Lattice Calculation of $K \rightarrow \pi \pi$ with On-shell Pions

Changhoan Kim Norman H. Christ

Columbia University
 RBC Collaboration

OUTLINE

- Circumvent the Maini-Testa theorem by imposing anti-periodic boundary conditions on the final-state pions.
- Use Lellouch-Lüscher to relate the finite volume matrix elements with those at infinite volume.
- Preliminary $I=2$ phase shifts.
- Status of $\Delta I=3 / 2 K$-decay calculation.

G-parity Boundary Conditions

- G-parity operation on the pion:

$$
\begin{aligned}
G \mid \pi^{ \pm}> & =-\mid \pi^{ \pm}> \\
G \mid \pi^{0}> & =-\mid \pi^{0}>
\end{aligned}
$$

- G-parity operation on the quark fields:

$$
G\binom{\mathbf{u}}{\mathbf{d}}=\binom{-\mathbf{d}^{C}}{\mathbf{u}^{C}}
$$

- Must impose charge-conjugate boundary conditions on the gauge field to preserve gauge invariance.
- G-parity commutes with isospin but not with the chiral generators.

H-parity Boundary Conditions

- H-parity operation on the quark fields (definition):

$$
H\binom{\mathbf{u}}{\mathbf{d}}=\binom{-\mathbf{u}}{\mathbf{d}}
$$

- H-parity operation on the pion:

$$
\begin{aligned}
H \mid \pi^{ \pm}> & =-\mid \pi^{ \pm}> \\
H \mid \pi^{0}> & =+\mid \pi^{0}>
\end{aligned}
$$

- $\mathrm{I}_{\mathrm{z}}=2, \pi^{+} \pi^{+}$state contains anti-symmetric pions with non-zero momenta.
- Not true for the $\mathbf{I}=0 \pi \pi$ state.
- No modification of the usual gauge configurations is required-an advantage.

Single Pion Result

Two-pion states and the $I=2$ phase shift

- Before studying $K \rightarrow \pi \pi$ decays we examine the $I=2$ phase shift.
- We use Lüscher's method to extract phase shift from the energy levels in a finite box.

$$
n \pi-\delta_{0}(k)=\phi(q) \quad q \equiv \frac{k L}{2 \pi}
$$

- The new boundary conditions modify only the functional form of $\phi(q)$.

Some of the diagrams entering the $\pi \pi-\pi \pi$ propagator

Open: usual gauge links $U_{\mu}(x)$

Shaded: charge-conjugate gauge links $U_{\mu}(x)^{*}$

Effective Mass Plot

Explanation of constant term

A single pion propagates for all time: $G(t) \approx e^{-m_{\pi}(T-t)} e^{-m_{\pi} t}=e^{-m_{\pi} T}=e^{-2 m_{\pi} \frac{T}{2}}$

Fit including a constant

Effective Mass Plot

G-parity boundary conditions

Examine a larger $8^{2} \times 16 \times 32$ volume

Finite-volume sensitivity of G-parity

- G-parity allows color flux tube going from q to q as well as q to \bar{q} if it passes through the boundary.
- Additional interactions between quarks and their finite volume images.
- A single quark can propagate bound to its image with energy increasing linearly with the size of the z direction:

$I=2 \pi \pi$ phase shift results (domain wall fermions)

Vol $1 / a(\mathrm{GeV})$ \#conf's.
\section*{$\mathrm{p}=250 \mathrm{MeV}$}
G-parity $\quad 8^{2} \times 16 \times 320.978(14) \quad 91$
H-parity $8^{2} \times 16 \times 320.978(14) \quad 172$
$\mathrm{p}=450 \mathrm{MeV}$
H-parity $\quad 8^{3} \times 32 \quad 0.978(14) \quad 270$
H-parity $16^{3} \times 32 \quad 1.98(3) \quad 80$

- Running parameters : $L_{s}=10, M_{5}=1.65$

Results for $\delta_{\pi \pi}^{I=2}$

$$
K \rightarrow(\pi \pi)_{I=2} \text { Decay }
$$

- Examine more recent results obtained over the past year.
- Choose more realistic parameters.
- Use the simpler H-parity boundary conditions.
- Examine matrix elements of the three $\Delta I=3 / 2$ operators between $|K\rangle$ and physical $|\pi(p) \pi(p)\rangle$ states.
- Adjust m_{K} to achieve $m_{K}=E_{\pi \pi}$.
- Show the character of data and errors physically normalized results should be available in a few weeks.

Simulation Parameters

- Lattice size: $16^{3} \times 32$
- Pion mass: 352MeV
- Kaon mass: $712 \mathrm{MeV}-1.29 \mathrm{GeV}$
- Lattice spacing: $a^{-1}=1.3 \mathrm{GeV}$
- Action: DBW2
- Number of Configurations: 120
- Domain Wall Fermions: $M_{5}=1.8, L_{s}=12$
- Resulting kinematics:

	m_{K}	m_{π}	p_{π}	
Simulation	910 MeV	352 MeV	290 MeV	
Nature	496 MeV	138	MeV	206 MeV

Obtaining three possible momenta

$\pi \pi$ effective mass

$\pi \pi$ energy

$\pi-\pi$ phase shifts

Operators with $\Delta I=3 / 2$ and H-parity

- Kaon isospin : $I_{z}=1 / 2$.
- $\pi \pi$ state with relative momentum under H parity : $I_{z}=2$.
- No terms in the effective Hamiltonian have $\Delta I_{z}=3 / 2$.
- Use Wigner-Eckart theorem:

$$
\langle K| O_{I_{z}=1 / 2}^{I=3 / 2}|\pi \pi\rangle=\frac{\left\langle 2, \frac{3}{2} ; 1, \left.\frac{1}{2} \right\rvert\, 2, \frac{3}{2} ; \frac{1}{2}, \frac{1}{2}\right\rangle}{\left\langle 2, \frac{3}{2} ; 2, \left.\frac{3}{2} \right\rvert\, 2, \frac{3}{2} ; \frac{1}{2}, \frac{1}{2}\right\rangle}\langle K| O_{I_{z}=3 / 2}^{I=3 / 2}|\pi \pi\rangle .
$$

Normalized matrix elements of lattice operators

Evaluate three Greens functions in the usual way:

$$
\begin{aligned}
& \lim _{\pi \pi} \gg t \gg t_{K} \\
& G_{(\pi \pi)} O K \\
&\left\langle(t) \rightarrow P_{\pi \pi} \mid \pi^{+} \pi^{+}\right\rangle\left\langle\pi^{+} \pi^{+}\right| O\left|K^{+}\right\rangle\left\langle K^{+}\right| P_{K}|0\rangle \\
& e^{-m_{K}\left(t-t_{K}\right)} e^{-E_{\pi \pi}\left(t_{\pi \pi}-t\right)}
\end{aligned}
$$

$$
\lim _{t_{\pi \pi} \gg 0} G_{(\pi \pi)(\pi \pi)}\left(t_{\pi \pi}\right) \rightarrow\langle 0| P_{\pi \pi}\left|\pi^{+} \pi^{+}\right\rangle\left\langle\pi^{+} \pi^{+}\right| P_{\pi \pi}|0\rangle e^{-E_{\pi \pi}\left(t_{\pi \pi}\right)}
$$

$$
\lim _{t_{K}>0} G_{K}\left(t_{K}\right) \rightarrow\left\langle K^{+}\right| P_{K}|0\rangle\langle 0| P_{K}\left|K^{+}\right\rangle e^{-m_{K}\left(t_{K}\right)}
$$

Effective mass difference from

$$
G_{\pi \pi O 27 K}
$$

O^{27} matrix element versus Kaon mass

$O^{(8,8)}$ matrix element versus Kaon mass

$O_{m}^{(8,8)}$ matrix element versus Kaon mass

Preliminary lattice matrix elements

	O^{27}	$O^{(8,8)}$	$O_{m}^{(8,8)}$
0	$-8.379 \mathrm{e}-3(4.34 \mathrm{e}-4)$	$-5.267 \mathrm{e}-2(3.43 \mathrm{e}-3)$	$-1.928 \mathrm{e}-1(1.19 \mathrm{e}-2)$
1	$-2.048 \mathrm{e}-2(1.42 \mathrm{e}-3)$	$-5.553 \mathrm{e}-2(7.11 \mathrm{e}-3)$	$-2.331 \mathrm{e}-1(2.52 \mathrm{e}-2)$
2	$-2.299 \mathrm{e}-2(3.35 \mathrm{e}-3)$	$-4.696 \mathrm{e}-2(2.09 \mathrm{e}-2)$	$-1.687 \mathrm{e}-1(1.00 \mathrm{e}-1)$
3	$-1.772 \mathrm{e}-2(5.16 \mathrm{e}-3)$	$-3.546 \mathrm{e}-2(3.01 \mathrm{e}-2)$	$-2.321 \mathrm{e}-1(8.28 \mathrm{e}-2)$

Remaining steps

- Apply Lellouch-Lüscher finite-volume correction (done).
- Compute renormalization matrix for $1 / a=1.3 \mathrm{GeV}$ case (done).
- Evaluate needed Wilson coefficients (underway).
- Extract physically normalized matrix elements (soon).

Conclusion and Outlook

- Calculation of $\Delta I=3 / 2$ amplitudes is practical with an on-shell $\pi-\pi$ final state. For physical parameters:
$-1 / a=2 \mathrm{GeV}, a=0.1 \mathrm{fm}$.
$-L=64, \approx 6 \mathrm{fm}, \approx 4 / m_{\pi}$.
- Impose anti-periodic conditions on each face.
- Calculation of $\Delta I=1 / 2$ amplitudes is possible using G-parity boundary conditions.

1. Quenched calculations are not possible because zero-momentum, $\eta^{\prime}-\eta^{\prime}$ states will dominate.
2. Charge conjugation of the gauge fields on the boundary requires special configurations.
3. Decay to the vacuum is allowed and must be subtracted.

- Using a K-meson with $\vec{p} \neq 0$ (RummukainenGottlieb) would address 2. and 3. above.

