathcal{L}^{\text {mass }} \equiv m_{u p}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)+m_{c h}\left(\bar{c}_{L} c_{R}+\bar{c}_{R} c_{L}\right)
$$

$$
+m_{t o p}\left(\bar{t}_{L} \mathrm{t}_{\mathrm{R}}+\overline{\mathrm{t}}_{\mathrm{R}} \mathrm{t}_{\mathrm{L}}\right)
$$

$$
\begin{aligned}
& L_{C C}^{\text {weakint }}=\frac{g_{W}}{\sqrt{2}}\left(J_{\mu}^{-} W_{\mu}^{+}+h . c .\right) \\
& \quad \rightarrow \frac{g_{W}}{\sqrt{2}}\left(\bar{u}_{L} \mathbf{V}^{C K M} \gamma_{\mu} d_{L} W_{\mu}^{+}+\ldots\right)
\end{aligned}
$$

$\mathrm{N}(\mathrm{N}-1) / 2$
angles and
$(\mathrm{N}-1)(\mathrm{N}-2) / 2$ phases

$$
N=3 \quad 3 \text { angles }+1 \text { phase } K M
$$

the phase generates complex couplings i.e. $C P$ violation:
6 masses +3 angles +1 phase $=10$ parameters

$V_{\text {ud }}$	$V_{\text {us }}$	$V_{\mathbf{u b}}$
$V_{\text {cd }}$	$V_{\text {cs }}$	$V_{\text {cb }}$
$V_{\text {tb }}$	$V_{\text {ts }}$	$V_{\text {tb }}$

NO Flavour Changing Neutral Currents (FCNC) at Tree Level
(FCNC processes are good candidates for observing NEW PHYSICS)

CP Violation is natural with three quark generations (Kobayashi-Maskawa)

With three generations all CP
phenomena are related to the same unique parameter (δ)

$\mathrm{V}_{\mathbf{u d}} \sim 1$	$\mathrm{~V}_{\mathrm{us}} \sim \lambda$	$\mathrm{V}_{\mathbf{u b}} \sim \lambda^{3}$
$\mathrm{~V}_{\mathrm{cd}} \sim \lambda$	$\mathrm{V}_{\mathbf{c s}} \sim 1$	$\mathrm{~V}_{\mathbf{c b}} \sim \lambda^{2}$
$\mathrm{~V}_{\mathbf{t b}} \sim \lambda^{3}$	$\mathrm{~V}_{\mathbf{t s}} \sim \lambda^{2}$	$\mathrm{~V}_{\mathbf{t b}} \sim 1$

Quark masses \&

 Generation Mixing
β-decays

Neutron

$\mathrm{c}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{1 3}}$	$\mathrm{s}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{1 3}}$	$\mathrm{s}_{\mathbf{1 3}} \mathrm{e}^{-\mathrm{i} \delta}$
$-\mathrm{S}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{2 3}}$	$\mathrm{c}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{2 3}}$	$\mathrm{s}_{\mathbf{2 3}} \mathrm{c}_{\mathbf{1 3}}$
$-\mathrm{c}_{\mathbf{1 2}} \mathrm{S}_{\mathbf{2 3}} \mathrm{S}_{\mathbf{1 3}} \mathrm{e}^{\mathrm{i} \delta}$	$-\mathrm{S}_{\mathbf{1 2}} \mathrm{S}_{\mathbf{2 3}} \mathrm{S}_{\mathbf{1 3}} \mathrm{e}^{\mathrm{i} \delta}$	
$\mathrm{S}_{\mathbf{1 2}} \mathrm{S}_{\mathbf{2 3}}$	$-\mathrm{c}_{\mathbf{1 2}} \mathrm{S}_{\mathbf{2 3}}$	
$-\mathrm{c}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{2 3}} \mathrm{s}_{\mathbf{1 3}} \mathrm{e}^{\mathrm{i} \mathrm{\delta}}$	$-\mathrm{s}_{\mathbf{1 2}} \mathrm{c}_{\mathbf{2 3}} \mathrm{S}_{\mathbf{1 3}} \mathrm{e}^{\mathrm{i} \mathrm{\delta} \delta}$	$\mathrm{c}_{\mathbf{2 3}} \mathrm{c}_{\mathbf{1 3}}$

$\mathrm{c}_{\mathrm{ij}}=\operatorname{Cos} \theta_{\mathrm{ij}} \quad \mathrm{s}_{\mathrm{ij}}=\operatorname{Sin} \theta_{\mathrm{ij}} \quad \mathrm{c}_{\mathrm{ij}} \geq 0 \quad \mathrm{~s}_{\mathrm{ij}} \geq 0$
$0 \leq \delta \leq 2 \pi \quad\left|\mathrm{~s}_{12}\right| \sim \operatorname{Sin} \theta_{\mathrm{c}}$
for small angles $\quad\left|\mathrm{s}_{\mathrm{ij}}\right| \sim\left|\mathrm{V}_{\mathrm{ij}}\right|$

The Wolfenstein Parametrization

$1-1 / 2 \lambda^{2}$	λ	$\mathrm{~A} \lambda^{3}(\rho-\mathrm{i} \eta)$
$-\lambda$	$1-1 / 2 \lambda^{2}$	$\mathrm{~A} \lambda^{2}$
$\mathrm{A} \lambda^{3} \times$ $(1-\rho-i \eta)$	$-\mathrm{A} \lambda^{2}$	1

$\lambda \sim 0.2 \quad A \sim 0.8$
$\eta \sim 0.2 \quad \rho \sim 0.3$
$\sin \theta_{12}=\lambda$
$\sin \theta_{23}=A \lambda^{2}$
$\sin \theta_{13}=A \lambda^{3}(\rho-i \eta)$

The Bjorken-Jarlskog Unitarity Triangle

Visualization of the unitarity of the CKM matrix

From
A. Stocchi ICHEP 2002

SEVERAL UNITARITY TRIANGLE ANALYSES, USING METHODS BASED ON THE "BAYESIAN " APPROACH, HAVE BEEN MADE DURING THE LAST DECADE

- $\varepsilon_{\mathrm{K}} \quad$ Constraints on the
- $\Delta \mathrm{m}_{\mathrm{s}} \quad$ allowed values of
- $\Delta \mathrm{m}_{\mathrm{c}}$
- $\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}$

$$
\begin{array}{cc}
\Gamma(b \rightarrow u) / \Gamma(b \rightarrow c) & \bar{\rho}^{2}+\bar{\eta}^{2} \\
\varepsilon_{K} & \eta[(1-\bar{\rho})+\ldots] \\
\Delta m_{d} & (1-\bar{\rho})^{2}+\bar{\eta}^{2} \\
\Delta m_{d} / \Delta m_{1} & (1-\bar{\rho})^{2}+\bar{\eta}^{2} \\
A_{C P}\left(B_{d} \rightarrow J / \psi K_{s}\right) & \sin 2 \beta
\end{array}
$$

$$
f_{B_{d}}^{2} B_{B_{d}}
$$

$$
\xi
$$

$\sin 2 \beta$ is measured directly from $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$

 decays at Babar \& Belle$$
\mathcal{A}_{\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}}=\frac{\Gamma\left(\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)-\Gamma\left(\overline{\mathrm{B}}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)}{\Gamma\left(\mathrm{B}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)+\Gamma\left(\overline{\mathrm{B}}_{\mathrm{d}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}, \mathrm{t}\right)}
$$

$$
\mathcal{A}_{\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}}=\sin 2 \beta \quad \sin \left(\Delta m_{d} \mathrm{t}\right)
$$

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible uncertainties

$$
\begin{array}{r}
\mathcal{A}_{C P}\left(B \rightarrow J / \psi K_{s}\right) \\
K^{+} \rightarrow \pi^{+} v \bar{v}
\end{array}
$$

2) Second class quantities, with theoretical errors of $\mathrm{O}(10 \%)$ or less that can be reliably estimated

$$
\begin{array}{r}
\varepsilon_{K}, \quad \Delta m_{d, s} \\
\Gamma(b \rightarrow c, u) \\
\gamma \text { from } B \rightarrow D K
\end{array}
$$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.)
In case of discrepacies we cannot tell whether is new physics or we must blame the model

$$
\begin{array}{ll}
B \rightarrow K & B \rightarrow \pi^{0} \pi^{0} \\
B \rightarrow \phi K_{s} &
\end{array}
$$

Quantities used in the Standard UT Analysis

THE COLLABORATION

M.Bona, M.Ciuchini, E.Franco,
V.Lubicz, G.Martinelli, F.Parodi,
M.Pierini, P.Roudeau, C.Schiavi,

L.Silvestrini, A.Stocchi

Roma, Genova, Torino, Orsay
NEW 2004 ANALYSIS IN PREPARATION

- New quantities e.g. B \rightarrow DK will be included
- Upgraded experimental numbers after Bejing

www.utfit.org

PAST and PRESENT

 (the Standard Model)| Constraints, Parameters | Value | Gauss Error | Flat Error | Comments |
| :---: | :---: | :---: | :---: | :---: |
| $\sin 2 \beta$ | 0.739 | 0.048 | - | |
| λ | 0.2240 | 0.0036 | - | |
| $\left\|\mathrm{V}_{\mathrm{cb}}\right\|\left(10^{-3}\right)$ | 42.1 | 2.1 | - | Average of exclusive |
| $\left\|\mathrm{V}_{\mathrm{cb}}\right\|\left(10^{-3}\right)$ | 41.4 | 0.7 | 0.6 | Average of inclusive |
| $\left\|\mathrm{V}_{\text {ub }}\right\| 10^{-4}$ (excl.) | 33.0 | 2.4 | 4.6 | For the moment $->$ only CLEO |
| $\left\|\mathrm{V}_{\mathrm{ub}}\right\| 10^{-4}$ (incl.) | 40.9 | 4.6 | 3.6 | For the moment --> LEP + CLE0 end-point |
| $\mathrm{mb}_{\mathrm{b}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ | 4.21 | 0.08 | - | |
| $\mathrm{m}_{\mathrm{c}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ | 1.3 | 0.1 | - | |
| $\Delta\left(\mathrm{m}_{\mathrm{d}}\right)\left(\mathrm{ps}{ }^{-1}\right)$ | 0.503 | 0.006 | - | WA (CDF/CLEO/LEP/Babar/Belle) |
| $\Delta\left(m_{s}\right)\left(\mathrm{ps}^{-1}\right)$ | > 14.5 @ 95 \% C.L. | - | - | Sensitivity at 18.3 (CDF/LEP/SLD) The Likelihood Ratio is used. |
| $\mathrm{m}_{\mathrm{t}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ | 167 | 5 | - | (CDF/D0) |
| $\mathrm{f}_{\mathrm{Bs}} \sqrt{\mathrm{B}}_{\mathrm{Bs}}(\mathrm{MeV})$ | 276 | 38 | - | Lattice QCD |
| ξ | 1.24 | 0.04 | 0.06 | Lattice QCD |
| $\eta_{\text {b }}$ | 0.55 | 0.01 | - | |
| $\left\|\varepsilon_{K}\right\| 10^{-3}$ | 2.280 | 0.013 | - | |
| B_{K} | 0.86 | 0.06 | 0.14 | Lattice QCD |
| η_{1} | 1.38 | 0.53 | - | |
| η_{2} | 0.574 | 0.004 | - | |
| η_{3} | 0.47 | 0.04 | - | |
| $\mathrm{f}_{\mathrm{K}}(\mathrm{GeV})$ | 0.161 | - | - | |
| $\Delta\left(\mathrm{m}_{\mathrm{K}}\right)\left(10^{-2} \mathrm{ps}^{-1}\right)$ | 0.5301 | - | - | |
| $\alpha_{\text {s }}$ | 0.119 | 0.003 | - | |

Results for ρ and η \& related quantities

$$
\begin{array}{|ccc|}
\hline \bar{\rho}=0.174 \pm 0.048 & \bar{\eta}=0.344 \pm 0.027 & \\
{[0.085-0.265]} & {[0.288-0.397]} & \text { at 95\% C.L. } \\
\hline
\end{array}
$$

$\sin 2 \alpha=-0.14 \pm 0.25$

$$
\sin 2 \beta=0.697 \pm 0.036
$$

$$
[-0.62-+0.33]
$$

$$
[0.636-0.779]
$$

Comparison of $\sin 2 \beta$ from direct

 measurements (Aleph, Opal, Babar, Belle and CDF) and UTA analysis$$
\sin 2 \beta_{\text {measured }}=0.739 \pm 0.048
$$

$$
\sin 2 \beta_{\mathrm{UTA}}=0.685 \pm 0.047
$$

$\sin 2 \beta_{\text {UTA }}=0.698 \pm 0.066$ prediction from Ciuchini et al. (2000)

Very good agreement no much room for physics beyond the SM !!

Theoretical predictions of $\operatorname{Sin} 2 \beta$

 in the years predictions
exist since '95

Crucial Test of the Standard Model

 Triangle Sides (Non CP) compared to
$\sin 2 \beta$ and ε_{K}

From the sides

PRESENT: $\sin 2 \alpha$ from B -> $\pi \pi \quad \& \rho \rho$

γ and $(2 \beta+\gamma)$ from B $->$ DK \& B $->D\left(D^{*}\right) \pi$
A posteriori per $\sin 2 \alpha, \sin 2 \beta$ e γ : FROM UTA

$$
\begin{gathered}
\sin 2 \beta=0.715_{-0.35}^{+0.25} \\
{[0.65,0.78] @ 95 \% \text { CL }}
\end{gathered}
$$

$$
\begin{aligned}
& \sin \mathbf{2} \alpha=-\mathbf{0 . 1 3}+0.28 \\
& {[-0.00,0.35] @ 95 \% \mathrm{CL}}
\end{aligned}
$$

$$
\begin{gathered}
\gamma=64^{\circ} \pm 7^{\circ} \\
{[50,78] @ \mathbf{9 5 \%} \mathbf{C L}}
\end{gathered}
$$

为

$\Delta \mathrm{m}_{\mathrm{s}}$ Probability Density

Without the constraint from $\Delta \mathrm{m}_{\mathrm{s}}$
$\Delta \mathrm{m}_{\mathrm{s}}=(20.6 \pm 3.5) \mathrm{ps}^{-1}$
[14.2 - 28.1] ps ${ }^{-1}$ at 95\% C.L.

With the constraint from $\Delta \mathrm{m}_{\mathrm{s}}$
$\Delta \mathrm{m}_{\mathrm{s}}=\left(18.3_{-1.5}^{+1.7}\right) \mathrm{ps}^{-1}$
[$15.6-22.2$] ps ${ }^{-1}$ at 95\% C.L.

$$
\xi=f_{B_{s}} \sqrt{B_{B_{s}}} / f_{B_{d}} \sqrt{B_{B_{d}}}
$$

Hadronic parameters

$$
\mathrm{f}_{\mathrm{Bs}} \sqrt{ } \mathrm{~B}_{\mathrm{Bs}}=276 \pm 38 \mathrm{MeV} 14 \%
$$

lattice

$$
\mathrm{f}_{\mathrm{Bs}} \sqrt{ } \mathrm{~B}_{\mathrm{Bs}}=279 \pm 21 \mathrm{MeV} 8 \%
$$

UTA

$$
\begin{gathered}
\mathbf{4 \%} \longrightarrow \text { — } 1.22 \pm 0.05 \\
\mathrm{f}_{\mathrm{Bd}} \sqrt{ } \sqrt{\mathrm{~B}_{\mathrm{Bd}}}=223 \pm 33 \pm 12 \mathrm{MeV} \\
\mathrm{f}_{\mathrm{Bd}} \sqrt{ } \sqrt{ } \mathrm{~B}_{\mathrm{Bd}}=217 \pm 12 \mathrm{MeV}_{\text {Iattice }} \\
\mathrm{B}_{\mathbf{K}}=0.86 \pm 0.06 \pm 0.14_{\text {UTA }} \\
\mathrm{B}_{\mathrm{K}}=0.69_{(-0.08)}^{(+0.13)} \quad \text { UTA }
\end{gathered}
$$

Limits on Hadronic Parameters

Summary of the Results

Parameter	Value \pm Error	95\% probability	99\% probability
η	0.344 ± 0.027	[0.291,0.396]	[0.272, 0.415]
ρ	0.174 ± 0.048	[$0.076,0.260]$	[0.045, 0.293]
$\sin 2 \beta$	0.697 ± 0.036	[0.637, 0.761]	[0.619, 0.781]
$\sin 2 \alpha$	-0.14 ± 0.25	[-0.62, 0.34]	[-0.73, 0.50]
$\gamma\left({ }^{\circ}\right)$	61.9 ± 7.9	[48.6,76.0]	[43.2, 82.9]
$\operatorname{Im} \lambda_{t}\left[10^{-5}\right]$	13.1 ± 1.0	[11.2, 15.0]	[10.6, 15.6]
$\Delta\left(m_{s}\right)\left(\mathrm{ps}^{-1}\right)$	20.5 ± 3.2	[14.4, 27.1]	[13.1, 29.5]
$\mathrm{f}_{\mathrm{Bs}}{\sqrt{\text { B }}{ }_{\text {Bs }}(\mathrm{MeV})}$	279 ± 21	[239, 320]	[228,332]
ξ	1.22 ± 0.05	[1.10, 1.33]	[1.09, 1.34]
B_{K}	0.65 ± 0.10	[0.52,0.91]	[0.46, 1.05]

The parameters of the unitarity triangle ($\bar{\rho}, \bar{\eta}, \sin 2 \beta, \sin 2 \alpha, \gamma$ and $\operatorname{Im} \lambda_{\not}$) have been determined including all constraints. In addition the values of the parameters entering in other constraints $\left(\Delta m_{s}, f_{B d} \sqrt{B}\right.$ 列 and $\left.B_{K}\right)$ are given after having removed, in turn, each of the corresponding constraint.

PRESENT

 (the Standard Model)NEW MEASUREMENTS

$\sin 2 \alpha \quad$ from $\quad B->\pi \pi$
 UT ${ }_{\text {fit }}$

$$
\begin{aligned}
\mathcal{A}_{C P} & =\frac{\operatorname{Prob}\left(B_{\text {phys }}^{0}(\Delta t) \rightarrow f\right)-\operatorname{Prob}\left(\bar{B}_{\text {phys }}^{0}(\Delta t) \rightarrow f\right)}{\operatorname{Prob}\left(B_{p h y s u}^{0}(\Delta t) \rightarrow f\right)+\operatorname{Prob}\left(\overline{B_{\text {phys }}^{0}}(\Delta t) \rightarrow f\right)} \\
& =C_{f} \cos \Delta m_{d} \Delta t+S_{f} \sin \Delta m_{d} \Delta t
\end{aligned}
$$

$$
C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}} ; S_{f}=-\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}
$$

$$
\Delta I=\frac{3}{2}, \frac{1}{2} \quad V_{u b} V_{u d}^{*} \sim O\left(\lambda^{3}\right) \quad \Delta I=\frac{1}{2} \quad V_{t b} V_{t d}^{*} \sim O\left(\lambda^{3}\right)
$$

$\sin 2 \alpha \quad$ from $\quad B->\pi \pi$

$$
\lambda_{\pi \pi}=e^{-2 i \alpha}\left[\frac{1+\tau^{*} \Delta \mathcal{A}_{t}}{1+\tau \Delta \mathcal{A}_{t}}\right]
$$

$$
\tau=-\frac{1-\rho-i \eta}{\rho+i \eta} \quad \operatorname{Arg}\left[\lambda_{\pi \pi}\right]=\sin 2 \alpha_{e f f} \neq \sin 2 \alpha
$$

$$
\frac{\operatorname{Im}\left[\lambda_{\pi \pi}\right]}{\left|\lambda_{\pi \pi}\right|}=\sin (2 \alpha+\phi)
$$

ϕ could be

$$
\mathcal{A}\left(B_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right), \mathcal{A}\left(\bar{B}_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right), \mathscr{A}\left(B_{d}^{0} \rightarrow \pi^{0} \pi^{0}\right)
$$

extracted by measuring

$$
\mathcal{A}\left(\bar{B}_{d}^{0} \rightarrow \pi^{0} \pi^{0}\right), \mathcal{A}\left(B_{d}^{+} \rightarrow \pi^{+} \pi^{0}\right)
$$

$\sin 2 \alpha \quad$ from $\quad B->\pi \pi$

analisi dipendente dal tempo $\pi \pi$ e $\rho \rho$: misure di $2 \alpha_{\text {eff }}=2 \alpha+\delta$

$\mathrm{UT}_{f i t}$
$\left|\alpha_{\text {eff }}-\alpha\right|_{\pi \pi}<43.0^{\circ} @ 95 \%$ CL Grossman-Quinn bound: $\left|\alpha_{\text {eff }}-\alpha\right|_{\rho \rho}<17.0^{\circ} \quad \sin ^{2} \delta \leq \frac{B R\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)+B R\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{B R\left(B^{+} \rightarrow \pi^{+} \pi^{\mathrm{n}}\right)+B R\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)}$

PRESENT \&
 NEAR FUTURE

I cannot resist to show the next 3 trasparencies

MAIN TOPICS

- Factorization (see M. Neubert talk)
- What really means to test Factorization
- $\mathrm{B} \rightarrow \pi \pi$ and $\mathrm{B} \rightarrow \mathrm{K} \pi$ decays and the determination of the CP parameter γ
- Results including non-factorizable contributions
- Asymmetries
- Conclusions \& Outlook From g.m. qcd@work martinafranca 2001

CIUCHINI ET AL 2001

Contrary to factorization we predict large Asymmetries for several of the particleantiparticle BRs, in particular BR($\mathrm{B}^{+}->$ $\left.\mathrm{K}^{+} \pi^{0}\right)$ and $\mathrm{BR}\left(\mathrm{B}^{0}->\mathrm{K}^{+} \pi^{-}\right)$. This open new perspectives for the study of CP violation in B systems.

From g.m. qcd@work martinafranca 2001

CHARMING PENGUINS GENERATE LARGE ASYMMETRIES

$$
\mathcal{A}=\frac{\mathbf{B R}(\overline{\mathbf{B}})-\mathbf{B R}(\mathbf{B})}{\mathbf{B R}(\overline{\mathbf{B}})+\mathbf{B R}(\mathbf{B})}
$$

typical $\mathfrak{A} \approx 0.2$
(factorized 0.03)

From g.m. qcd@work martinafranca 2001

In this study, the partial rate asymmetry $\mathcal{A}_{C P}\left(K^{-} \pi^{+}\right)$is found to be $-0.088 \pm 0.035 \pm$ 0.013 , which is 2.4σ from zero. The corresponding 90% confidence level (C.L.) interval is $-0.15<\mathcal{A}_{C P}\left(K^{-} \pi^{+}\right)<-0.03$. Our central value is similar to that reported by BaBar, $\mathcal{A}_{C P}\left(K^{-} \pi^{+}\right)=-0.107 \pm 0.041 \pm 0.013[17]$, indicating that the partial rate asymmetry may be negative. Theoretical predictions from different approaches suggest that $\mathcal{A}_{C P}\left(K^{-} \pi^{+}\right)$ and $\mathcal{A}_{C P}\left(K^{+} \pi^{0}\right)$ should have the same sign. The uncertainty in our result for $\mathcal{A}_{C P}\left(K^{+} \pi^{0}\right)$, is large enough for it to be consistent with this expectation. We set a 90% C.L. interval of $-0.04<\mathcal{A}_{C P}\left(K^{+} \pi^{0}\right)<0.16$. Since no evidence of direct $C P$ violation is observed in the

BABAR -0.130 $\pm 0.030 \pm 0.009$

4.2 sigma effect (last Monday !!)

$B \rightarrow K \pi$ DECAYS (III)

Direct CP violation occurs because there are two different ways of reaching the same final state

In this particular case sensitive to γ
D^{0} and $\overline{\mathrm{D}}^{0}$ are involved

$A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)=A_{B} r_{B} e^{i\left(\delta_{B}-\gamma\right)}$
$A\left(B^{+} \rightarrow D^{0} K^{+}\right)=A_{B} r_{B} e^{i\left(\delta_{B}+\gamma\right)}$
$A_{B} \quad$ strong amplitude (the same for
$\delta_{B}=\delta_{1}-\delta_{2} \quad$ strong phase difference between
$r_{B}=\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right|$

GLW (Gronau,London,Wyler) Method $\quad\left\langle D_{C P \pm}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{0}\right\rangle \pm\left\langle\bar{D}^{0}\right\rangle\right) \quad$ Look at $D^{0}(C P)$ states

$$
\begin{array}{ll}
\sqrt{2} A\left(B^{+} \rightarrow D_{C C_{+}}^{0} K^{*}\right)=A\left(B^{+} \rightarrow D^{0} K^{+}\right)+A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right) & \sqrt{2} A\left(B^{+} \rightarrow D_{C P_{-}}^{0} K^{+}\right)=A\left(B^{+} \rightarrow D^{0} K^{+}\right)-A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right) \\
\sqrt{2} A\left(B^{-} \rightarrow D_{C C_{+}}^{0} K^{-}\right)=A\left(B^{-} \rightarrow D^{0} K^{-}\right)+A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right) & \sqrt{2} A\left(B^{-} \rightarrow D_{C P_{-}}^{0} K^{-}\right)=A\left(B^{-} \rightarrow D^{0} K^{-}\right)-A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)
\end{array}
$$

ADS (Atwood, Dunietz, Soni) Method
D^{0} and $\overline{\mathrm{D}}^{0} \rightarrow \mathrm{f} \quad \mathrm{D}^{0}$ and $\overline{\mathrm{D}}^{0}$ give the same final

GLW (Gronau,London,Wyler) Method

$$
\begin{aligned}
& A_{C P \pm}=\frac{\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)-\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)}{\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)+\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)}=\frac{ \pm 2 r_{B} \sin \gamma \sin \delta_{B}}{1+r_{B}^{2} \pm 2 r_{B} \cos \gamma \cos \delta_{B}} \\
& R_{C P \pm}=\frac{\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)+\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)}{\Gamma\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)+\Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)}=1+r_{B}^{2} \pm 2 r_{B} \cos \gamma \cos \delta_{B}
\end{aligned}
$$

ADS (Atwood, Dunietz, Soni) Method (only Babar)

$$
\begin{aligned}
R_{A D S}=\frac{\Gamma\left(B^{+} \rightarrow\left(K^{-} \pi^{+}\right)_{D} K^{+}\right)-\Gamma\left(B^{-} \rightarrow\left(K^{+} \pi^{-}\right)_{D} K^{-}\right)}{\Gamma\left(B^{+} \rightarrow\left(K^{+} \pi^{-}\right)_{D} K^{+}\right)+\Gamma\left(B^{-} \rightarrow\left(K^{-} \pi^{+}\right)_{D} K^{-}\right)} & =r_{B}^{2}+r_{D C S}^{2}+2 r_{B} r_{D C S} \cos \gamma \cos \left(\delta_{B}+\delta_{D}\right) \\
& r_{D C S} \equiv \sqrt{\frac{B R\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}{B R\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}}
\end{aligned}
$$

\underline{r}_{B} is a crucial parameter. It drives the sensitivity on γ

What about $\mathrm{r}_{\mathrm{B}} ? \quad r_{B}=\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right|$

$$
=\left|\frac{C+A}{T+\bar{C}}\right|
$$

$$
\left.r_{B}=|R B \times R C T|=\left|\frac{V_{c u} V_{c s}^{*}}{V_{c b} V_{u s}^{*}}\right| \frac{C+A}{T+\bar{C}}\left|=\sqrt{\bar{\eta}^{2}+\bar{\rho}^{2}}\right| \frac{C+A}{T+\bar{C}} \right\rvert\, \quad R B=0.36 \pm 0.04
$$

Evaluation can be done if Annihilation diagram is neglected $\quad R C T \approx \sqrt{\frac{\operatorname{Br}\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}^{0}\right)}{\operatorname{Br}\left(B^{-} \rightarrow D^{0} K^{-}\right)}}=0.34 \pm 0.10 \quad r_{B}=0.12 \pm 0.04$
Beyond this approx. If $|\mathrm{A} / \mathrm{C}| \sim 0.3$ (max?) (+-30\% according to the interference between A and C)

$$
r_{B}=0.12 \pm 0.04(\text { stat }) \pm 0.04(\text { theo. })
$$

Conclusions : should be measured on data

$$
\begin{aligned}
& \text { GLW } \quad A_{C P_{+}}=0.07 \pm 0.13 \quad 2 r \sin \gamma \sin \delta / R_{C P_{+}} \\
& A_{C P_{-}}=-0.19 \pm 0.18 \quad-2 r \sin \gamma \sin \delta / R_{C P_{+}} \\
& R_{C P_{+}}=1.09 \pm 0.16 \quad 1+r^{2}+2 r \cos \gamma \cos \delta_{B} \\
& R_{C P-}=1.30 \pm 0.25 \quad 1+r^{2}-2 r \cos \gamma \cos \delta_{B} \\
& C P+\quad K^{+} \pi^{-} \quad \pi^{+} \pi^{-} \\
& C P-\quad K_{s} \pi^{0} \quad K_{s} \phi \quad K_{s} \omega \quad K_{s} \eta \\
& R_{A D S}=0.0054 \pm 0.0124 \\
& r_{D C S}^{2}+r_{B}^{2}+2 r_{B} r_{D C S} \cos \gamma \cos \left(\delta_{B}+\delta_{D}\right) \quad \mathrm{ADS}
\end{aligned}
$$

Drawn into the $\rho-\eta$ plane

$$
\gamma=(81 \pm 35)^{o}
$$

Tree level diagrams, not influenced by new physics
$\gamma=(61.9 \pm 7.9)^{0}$
UTA

Nuovi Input: $\boldsymbol{\operatorname { s i n }}(\mathbf{2} \beta+\gamma)$

$\mathbf{a}^{(*)}=2 \mathbf{r}^{(*)} \sin (2 \beta+\gamma) \cos \delta^{(*)}$
$\mathbf{c}^{\left({ }^{(+)}\right.}=\mathbf{2} \mathbf{r}^{\left({ }^{(3)}\right.} \cos (2 \beta+\gamma) \sin \delta^{\left({ }^{(*)}\right.}$ (tag leptonico)
valori medi da HFAG

FUTURE:

> FCNC \&
> CP Violation beyond
the Standard Model

beyond the SM (Supersymmetry)

Spin $1 / 2$	Quarks
	$\mathrm{q}_{\mathrm{L}}, \mathrm{u}_{\mathrm{R}}, \mathrm{d}_{\mathrm{R}}$
	Leptons
	$\mathrm{l}_{\mathrm{L}}, \mathrm{e}_{\mathrm{R}}$

Spin 1 Gauge bosons

$$
\mathrm{W}, \mathrm{Z}, \gamma, \mathrm{~g}
$$

Spin 0 Higgs bosons

$$
\mathrm{H}_{1}, \mathrm{H}_{2}
$$

Spin $0 \quad$ SQuarks
 $\mathrm{Q}_{\mathrm{L}}, \mathrm{U}_{\mathrm{R}}, \mathrm{D}_{\mathrm{R}}$

SLeptons L_{L}, E_{R}

Spin 1/2 Gauginos

$$
\mathrm{w}, \mathrm{z}, \tilde{\gamma}, \tilde{\mathrm{~g}}
$$

Spin 1/2
Higgsinos
$\tilde{\mathrm{H}}_{1}, \tilde{\mathrm{H}}_{2}$

In general the mixing mass matrix of the SQuarks (SMM) is not diagonal in flavour space analogously to the quark case We may either

Diagonalize the SMM

Rotate by the same matrices the SUSY partners of the u - and d- like quarks
$\left(Q_{\mathrm{L}}\right)^{\prime}=\mathbf{U}^{\mathrm{ij}} \mathrm{Q}_{\mathrm{L}} \mathrm{Q}_{\mathrm{L}}$

In the latter case the Squark Mass Matrix is not diagonal

a)

b)

c)

d)

$$
\left(m_{Q}^{2}\right)_{i j}=m_{\text {average }}^{2} 1_{i j}+\Delta m_{i j}^{2} \quad \delta_{i j}=\Delta m_{i j}^{2} / m_{\text {average }}^{2}
$$

Deviations from the SM ?

Model independent analysis: Example $\quad \mathrm{B}^{0}-\overline{\mathrm{B}}^{0}$ mixing
(M.Ciuchini et al. hep-ph/0307195)

$$
C_{q} e^{2 i \phi_{q}}=\frac{\left\langle\bar{B}_{q}^{0}\right| \mathcal{H}_{e f f}^{f u l l}\left|B_{q}^{0}\right\rangle}{\left\langle\bar{B}_{q}^{0}\right| \mathcal{H}_{e f f}^{S M}\left|B_{q}^{0}\right\rangle}
$$

$$
\begin{aligned}
& \Delta m_{d}=C_{d} \Delta m_{d}^{S M} \quad\left(B_{d}^{0}-\bar{B}_{d}^{0} \text { mixing }\right) \\
& A_{C P}\left(J / \Psi K_{s}\right)=\sin 2\left(\beta+\phi_{d}\right)
\end{aligned}
$$

from ε_{K}

$$
x=1 \quad m_{\tilde{q}}=500 \mathrm{GeV}
$$

$\Delta \mathrm{M}_{\mathrm{B}} \quad$ and $\quad \mathcal{A}\left(\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}\right)$

$$
\begin{aligned}
& \left.\Delta \mathrm{M}_{\mathrm{B}_{\mathrm{d}}}=2 \operatorname{Abs}\left|\left\langle\overline{\mathrm{~B}}_{\mathrm{d}}\right| \mathcal{H}_{\text {eff }}^{\Delta \mathrm{B}=2}\right| \mathrm{B}_{\mathrm{d}}\right\rangle \mid \\
& \mathcal{A}\left(\mathrm{B} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}\right)=\sin 2 \beta_{\text {eff }} \sin \Delta \mathrm{M}_{\mathrm{B}_{\mathrm{d}}} \mathrm{t} \\
& \left.2 \beta_{\text {eff }}=\operatorname{Arg}\left|\left\langle\bar{B}_{d}\right| \mathcal{H}_{\text {eff }}^{\Delta \mathrm{B}=2}\right| B_{d}\right\rangle \mid
\end{aligned}
$$

$$
\sin 2 \beta=0.734 \pm 0.054 \quad \text { from exps }
$$

BaBar \& Belle \& others

TYPICAL BOUNDS ON THE ס-COUPLINGS

$\left\langle\mathrm{B}^{0}\right| \mathcal{H}_{\text {eff }}{ }^{A B=2}\left|\mathrm{~B}^{0}\right\rangle=\operatorname{Re} \mathcal{A}_{\text {SM }}+\operatorname{Im} \mathfrak{A}_{\text {SM }}$
$+\mathcal{A}_{\text {SUSY }} \operatorname{Re}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}}{ }^{2}+\mathrm{i} \mathcal{A}_{\text {SUSY }} \operatorname{Im}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{A B}{ }^{2}$

TYPICAL BOUNDS ON THE ס-COUPLINGS

$\left\langle\mathrm{B}^{0}\right| \mathcal{H}_{\mathrm{eff}} \mathrm{AB}_{\mathrm{B}}=2\left|\mathrm{~B}^{0}\right\rangle=\operatorname{Re} \mathcal{A}_{\mathrm{SM}}+\operatorname{Im} \mathcal{A}_{\mathrm{SM}}$
$+\mathcal{A}_{\text {SUSY }} \operatorname{Re}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{A B}{ }^{2}+\mathrm{i} \mathcal{A}_{\text {SUSY }} \operatorname{Im}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}}{ }^{2}$
Typical bounds:

$$
\operatorname{Re}, \operatorname{Im}\left(\delta_{13}{ }^{\mathrm{d}}\right)_{\mathrm{AB}} \leq 1 \div 5 \times 10^{-2}
$$

Note: in this game $\delta_{S M}$ is not determined by the UTA
From Kaon mixing: $\operatorname{Re}, \operatorname{Im}\left(\delta_{12}{ }^{\mathrm{d}}\right)_{\mathrm{AB}} \leq 1 \times 10^{-4}$ SERIOUS CONSTRAINTS ON SUSY MODELS

CP Violation beyond the Standard Model

Strongly constrained for $b \rightarrow d$ transitions,
Much less for $\mathrm{b} \rightarrow \mathrm{s}$:
$\mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.29 \pm 0.34) \times 10^{-4}$
$\mathcal{A}_{\mathrm{CP}}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=-0.02 \pm 0.04$
$\mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+} \mathrm{l}^{-}\right)=(6.1 \pm 1.4 \pm 1.3) \times 10^{-6}$
The lower bound on $\mathrm{B}_{\mathrm{s}}^{0}$ mixing $\Delta \mathrm{m}_{\mathrm{s}}>14 \mathrm{ps}^{-1}$

SM Penguins

SUSY Penguins

W

Recent analyses by G. Kane et al., Murayama et al.and Ciuchini et al.

$\mathcal{A}_{\mathrm{CP}}\left(\mathrm{B}_{\mathrm{d}}->\phi \mathrm{K}_{\mathrm{s}}\right)(2002$ results)
Observable BaBar Belle Average SM prediction
BR (in 10^{-6}) $\quad 8.1_{-2.5}^{+3.1} \pm 0.8 \quad 8.7_{-3.0}^{+3.8} \pm 1.5$
$8.7_{-2.1}^{+2.5} \sim 5$
$\begin{array}{llll}\mathrm{S}_{\phi \mathrm{Ks}} & \underbrace{-0.73 \pm 0.64 \pm 0.09}_{-0.19_{-0.50}^{+0.52} \pm 0.09} \underbrace{-0.39 \pm 0.41}_{-0.5}+0.734 \pm 0.054 \\ \mathrm{C}_{\phi \mathrm{Ks}} & - & 0.56 \pm 0.41 \pm 0.12 & 0.56 \pm 0.43 \\ -0.08\end{array}$
$\mathcal{A}_{\phi K s}=-C_{\phi K s} \cos \left(\Delta m_{B} t\right)+S_{\phi K s} \sin \left(\Delta m_{B} t\right)$
$\left[\mathcal{A}_{\mathrm{CP}}\left(\mathrm{B}_{\mathrm{d}}->\pi \mathrm{K}\right)\right.$ do not give significant constraints $]$
One may a also consider $\mathrm{B}_{\mathrm{s}}->\mu \mu$
(for which there is an upper bound from Tevatron, CDF $\mathrm{BR}<2.60^{-6}$)

$$
\begin{array}{lccc}
\mathcal{A}_{\mathrm{CP}}\left(\mathrm{~B}_{\mathrm{d}}->\right. & \left.\phi \mathrm{K}_{\mathrm{s}}\right) & (2003 \text { results }) \\
\text { Observable } \quad \text { BaBar } & \text { Belle } & \text { Average } & \text { SM prediction } \\
& & & \\
\mathrm{S}_{\phi \mathrm{Ks}}+\mathbf{0 . 4 7} \pm \mathbf{0 . 3 4}_{-0.06}^{+0.08} & -\mathbf{0 . 9 6} \pm \mathbf{0 . 5 0 5}_{-0.011}^{+0.09} & \mathbf{+ 0 . 7 3} \pm \mathbf{0 . 0 7}
\end{array}
$$

see M. Ciuchini et al. Presented at Moriond 2004 by L. Silvestrini

$$
\mathcal{A}_{\phi K s}=-C_{\phi K s} \cos \left(\Delta m_{B} t\right)+S_{\phi K s} \sin \left(\Delta m_{B} t\right)
$$

PROGRESS SNCE 1988

FUTURE:
 who knows?
 This is what makes it Interesting!

WHY RARE DECAYS ?

Rare decays are a manifestation of broken (accidental) symmetries e.g. of physics beyond the Standard Model

Proton decay
baryon and lepton number conservation

$\mu \quad->e+\gamma$
lepton flavor number
$V_{i} \quad->\quad V_{k}$

RARE DECAYS WHICH ARE ALLOWED IN THE STANDARD MODEL

$$
\begin{aligned}
& \text { FCNC: } \\
& q_{i} \rightarrow q_{k}+v \bar{v} \text { these decays occur only } \\
& \text { via loops because of GIM } \\
& q_{i} \rightarrow q_{k}+I^{-} l^{-} \text {and are suppressed by CKM } \\
& q_{i} \rightarrow q_{k}+\gamma
\end{aligned}
$$

THUS THEY ARE SENSITIVE TO

 NEW PHYSICSWhy we like $K \rightarrow \pi v \bar{v}$?
For the same reason as $A_{J / \psi K_{s}}$:

1) Dominated by short distance dynamics
(hard GIM suppression, calculable in pert. theory)
2) Negligible hadronic uncertainties
(matrix element known)
$O\left(\mathrm{G}_{\mathrm{F}}^{2}\right) \mathrm{Z}$ and W penguin/box $s \rightarrow \mathrm{~d} v \bar{v}$ diagrams

$$
\begin{gathered}
\mathcal{H}_{e f f}=\mathrm{G}_{\mathrm{F}}^{2} \alpha /\left(2 \sqrt{ } 2 \pi \mathrm{~s}_{\mathrm{w}}^{2}\right)\left[\mathrm{V}_{\mathrm{td}} \mathrm{~V}_{\mathrm{ts}}{ }^{*} \mathrm{X}_{\mathrm{t}}+\mathrm{V}_{\mathrm{cd}} \mathrm{~V}_{\mathrm{cs}}^{*} \mathrm{X}_{\mathrm{c}}\right] \times \\
\left(\overline{\mathrm{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}\right)\left(\overline{\mathrm{v}} \gamma^{u}\left(1-\gamma_{5}\right) v\right)
\end{gathered}
$$

© NLO QCD corrections to $\mathrm{X}_{\mathrm{t}, \mathrm{c}}$ and $\mathrm{O}\left(\mathrm{G}_{\mathrm{F}}^{3} \mathrm{~m}_{\mathrm{t}}^{4}\right)$ contributions known
© the hadronic matrix element $\langle\pi| \mathrm{s} \gamma_{\mu}\left(1-\gamma_{5}\right) \mathrm{d}|\mathrm{K}\rangle$ is known with very high accuracy from K13 decays
© sensitive to $\mathrm{V}_{\mathrm{td}} \mathrm{V}_{\mathrm{ts}}^{*}$ and expected large \varnothing © P
$A(s \rightarrow d v \bar{v})$
$O\left(\lambda^{5} / m^{2}{ }_{t}\right)+i O\left(\lambda^{5} \mathrm{~m}_{\mathrm{t}}^{2}\right)$
$O\left(\lambda \mathrm{~m}_{\mathrm{c}}{ }_{\mathrm{c}}\right)+\mathrm{i} O\left(\lambda / \mathrm{m}^{2}{ }_{\mathrm{c}}\right)$
$O(\lambda \lambda /$ CD $)$
CP conserving: error of $O(10 \%)$ due to NNLO corrections in the charm contribution and
CKM uncertainties $\quad \mathrm{BR}\left(\mathrm{K}^{+}\right)_{S M}=(7.2 \pm 2.0) \times 10^{-11}$

$$
\operatorname{BR}\left(K^{+}\right)_{E X P}=\left(15.7^{+17.5}-8.2\right) \times 10^{-11}
$$

- 2 events observed by E787
- central value about 2 the value of the SM
- E949 10-20 events in 2 years

$K^{+}->\pi^{+} \nu V$

CP Violating
$K_{L} \rightarrow \pi^{0} v \bar{v}$
$O\left(\lambda^{5} / m_{t}^{2}\right)+i O\left(\lambda m_{t}^{2}\right)$
dominated by the top quark contribution
-> short distances
(or new physics)

$$
\left(\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right) / \lambda^{5}\right)^{2}=(2.8 \pm 1.0) \times 10^{-11}
$$

Using $\Gamma\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)<\Gamma\left(\mathrm{K}^{+} \rightarrow \pi^{+} \nu \overline{\mathrm{v}}\right)$
One gets $\operatorname{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} v \bar{v}\right)<1.8 \times 10^{-9}(90 \%$ C.L. $)$
2 order of magnitude larger than the SM expectations
$\operatorname{Im} \lambda_{\mathrm{t}}=\lambda V_{c b}^{2} \bar{\eta}=(13.0 \pm 1.0) 10^{-5}$

$$
B R\left(K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right)=r\left(K_{L}\right) \frac{\tau_{K_{L}}}{\tau_{K^{+}}} \frac{3 \alpha^{2}}{2 \pi^{2}} \frac{B r\left(K^{+} \rightarrow \pi^{0} e^{+} \nu\right)}{\sin ^{4} \theta_{W}}\left(\eta_{X} X_{0}\left(x_{t}\right)\right)^{2}\left|V_{\text {cb }}\right|^{4} \bar{\eta}^{2}
$$

where,

$$
X_{0}\left(x_{t}\right)=\frac{x}{8}\left(\left(\frac{x+2}{x-1}\right)+\frac{3 x-6}{(x-1)^{2}} \ln (x)\right)
$$

$$
\operatorname{Br}(K \rightarrow \pi \nu \bar{\nu})=(1.75 \pm 0.3) 10^{-11} \quad(1.25-2.44) 10^{-11} \text { at } 95 \% \text { C.L. }
$$

