Measuring the strong and weak low-energy constants

of QCD in a small volume?

— Mikko Laine (Bielefeld) —

General ideas:	L. Giusti, C. Hoelbling, M. Lüscher, H. Wittig, Comput. Phys. Commun. 153 (2003) 31 [hep-lat/0212012]				
Further work:	M.L., P. Hernández, L. Giusti, P. Weisz, H. Wittig, P.H. Damgaard, K. Jansen, L. Lellouch, C. Pena, J. Wennekers [hep-lat/0211020,0212014,0312012,0402002,0407007; hep-ph/0407086;]				

The strong interaction part of the chiral Lagrangian:

$$\mathcal{L}_E = \frac{F^2}{4} \operatorname{Tr}[\partial_{\mu} U \partial_{\mu} U^{\dagger}] - \frac{\Sigma}{2} \operatorname{Tr}[UM + M^{\dagger} U^{\dagger}] + \dots,$$

 $U \in SU(3)$, $M = diag(m_u, m_d, m_s)$, and F, Σ are low-energy constants.

The weak interaction Hamiltonian:

$$\mathcal{H}_{w}^{\chi \mathsf{PT}} = 2\sqrt{2}G_{F}V_{ud}V_{us}^{*} \{g_{27}\mathcal{O}_{27} + g_{8}\mathcal{O}_{8} + g_{8}^{\prime}\mathcal{O}_{8}^{\prime}\} + \text{H.c.} ,$$

where G_F is the Fermi constant, V_{ij} are elements of the CKM-matrix, g_{27}, g_8 and g'_8 are dimensionless low-energy constants, and

$$\begin{aligned} \mathcal{O}_{27} &\equiv \frac{1}{4} F^4 \left[(\partial_{\mu} U U^{\dagger})_{ds} (\partial_{\mu} U U^{\dagger})_{uu} + \frac{2}{3} (\partial_{\mu} U U^{\dagger})_{du} (\partial_{\mu} U U^{\dagger})_{us} \right], \\ \mathcal{O}_8 &\equiv \frac{1}{4} F^4 \sum_{k=u,d,s} (\partial_{\mu} U U^{\dagger})_{dk} (\partial_{\mu} U U^{\dagger})_{ks} , \\ \mathcal{O}'_8 &\equiv F^2 \Sigma (U M + M^{\dagger} U^{\dagger})_{ds} . \end{aligned}$$

Reproducing $g_8/g_{27} \gg 1$ from lattice QCD is a long-standing challenge.

Bernard, Draper, Soni, Politzer, Wise 1985

What's new (i): To match for g_{27}, g_8 , we can carry out simulations in a "small" volume, $2\pi/M_{\text{glueball}} \ll L \ll 2\pi/M_{\pi}$, with M_{π} physically light.

Why? χ PT applies as soon as the momentum scales are below the QCD scale, e.g. $L \sim 2.0$ fm. The usual counting rules for χ PT just need to be modified.

Gasser, Leutwyler 1987; Neuberger 1988; Hasenfratz, Leutwyler 1990; Hansen, Leutwyler 1990, 1991

On a finite periodic lattice $(V = L^3T, L_0 \equiv T, L_i \equiv L)$,

$$p_{\mu} = \frac{2\pi}{L_{\mu}} n_{\mu}, \quad n_{\mu} \in \mathbb{Z} .$$

Writing $U = \exp(2i\xi/F)$, the propagator is

$$\langle \xi_p \, \xi_{-p} \, \rangle \sim \frac{1}{p^2 + M_\pi^2}$$

For $L^2 \ll (2\pi/M_{\pi})^2$, the zero-modes p = 0 become dominant and have to be summed to all orders. This is the so-called ϵ -regime of χ PT.

In the ϵ -regime, one can write

$$U = \exp\left(irac{2\xi}{F}
ight) U_0, \quad \int_x \xi(x) = 0 \; .$$

The non-zero momentum modes are treated perturbatively as in usual χ PT.

Left over are non-perturbative zero-mode integrals. Going from the θ -vacuum to a fixed topology ν , they are of the type

$$\frac{1}{2} \left\langle \operatorname{Tr} \left[U_0 + U_0^{\dagger} \right] \right\rangle_{U_0 \in U(N_{\mathrm{f}})} = \frac{\mathrm{d}}{\mathrm{d}\mu} \ln \det[I_{\nu+j-i}(\mu)]|_{i,j=1,\dots,N_{\mathrm{f}}},$$
$$\mu \equiv m\Sigma V \sim 1.$$

The great strength of the ϵ -regime is that NLO corrections can be computed without introducing any new low-energy constants, unlike in the usual "p-regime" where $L \gtrsim 2\pi/M_{\pi}!$

What's new (ii): Start with $m_c = m_u = m_d = m_s$, so that the theory has an exact $SU(4)_L \times SU(4)_R$ symmetry in the chiral limit.

Why? To disentangle the role of the charm quark, i.e., tell apart effects due to the mass scale m_c ($\sim 1 \text{ GeV}$) from soft gluon exchange ($\sim 250 \text{ MeV}$).

Furthermore, group theory becomes simpler: "the GIM cancellation takes place", i.e. no penguin contractions are needed, and there are only two operators rather than three $(27 \leftrightarrow 80 \equiv +; 8 \leftrightarrow 20 \equiv -)$.

$$\begin{split} H^{\text{QCD}}_{\text{w}} &= \sqrt{2}G_{\text{F}}V_{ud}V^{*}_{us}\sum_{\sigma=\pm}k^{\sigma}_{1}O^{\sigma}_{1} ,\\ O^{\pm}_{1} &= \{(\bar{s}\gamma_{\mu}P_{\text{L}}u)(\bar{u}\gamma_{\mu}P_{\text{L}}d)\pm(\bar{s}\gamma_{\mu}P_{\text{L}}d)(\bar{u}\gamma_{\mu}P_{\text{L}}u)\}-(u\rightarrow c) ,\\ \mathcal{H}^{\chi\text{PT}}_{\text{w}} &= \sqrt{2}G_{\text{F}}V_{ud}V^{*}_{us}\sum_{\sigma=\pm}g^{\sigma}_{1}\mathcal{O}^{\sigma}_{1} ,\\ \mathcal{O}^{\pm}_{1} &= \frac{F^{4}}{4}\{(U\partial_{\mu}U^{\dagger})_{us}(U\partial_{\mu}U^{\dagger})_{du}\pm(U\partial_{\mu}U^{\dagger})_{ds}(U\partial_{\mu}U^{\dagger})_{uu}\}\\ &\quad -(u\rightarrow c) . \end{split}$$

To match for g_1^{\pm} , define the correlators

$$\left[\mathcal{C}_1^{\pm}(x_0,y_0)
ight]^{ab} = \int \mathrm{d}^3x \int \mathrm{d}^3y \left\langle \mathcal{J}_0^a(x) [\mathcal{O}_1^{\pm}(0)] \mathcal{J}_0^b(y)
ight
angle \; ,$$

where \mathcal{J}_{μ}^{a} is the left-handed current, $(\mathcal{J}_{\mu}^{a})^{\text{QCD}} = \bar{\psi}\gamma_{\mu}P_{\text{L}}T^{a}\psi$.

On the chiral theory side, we obtain in the ϵ -regime (for $x_0, y_0 \neq 0$)

$$H(x_0, y_0) \equiv rac{\mathcal{C}_1^-(x_0, y_0)}{\mathcal{C}_1^+(x_0, y_0)} = 1 - rac{4}{F^2 T^2}
ho^3 \left\{ eta_1(
ho)
ho^{-3/2} - k_{00}(
ho)
ight\},$$

where ho=T/L, and eta_1,k_{00} are certain known shape coefficients.

$$\implies \frac{g_1^-}{g_1^+} = \frac{k_1^- (C_1^-)^{\mathsf{QCD}}(x_0, y_0)}{k_1^+ (C_1^+)^{\mathsf{QCD}}(x_0, y_0)} \frac{1}{H(x_0, y_0)}$$

•

What's new (iii): Use Ginsparg-Wilson fermions (the Neuberger Dirac operator).

The renormalisation and mixings are like in the continuum: no power-divergent subtractions, and measurements can be easily carried out at a fixed topology.

What's new (iv): "Low-mode averaging".

Low eigenvalues $(|\lambda_1| \sim (\Sigma V)^{-1})$ of the massless Dirac operator tend to make the signal noisy (or "spikey"), if $m \leq (\Sigma V)^{-1}$:

$$\langle \psi(x)\bar{\psi}(y) \rangle = \sum_{n} \frac{v_n(x)v_n^{\dagger}(y)}{\lambda_n + m} \,.$$

To avoid these fluctuations, a certain number of low modes, n_{low} , are treated separately: we take the volume average of their contributions to the correlators.

See also: Edwards 2002; DeGrand, Schaefer 2003

Result for F from $\int d^3x \langle \mathcal{J}_0^a(x) \mathcal{J}_0^b(0) \rangle$

	eta	T/L	L[fm]	am	configs.
ϵ -regime	6.0	16/16	1.49	0.0050.010	203
p-regime	6.0	24/16	1.49	0.0250.100	113

 \Rightarrow Numerical signal is good, and the determinations in the *p*-regime (large *m* followed by chiral extrapolation) and ϵ -regime (directly at small *m*) agree.

In physical units, at this V and a, the quenched $F \sim 103(4)$ MeV.

Result for g_1^-/g_1^+ ?

	eta	T/L	L[fm]	am	configs.
Α	6.0	40/12	1.12	0.0300.070	751
В	5.8485	30/12	1.49	0.0400.092	638

Simulating directly in the ϵ -regime here requires a higher n_{low} in the low-mode averaging procedure \Rightarrow in progress. On the other hand, for a fixed volume, small m, and NLO in ChPT, the ratio could also be fit to a Taylor series in m!

 \Rightarrow One gets an enhancement, but this is at least partly cancelled by the Goldstone-mode factor $H(x_0, y_0)$ (≈ 2.3 for lattice B). Further systematics needed to see whether there is an effect in the SU(4) limit already.

How does the system behave for $m_c > m_u = m_d = m_s$? In ChPT:

$$\frac{g_8}{g_{27}} = \frac{1}{6} \left\{ \left[1 + \frac{15m_c\Sigma}{32\pi^2 F^4} \ln \frac{\Lambda_1}{m_c} \right] + \frac{g_-}{g_+} \left[5 + \frac{15m_c\Sigma}{32\pi^2 F^4} \ln \frac{\Lambda_2}{m_c} \right] \right\}.$$

Here the higher order LECs enter, and there is no firm prediction from χ PT. Lattice needed: domain wall fermion measurements from RBC collaboration suggest (?) m_c has little effect, so maybe SU(4) is all we need!

Conclusions

Philosophy: in order to understand from which scale the enhancement comes from, let us try to factorise the problem into parts and inspect one physics scale at a time, with controlled systematic errors, rather than everything at once.

Conceptual points: (i) Usually $V \to \infty$, $m \to 0$, here $m \to 0, V \to \infty$. (ii) Start with the SU(4) degenerate limit. Technical points: (iii) Use Ginsparg-Wilson fermions. (iv) Implement low-mode averaging.

Initial tests suggest that a numerical signal can be obtained this way.

Challenges:

(i) Three-point functions at smaller m. (ii) $L \gtrsim 2.0$ fm for ChPT convergence in the ϵ -regime. (iii) Check the effect of $m_c > m_u, m_d, m_s$. (iv) Unquenching...