$V_{\!us}$ and m_s from hadronic τ decays

Work in collaboration with: E. Gámiz, A. Pich, J. Prades, F. Schwab, J. High Energy Phys. 01 (2003) 060, Archive: hep-ph/0408044.

 $V_{\!us}$ and m_s from auMatthias Jamin

Precision determinations of Standard Model parameters are of utmost importance for many areas in particle physics.

Investigations of hadronic τ decays already contributed tremendously for fundamental QCD parameters like α_s , the strange mass and non-perturbative condensates.

The strange mass determination from hadronic τ decays depends sensitively on the CKM matrix element V_{us} .

Thus the flavour-breaking difference of decay fractions can also be used to determine V_{us} and, with precise experimental data, even m_s and V_{us} simultaneously.

 $V_{\!us}$ and m_s from au Matthias Jamin

Unitarity relation

The unitarity relation for the first row of the CKM matrix reads: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta \,.$

Numerically, the present PDG04 average is represented by:

 $V_{ud} = \begin{cases} 0.9740 \pm 0.0005 & \text{nuclear } \beta \text{-decay} \\ 0.9725 \pm 0.0013 & \text{neutron } \beta \text{-decay} \end{cases}$

$$\Rightarrow \qquad V_{ud} = 0.9738 \pm 0.0005$$

 $V_{us} = 0.2200 \pm 0.0027 \ K_{e3} \, \text{decays}$ (Leutwyler, Roos 1984)

$$\delta = (3.3 \pm 1.5) \cdot 10^{-3}$$

 $\approx 2.2 \sigma$ difference !

 $V_{\!us}$ and m_s from auMatthias Jamin

 $V_{\!us}$ from K_{e3} -decays

Theoretically, the K_{e3} -decay rate is given by:

 $\Gamma[K \to \pi e \nu_e(\gamma)] = \frac{G_F^2 M_K^5}{192\pi^3} C^2 I_K S_{\rm EW} |V_{us}|^2 f_+^2(0)$

where with $t = (p-p')^2$:

 $\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}f_{+}(t) + (p-p')_{\mu}f_{-}(t)$

The largest theoretical uncertainty resides in the hadronic form factor $f_+(0)$. \Rightarrow First determine: $|V_{us}| f_+(0)$

In the last two years there have been new measurements by E865 and KTeV. Soon new results by KLOE and NA48.

 $V_{\!us}$ and m_s from auMatthias Jamin

 $V_{\!us}$ from K_{e3} -decays

 \Rightarrow

 $V_{\!us}$ and m_s from auMatthias Jamin

 V_{us} from K_{e3} -decays

The hadronic form factor $f_+(0)$ can be calculated in the framework of chiral perturbation theory. (Gasser, Leutwyler 1985) (Bijnens, Talavera 2003)

$$f_{+}(0) = 1 + \Delta(0) - \frac{8}{F_{\pi}^{4}} (C_{12}^{r} + C_{34}^{r}) (M_{K}^{2} - M_{\pi}^{2})^{2},$$

where

 $\Delta(0) = -0.080 \pm 0.057 \, [\text{loops}] \pm 0.028 \, [L_i^r] \, .$

Precisely the same chiral couplings C_{12}^r and C_{34}^r appear in the full scalar form factor $f_0(t)$ at order p^6 in χ PT.

The scalar $K\pi$ form factor has been determined from a (M.J., coupled-channel dispersion relation analysis, which as an Oller, input employed *S*-wave $K\pi$ phase-shifts as fitted in the Pich, $R\chi$ PT framework with a unitarisation prescription. 2000/01/02)

 $V_{\!us}$ and m_s from au Matthias Jamin

 V_{us} from K_{e3} -decays

From this, slope and curvature of $f_0(t)$ can be predicted: $f'_0(0) = 0.804 \pm 0.048 \text{ GeV}^{-2}, \quad f''_0(0) = 1.67 \pm 0.10 \text{ GeV}^{-4},$ the slope corresponding to: $\lambda_0 = 0.016 \pm 0.001$. Employing these findings, we obtain: (M.J., Oller, Pich 2004) $(C_{12}^r + C_{34}^r)(M_{\rho}) = (3.2 \pm 1.5) \cdot 10^{-6}$. $\Rightarrow f_{\pm}^{K^0\pi^-}(0) = 1 - 0.023 - 0.003 = 0.974 \pm 0.011.$ $\Rightarrow \qquad |V_{us}| = 0.2221 \pm 0.0027$ And for the unitarity test: $\delta = (2.4 \pm 1.6) \cdot 10^{-3}$.

 $V_{\!us}$ and m_s from auMatthias Jamin

V_{us} from F_K/F_π

From the ratio $\Gamma[K \rightarrow l\nu_l(\gamma)]/\Gamma[\pi \rightarrow l\nu_l(\gamma)]$, we can predict:

(Marciano 2004)

$$\frac{|V_{us}|}{|V_{ud}|} \frac{F_K}{F_\pi} = 0.27569 \pm 0.00047 \,.$$

Together with the recent lattice result

(MILC 2004)

$$\frac{F_K}{F_\pi} = 1.210 \pm 0.014 \,,$$

this leads to:

$$|V_{us}| = 0.2219 \pm 0.0026$$

 $V_{\!us}$ and m_s from auMatthias Jamin

Hadronic au decay rate

Consider the physical quantity R_{τ} : (Braaten, Narison, Pich (1992))

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \text{hadrons } \nu_{\tau}(\gamma))}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} = 3.642 \pm 0.012 \,.$$

 R_{τ} is related to the QCD correlators $\Pi^{T,L}(z)$: $(z \equiv s/M_{\tau}^2)$

$$R_{\tau} = 12\pi \int_{0}^{1} dz (1-z)^{2} \left[(1+2z) \operatorname{Im}\Pi^{T}(z) + \operatorname{Im}\Pi^{L}(z) \right],$$

with the appropriate combinations

$$\Pi^{J}(z) = |V_{ud}|^{2} \left[\Pi^{V,J}_{ud} + \Pi^{A,J}_{ud} \right] + |V_{us}|^{2} \left[\Pi^{V,J}_{us} + \Pi^{A,J}_{us} \right]$$

 $V_{\!us}$ and m_s from auMatthias Jamin

Additional information can be inferred from the moments

$$R_{\tau}^{kl} \equiv \int_{0}^{1} dz \, (1-z)^{k} z^{l} \, \frac{dR_{\tau}}{dz} = R_{\tau,NS}^{kl} + R_{\tau,S}^{kl}$$

Theoretically, R_{τ}^{kl} can be expressed as:

$$R_{\tau}^{kl} = N_c S_{\rm EW} \left\{ (|V_{ud}|^2 + |V_{us}|^2) \left[1 + \delta^{kl(0)} \right] + \sum_{D \ge 2} \left[|V_{ud}|^2 \delta_{ud}^{kl(D)} + |V_{us}|^2 \delta_{us}^{kl(D)} \right] \right\}.$$

 $\delta_{ud}^{kl(D)}$ and $\delta_{us}^{kl(D)}$ are corrections in the Operator Product Expansion, the most important ones being $\sim m_s^2$ and $m_s \langle \bar{q}q \rangle$.

 $V_{\!us}$ and m_s from au Matthias Jamin

 $oldsymbol{V_{us}}$ and m_s from $oldsymbol{R_{ au}}$

The sensitivity to the strange quark mass can be enhanced by considering the flavour SU(3)-breaking difference: (Pich, Prades; ALEPH (1998))

$$\delta R_{\tau}^{kl} \equiv \frac{R_{\tau,NS}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} = 3 S_{\text{EW}} \sum_{D \ge 2} \left(\delta_{ud}^{kl(D)} - \delta_{us}^{kl(D)} \right).$$

Flavour independent uncertainties drop out in the difference.

In previous analyses a sizeable part of the theoretical error was due to large α_s corrections in the longitudinal contribution.

This uncertainty could be greatly reduced by replacing badly behaved scalar/pseudoscalar correlators with phenomenology.

 $V_{\!us}$ and m_s from au Matthias Jamin

Defining a sum rule for the longitudinal contribution alone:

$$R_{ij,V\!/\!A}^{kl,L} \equiv -24\pi^2 \int_0^1 dz \, (1\!-\!z)^{2+k} z^{l+1} \, \rho_{ij}^{V\!/\!A,L}(z) \, .$$

The dominant contribution stems from the pseudoscalar (*us*) spectral function, $\rho = \text{Im}\Pi/\pi$, which can be parameterised as:

$$s^{2}\rho_{us}^{A,L} = 2f_{K}^{2}M_{K}^{4}\delta(s-M_{K}^{2}) + 2f_{K(1460)}^{2}M_{K(1460)}^{4}BW(s).$$

	$R^{00,L}_{us,A}$	$R^{00,L}_{us,V}$	$R_{ud,A}^{00,L} \ [10^{-3}]$
Theo:	-0.144 ± 0.024	-0.028 ± 0.021	-7.79 ± 0.14
Phen:	-0.135 ± 0.003	-0.028 ± 0.004	-7.77 ± 0.08

 $V_{\!us}$ and m_s from auMatthias Jamin

Strange spectral function

 $V_{\!us}$ and m_s from auMatthias Jamin

Benasque, August 2004

14

Strange spectral function

Strange quark mass

 $V_{\!us}$ and m_s from auMatthias Jamin

 V_{us} from $R_ au$

Given m_s , we are in a position to predict δR_{τ}^{kl} from theory. Theoretically, the uncertainty is smallest for the (0,0) moment:

 $\delta R_{\tau,th} = 0.162 + 6.12 \, m_s^2 - 7.78 \, m_s^4 = 0.218 \pm 0.026 \, .$

Let us now reconsider the equation for δR_{τ} :

$$|V_{us}| = \sqrt{\frac{R_{\tau,S}}{\frac{R_{\tau,NS}}{|V_{ud}|^2 - \delta R_{\tau,th}}}} \approx 3.658$$

Thus the theoretically derived quantity $\delta R_{\tau,th}$ only gives a small correction to experimentally measured quantities.

 $V_{\!us}$ and m_s from auMatthias Jamin

 V_{us} from $R_ au$

Together with the experimental results $R_{\tau,NS} = 3.469 \pm 0.014$ as well as $R_{\tau,S} = 0.1677 \pm 0.0050$, V_{us} can be determined:

 $|V_{us}| = 0.2208 \pm 0.0033_{exp} \pm 0.0009_{th} = 0.2208 \pm 0.0034$

The uncertainty on V_{us} is dominated by the experimental error on $R_{\tau,S}$. The theoretical error by our knowledge of m_s .

In the near future, it should be possible to reduce the uncertainty with the τ -data sets from BABAR and BELLE.

If the experimental value $B(\tau \rightarrow K \nu_{\tau}) = (0.686 \pm 0.023)\%$ is replaced by the theoretical prediction $(0.715 \pm 0.004)\%$ based on $K_{\mu 2}$ decays, one finds $|V_{us}| = 0.2219 \pm 0.0034$.

 $V_{\!us}$ and m_s from auMatthias Jamin

Composition of experimental and theoretical uncertainties:

Parameter	Value	(2,0)	(3,0)	(4,0)
$m_{s}(M_{\tau})$		93.2	86.3	79.2
$R^{kl}_{ au,NS}$	OPAL	+5.1 -5.4	$+3.6 \\ -3.7$	$+2.8 \\ -2.9$
$R_{ au,S}^{kl}$	OPAL	-30.9 +23.3	-19.5 +15.8	-13.9 +11.6
V_{us}	0.2208 ± 0.0034	+21.7 -29.8	$+14.6 \\ -18.7$	+10.6 -13.0
$\mathcal{O}(lpha_{{\color{red} {s}}}^3)$	$\frac{2 \times \mathcal{O}(\alpha_s^3)}{\text{no } \mathcal{O}(\alpha_s^3)}$	-4.0 + 4.6	-5.3 + 6.5	-6.1 + 7.8
ξ	1.5 0.75	+2.7 +2.3	$+4.7 \\ -0.2$	+6.3 -2.2
$\alpha_{s}(M_{\tau})$	$0.334 {\pm} 0.022$	+0.7 +0.1	-0.7 + 1.3	-1.6 + 2.2
$\langle \bar{s}s \rangle / \langle \bar{u}u \rangle$	$0.8 {\pm} 0.2$	-8.7 +7.7	-9.9 + 8.9	-10.6 + 9.6
f_K	$113 \pm 2 \mathrm{MeV}$	-1.8 + 1.7	-1.4 + 1.4	-1.2 + 1.1
Total		$+33.6 \\ -44.3$	$+25.0 \\ -29.5$	$+21.3 \\ -23.0$

 \Rightarrow Average: $m_s(M_{\tau}) = 84 \pm 23$ MeV

 $V_{\!us}$ and m_s from auMatthias Jamin

Taking a weighted average of the strange mass extractions, for the (2,0) to (4,0) moments, we obtain

 $m_s(M_{\tau}) = 84 \pm 23 \,\mathrm{MeV} \Rightarrow$

$$m_s(2\,\mathrm{GeV}) = 81 \pm 22\,\,\mathrm{MeV}$$

The strong k-dependence, of m_s present in the analysis of the ALEPH data, is much reduced for the OPAL spectral function.

This is mainly due to a larger contribution in the higher energy range of the spectrum, namly the $\tau^- \rightarrow K^- \pi^+ \pi^- \nu_{\tau}$ mode.

Performing a simultaneous fit for V_{us} and m_s to the first five (k,0) moments, we find: $|V_{us}| = 0.2196$ and $m_s = 76$ MeV.

 $V_{\!us}$ and m_s from auMatthias Jamin

Strange quark mass

 $V_{\!us}$ and m_s from auMatthias Jamin

Conclusions

The uncertainties in the V_{us} -determination from K_{e3} -decays is dominated by the theoretical error on $f_+(0)$.

 $\Rightarrow \qquad |V_{us}| = 0.2221 \pm 0.0027$

It is also possible to determine the CKM-element V_{us} from the SU(3)-breaking difference of the hadronic τ -decay rate.

$$\Rightarrow \qquad |V_{us}| = 0.2208 \pm 0.0034$$

This result is dominated by experimental uncertainties and will be improvable in the near future by BABAR and BELLE.

 $V_{\!us}$ and m_s from auMatthias Jamin

Conclusions

The uncertainties in the V_{us} -determination from K_{e3} -decays is dominated by the theoretical error on $f_+(0)$.

 $\Rightarrow \qquad |V_{us}| = 0.2221 \pm 0.0027$

It is also possible to determine the CKM-element V_{us} from the SU(3)-breaking difference of the hadronic τ -decay rate.

$$\Rightarrow \qquad |V_{us}| = 0.2208 \pm 0.0034$$

This result is dominated by experimental uncertainties and will be improvable in the near future by BABAR and BELLE.

Thank You for Your attention !

 $V_{\!us}$ and m_s from au Matthias Jamin