Chiral Perturbation Theory at non-zero lattice spacing

Oliver Baer
University of Tsukuba

Matching Light Quarks to Hadrons
Workshop at the BENASQUE CENTER FOR SCIENCE
27 July 2004

Introduction: Chiral extrapolation

Some numbers I heard at Lattice 2004:

Collaboration	Fermion type	Nf	smallest m_{π} / m_{ρ}
UKQCD	Wilson	2	~ 0.44
SPQcdR	Wilson	2	~ 0.66
qq+q	Wilson	2	~ 0.47
CP-PACS	Wilson	2	~ 0.35
CP-PACS	Wilson	$2+1$	~ 0.62
MILC	Staggered	$2+1$	~ 0.3
RBC	Domain Wall	2	~ 0.53

Lattice 2004
Talk/poster by:

Tarantino
Scholz
Namekawa
Ishikawa
Bernard
Izubuchi
physical value: 0.18

Still needed: rather long extrapolation in the light quark mass

Chiral Perturbation Theory (ChPT)

Analytic guidance is required for the extrapolation \Rightarrow provided by ChPT

ChPT: Effective theory for low-energy QCD
\Rightarrow quark mass dependence of observables

Example:

$$
\begin{aligned}
& m_{\pi}^{2}=M_{0}^{2}\left[1+\frac{M_{0}^{2}}{16 \pi^{2} N_{f} f^{2}} \ln M_{0}^{2}-\frac{8 L M_{0}^{2}}{f^{2}}\right] \\
& M_{0}^{2}=\left(m_{u}+m_{d}\right) B \quad f, B, L: \text { low-energy constants }
\end{aligned}
$$

Question: Does ChPT describe the lattice data ?
Smoking gun: curvature due to chiral logs

A potential problem

ChPT formulae derived for $a=0$ only !

A potential problem

ChPT formulae derived for $a=0$ only !

What about the opposite order ?

Desirable: ChPT for lattice theories at non-zero lattice spacing

ChPT at non-zero lattice spacing: Main strategy

Two-step matching to effective theories:
I. Lattice theory

Symanzik's effective theory continuum theory making the a-dependence explicit
2. Symanzik's effective theory

including the a-dependence
\Rightarrow Chiral expressions for $m_{\pi}, f_{\pi} \ldots$ with explicit a-dependence

Symanzik's action for Lattice QCD with Wilson fermions

Locality and symmetries of the lattice theory
$\Rightarrow \quad S_{e f f}=S_{Q C D}+a c \int \bar{\psi} i \sigma_{\mu \nu} G_{\mu \nu} \psi+\mathcal{O}\left(a^{2}\right)$

- At $O(a)$ only one additional operator (making use of EOM)
- c : unknown coefficient ("low-energy constant")
- $O\left(a^{2}\right)$: dim-6 operators: - fermion bilinears

Sheikholeslami, Wohlert

- 4-fermion operators
$\mathrm{O}(4)$ rotation invariance is broken at this order

Reminder: Chiral Lagrangian

Fields:

$$
\Sigma(x)=\exp \left(\frac{2 i}{F} \pi^{a}(x) T^{a}\right) \quad T^{a}: \text { Group generators }
$$

Lagrangian: $\quad \mathcal{L}_{e f f}[\Sigma, M]=\mathcal{L}_{e f f}\left[\Sigma^{\prime}, M^{\prime}\right] \quad M$: Quark mass matrix

$$
\Sigma^{\prime}=L \Sigma R^{\dagger} \quad M^{\prime}=L M R^{\dagger} \quad L, R: \underset{\substack{\text { Left, Right } \\ \text { transformations }}}{\substack{\text {, }}}
$$

Expand in powers of derivatives and masses: $\mathcal{L}_{e f f}=\mathcal{L}_{2}+\mathcal{L}_{4}+\ldots$

$$
\mathcal{L}_{2}=\frac{f^{2}}{4} \operatorname{tr}\left[\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}\right]-\frac{f^{2} B}{2} \operatorname{tr}\left[\Sigma^{\dagger} M+M^{\dagger} \Sigma\right]
$$

f, B : undetermined low-energy constants

Chiral Lagrangian including a

$$
S_{e f f}=S_{Q C D}+a c \int \bar{\psi} i \sigma_{\mu \nu} G_{\mu \nu} \psi+\mathcal{O}\left(a^{2}\right)
$$

Pauli term breaks the chiral symmetry exactly like the mass term in $S_{Q C D}$
$\Rightarrow a$ enters chiral Lagrangian exactly like the mass term

$$
\begin{aligned}
\Rightarrow \quad \mathcal{L}_{2}=\frac{f^{2}}{4} \operatorname{tr}\left[\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}\right] & -\frac{f^{2} B}{2} \operatorname{tr}\left[\Sigma^{\dagger} M+M^{\dagger} \Sigma\right] \\
& -\frac{f^{2} W_{0}}{2} a \operatorname{tr}\left[\Sigma+\Sigma^{\dagger}\right] \quad \begin{array}{c}
\text { Sharpe, Singleton '98 } \\
\text { Rupak, Shoresh '02 }
\end{array}
\end{aligned}
$$

W_{0} : new undetermined low-energy constant includes $c=c\left(g_{0}^{2}\right) \quad$ not really a constant (weak a dependence)
\mathcal{L}_{4}-Lagrangian:

$$
\mathcal{L}_{4}=\mathcal{L}_{4}\left(p^{4}, p^{2} m, m^{2}\right)+\underset{\text { Gasser, Leutwyler ‘85 }}{\mathcal{L}_{4}\left(p^{2} a, m a\right)+\underset{\substack{\text { Rupak, Shoresh ‘02 }}}{\mathcal{L}_{4}\left(a^{2}\right)} \underset{\substack{\text { Rupak, Shoresh, OB ‘03 } \\ \text { Aoki } 03}}{\mathcal{L}_{4}} .}
$$

- No O(4) symmetry breaking terms in $\mathcal{L}_{4}\left(a^{2}\right)$ (start at $\mathcal{O}\left(a^{2} p^{4}\right)$)
- Total number of low-energy constants: $10 L_{i}+(5+3) W_{i}=18$!
L_{i} are physical ChPT parameters \rightarrow values are interesting (independent of a)

Role of W_{i} : parameterize a dependence \longrightarrow values are less interesting
Note: W_{i} are not universal (depend on the lattice action)

Power counting

The power counting is non-trivial because of
I. the additive mass renormalization $\propto \frac{1}{a}$
2. two symmetry breaking parameters $a, m_{\text {quark }}$
\Rightarrow their relative size matters

Leading order pion mass (degenerate case)

$$
M_{0}^{2}=2 m B+2 a W_{0} \quad m=m_{u}=m_{d}
$$

Leading a-effect: Shift in the pion mass

But: This shift might already be absorbed in m_{c}
e.g. $\quad m_{\pi}^{2}=0 \quad$ for $\quad m^{\prime}=Z_{m}\left(m_{0}-m_{\text {cr }}\right)=0$
\Rightarrow Express the observables m_{π}, f_{π} in terms of m^{\prime}

Note: additional shifts enter at a^{2}, \ldots

Two expansion parameters:
Both need to be small $\frac{2 B m^{\prime}}{(4 \pi f)^{2}} \quad \frac{2 W_{0} a}{(4 \pi f)^{2}}$

Relative size determines which terms are LO, NLO etc.
Example:

$$
\begin{array}{cc}
\mathcal{L}_{2}\left(p^{2}, m^{\prime}\right) & \mathcal{L}_{4}\left(a^{2}\right) \\
\downarrow & \downarrow
\end{array}
$$

	$f^{2} B m^{\prime} \operatorname{tr}\left[\Sigma+\Sigma^{\dagger}\right]$	$W a^{2}\left(\operatorname{tr}\left[\Sigma+\Sigma^{\dagger}\right]\right)^{2}$
$m^{\prime} \gg a^{2}$	$\mathbf{L O}$	$\mathbf{N L O}$
$m^{\prime} \approx a^{2}$	$\mathbf{L O}$	$\mathbf{L O}$

The proper power counting depends on the relative size of m^{\prime} and a

Different power countings have been discussed:
If $m^{\prime} \gg a^{2} \rightarrow$ continuum like ChPT + small $\mathcal{O}\left(a^{n}\right)$ corrections
Rupak, Shoresh, OB ‘03

If $m^{\prime} \approx a^{2} \rightarrow$ qualitatively different!
Non-trivial phase diagram
Sharpe, Singleton '98
Modification of chiral logs

Non-trivial phase diagram

Potential energy:
$\left(\mathrm{N}_{\mathrm{f}}=2\right)$

$$
\begin{array}{ll}
V=-c_{1} m^{\prime} \operatorname{tr}\left[\Sigma+\Sigma^{\dagger}\right]+c_{2} a^{2}\left(\operatorname{tr}\left[\Sigma+\Sigma^{\dagger}\right]\right)^{2} & c_{1}(f, B) \\
& c_{2}\left(f, B, W_{i}\right)
\end{array}
$$

$\begin{array}{lll}\text { A: } \operatorname{sign} c_{2}=+1 & \Rightarrow \quad \Sigma_{\text {vacuum }} \neq \pm 1 & \begin{array}{l}\text { Aoki phase } \\ \text { flavor and parity are brok } \\ \text { massless pions at } a \neq 0\end{array} \\ \text { B: } \operatorname{sign} c_{2}=-1 \quad \Rightarrow \quad \Sigma_{\text {vacuum }}= \pm 1 & \begin{array}{l}\text { no flavor/parity breaking } \\ \text { no massless pions }\end{array}\end{array}$

Question: Scenario A or B ?
Depends on the underlying lattice action

Plaquette action + unimproved Wilson: Scenario B

Theory:
Data: $\quad \beta=5.2$

Sharpe, Singleton '98

F. Farchioni et.al. ‘04
similar findings by
Ilgenfritz et. al. ‘03
Questions:

- Which scenario is realized for improved fermions ?
- Can we find a lattice action with very small c_{2} ?
- What are the consequences for overlap fermions ?

Pseudo-scalar mass to I-loop (2 deg.flavors)

$$
m_{\pi}^{2}=2 B m^{\prime}\left[1+\frac{m^{\prime}\left(2 B+w_{1} a\right)}{32 \pi^{2} f^{2}} \log \frac{2 B m^{\prime}}{\Lambda^{2}}+\frac{w_{0} a^{2}}{32 \pi^{2} f^{2}} \log \frac{2 B m^{\prime}}{\Lambda^{2}}\right]
$$

- $a \rightarrow 0$ gives the correct continuum expression
- w_{0}, w_{1} : combinations of low-energy constants W_{i}
- The coefficient of $m^{\prime} \ln m^{\prime}$ is no longer universal at non-zero a
- The lattice spacing generates an $a^{2} \ln m^{\prime}$ contribution
\Rightarrow This term dominates [....] for small m^{\prime}
But: A resummation of the $\left(\ln m^{\prime}\right)^{n}$ terms can be performed

Resummend Pseudo-scalar mass

$$
m_{\pi}^{2}=2 \tilde{B} m^{\prime}\left[1+\frac{m^{\prime}\left(2 B+w_{1} a\right)}{32 \pi^{2} f^{2}} \log \frac{2 B m^{\prime}}{\Lambda^{2}}\right]\left\{\log \frac{2 B m^{\prime}}{\tilde{\Lambda}^{2}}\right\}^{\tilde{w}_{0} a^{2} / 32 \pi^{2} f^{2}}
$$

Expansion of $\{\ldots\}^{a^{2}}$ gives result on previous slide
Assumption: Aoki phase scenario

Similar modifications for f_{π} and $m_{\text {AWI }}$

Feature in WChPT:

The coefficients of the chiral logs can be altered by $\mathrm{O}(\mathrm{a})$ corrections

Question: What does $m \approx a^{2}$ precisely mean for a given lattice action?
Crude dimensional argument: $\quad m \approx a^{2} \Lambda_{\mathrm{QCD}}^{3}$

$$
\begin{aligned}
a & =0.15 \mathrm{fm} \\
\Lambda_{\mathrm{QCD}} & =300 \mathrm{MeV}
\end{aligned} \quad \Rightarrow \quad m \approx 15 \mathrm{MeV}
$$

Current lattice simulations do not satisfy $m \gg a^{2}$

Applying to numerical data

Two groups analyzed their data using WChPT:
I. CP-PACS :

Namekawa et.al '04
$\longrightarrow \quad$ Good fits with WChPT assuming Aoki power counting, i.e. $m \approx a^{2}$
2. $q q+q$:

Farchioni et.al. '03/‘04
Unimproved Wilson quarks

$$
a \approx 0.2 \mathrm{fm}, \quad 0.47 \leq \frac{M_{\pi}}{M_{\rho}} \leq 0.76 \quad(4 \text { Sea quark masses })
$$

$\longrightarrow \quad$ Good fits with continuum ChPT

Current numerical data is not conclusive

Staggered fermions

+ Fast to simulate
+ Exact $U(1)$ symmetry for massless quarks
- Fermion doubling: Each flavor comes with 4 tastes

Taste reduction on the lattice: $\quad \operatorname{det} D \rightarrow \sqrt[4]{\operatorname{det} D} \quad$ "fourth root trick"
I. The $\sqrt[4]{\operatorname{det} D}$-theory has no local lattice action: Universality ?
2. The $\sqrt[4]{\operatorname{det} D}$-theory has no local Symanzik action: How to include a in ChPT ?

Staggered Chiral Perturbation Theory (SChPT)

Main strategy:
I. Lattice theory with N_{f} staggered fermions
2. Symanzik's effective theory
 with $4 N_{f}$ fermions
$\longrightarrow \quad$ ChPT
3. Compute physical observables like $M_{\pi}^{2}, f_{\pi}, \ldots$
4. Adjust by hand to one taste per flavor
= include factors of $1 / 4$ for sea quark loops

Pseudo-scalar mass to l-loop (3 deg.flavor)

$$
\begin{aligned}
\frac{\left(m_{\pi_{5}^{+}}\right)^{2}}{2 B m}=1 & +\frac{1}{24 \pi^{2} f^{2}} m_{\pi_{I}}^{2} \ln \frac{m_{\pi_{I}}^{2}}{\Lambda^{2}}+\text { analytic } \longrightarrow \quad \text { In the Continuum limit : } \\
& \left.+\frac{4}{24 \pi^{2} f^{2}}\left[m_{\eta_{V}^{\prime}}^{2} \ln \frac{m_{\eta_{V}^{\prime}}^{2}}{\Lambda^{2}}-m_{\pi_{V}}^{2} \ln \frac{m_{\pi_{V}}^{2}}{\Lambda^{2}}\right)\right] \quad \longrightarrow 0 \\
& \left.+\frac{4}{24 \pi^{2} f^{2}}\left[m_{\eta_{A}^{\prime}}^{2} \ln \frac{m_{\eta_{A}^{\prime}}^{2}}{\Lambda^{2}}-m_{\pi_{A}}^{2} \ln \frac{m_{\pi_{A}}^{2}}{\Lambda^{2}}\right)\right]+a^{2} C \quad \longrightarrow 0
\end{aligned}
$$

- Reduces to the continuum expression for $a \rightarrow 0$ (not easy to see here)
- Non-zero a : Additional log contributions involving other particles Continuum log behaviour may be changed significantly !
- MILC data strongly suggests the presence of these contributions

Question:

Is the 4th-root trick really legitimate?

- Can we analytically understand why it works ?
- Can we find additional cross checks ? (Besides comparing with experimental results)

tmQCD

Twisted mass term: $\quad m^{\prime} e^{i \omega \gamma_{5} \tau_{3}}=m+i \mu \gamma_{5} \tau_{3} \quad \omega:$ twist angle

Why tmQCD:

- No exceptional configurations
- Automatic $\mathrm{O}(\mathrm{a})$ improvement at maximal twist $\omega=\frac{\pi}{2}$

But: Seems to work only if $m \gg a^{2} \quad$ Why ?

Twisted mass term on the lattice

Mass term + Wilson term on the lattice :

$$
\bar{\psi}(x)\left[\left(-a \frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}+M_{\mathrm{cr}}(r)\right)+m_{q} \exp \left(i w \gamma_{5} \tau_{3}\right)\right] \psi(x)
$$

Field redefinition:

$$
m_{q}=m_{0}-M_{\mathrm{cr}}(r)
$$

bare quark mass critical quark mass

$$
\begin{aligned}
& \psi_{\mathrm{ph}}=\exp \left(i \frac{\omega}{2} \gamma_{5} \tau_{3}\right) \psi \\
& \bar{\psi}_{\mathrm{ph}}=\bar{\psi} \exp \left(i \frac{\omega}{2} \gamma_{5} \tau_{3}\right) \\
& \bar{\psi}_{\mathrm{ph}}(x)\left[\left(-a \frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}+M_{\mathrm{cr}}(r)\right) \exp \left(-i w \gamma_{5} \tau_{3}\right)+m_{q}\right] \psi_{\mathrm{ph}}(x)
\end{aligned}
$$

Wilson average and $O(a)$ improvement

The Wilson average $\quad\langle O\rangle^{W A}\left(r, m_{q}, \omega\right) \equiv \frac{1}{2}\left[\langle O\rangle\left(r, m_{q}, \omega\right)+\langle O\rangle\left(-r, m_{q}, \omega\right)\right]$
can be shown to be $O(\mathbf{a})$ improved: $\quad=\langle O\rangle^{\text {cont }}\left(m_{q}\right)+O\left(a^{2}\right)$

Crucial assumption: $\quad M_{\mathrm{cr}}(-r)=-M_{\mathrm{cr}}(r)$

Automatic $\mathrm{O}(\mathrm{a})$ improvement at maximal twist

Consider the twist average:

$$
\begin{aligned}
&\langle O\rangle^{T A}\left(r, m_{q}, \omega=\frac{\pi}{2}\right) \equiv \frac{1}{2}\left[\langle O \rangle \left(r, m_{q}, \omega=\right.\right. \\
&\left.\left.\frac{\pi}{2}\right)+\langle O\rangle\left(r, m_{q}, \omega=-\frac{\pi}{2}\right)\right] \\
& \exp \left(-i \frac{\pi}{2} \gamma_{5} \tau_{3}\right)=-\exp \left(i \frac{\pi}{2} \gamma_{5} \tau_{3}\right) \\
&= \frac{1}{2}\left[\langle O\rangle\left(r, m_{q}, \omega=\frac{\pi}{2}\right)+\langle O\rangle\left(-r, m_{q}, \omega=\frac{\pi}{2}\right)\right]
\end{aligned}
$$

For observables even in ω (e.g. masses):

$$
\langle O\rangle\left(r, m_{q}, \omega=\frac{\pi}{2}\right)=\langle O\rangle^{T A}\left(r, m_{q}, \omega=\frac{\pi}{2}\right)=\langle O\rangle^{\mathrm{cont}}\left(m_{q}\right)+O\left(a^{2}\right)
$$

O(a) improvement without taking an average!

Using WChPT you can explicitly show (in the Aoki phase scenario with $c_{2}>0$)

$$
\begin{gathered}
M_{\mathrm{Cr}}(r)=\frac{r}{a} M_{1}(r a)+a^{2} r^{2} M_{2}(r a) \quad M_{1,2}(r a): \\
\Rightarrow \quad M_{\mathrm{Cr}}(r) \neq-M_{\mathrm{cr}}(-r) \\
\langle O\rangle\left(r, m_{q}, \omega=\frac{\pi}{2}\right)^{T A}=\frac{1}{2}\left[\langle O\rangle\left(r, m_{q}, \omega=\frac{\pi}{2}\right)+\langle O\rangle\left(-r, m_{q}^{\prime}, \omega=\frac{\pi}{2}+\omega^{\prime}\right)\right] \\
m_{q}^{\prime}=\sqrt{m_{q}^{2}+\left(2 a^{2} r^{2} M_{2}(a r)\right)^{2}} \quad \tan \omega^{\prime}=\frac{2 a^{2} r^{2} M_{2}(a r)}{m_{q}}
\end{gathered}
$$

Automatic $\mathrm{O}(\mathrm{a})$ improvement only if $m_{q} \gg a^{2}$

New definition for the twist angle

Define:

$$
\begin{gathered}
\bar{M}_{\mathrm{cr}}(r)=\frac{M_{\mathrm{cr}}(r)-M_{\mathrm{cr}}(-r)}{2}=-\bar{M}_{\mathrm{cr}}(-r) \\
\Delta M_{\mathrm{cr}}(r)=\frac{M_{\mathrm{cr}}(r)+M_{\mathrm{cr}}(-r)}{2}=\Delta M_{\mathrm{cr}}(-r)
\end{gathered}
$$

$\Rightarrow \quad$ New definition for the twist angle:
$\bar{\psi}_{\mathrm{ph}}(x)\left[-\left(-a \frac{r}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}+\bar{M}_{\mathrm{cr}}(r)\right) \exp \left(-i w \gamma_{5} \tau_{3}\right)+m_{q}+\Delta M_{\mathrm{cr}}(r)\right] \psi_{\mathrm{ph}}(x)$

You can show:
Automatic $\mathrm{O}(\mathrm{a})$ improvement at maximal twist without restrictions on m_{q}

