Neutrino meetings are always exciting and this one is no exception...

 Superb data, impressive Physics results mainly from Super-Kamiokande, K2K, SNO, Kamland

Looking back to the talks I realized neutrinos are (obviously) the big stars of this meeting... but not the only ones...

Are there any other new detector ideas in there?

Living in the Dark Side

BENASQUE LOUN W D P E E E U D U R R R Т T Т N Α G Ν F. R M Α 0 R Ū G Ν G 0 Ν

A. Bueno University of Granada Terrestrial and Cosmic Neutrinos, leptogenesis and Cosmology Benasque 2004, July 4 -- July 23

Liquid Argon Detector : Why?

- Easy to obtain with very high purity by specialized industries
 - Concentration on atmosphere ~ 0.9%
 - Cheap: 1 liter cost below 1 €
- Homogeneous medium simultaneously acting as target and detector
- Interesting physical properties for a tracking device:
 - Boiling point = 87.3 K at 1 bar; not flammable
 - Density = 1.4 g/cm^3
 - Radiation length = 14 cm; interaction length = 80 cm
 - Electron mobility = $500 \text{ cm}^2/\text{Vs}$
 - dE/dx = 2.1 MeV/cm
- Propagation of charged particles induce...
 - Ionization
 - Minimum ionizing track: 88000 electron-ion pairs per cm
 - After recombination @ 500 V/cm: 55000 pairs/cm
 - Scintillation
 - UV Spectrum λ=128 nm
 - Čerenkov light (given that $\beta > 1/n$)

Summary of LAr TPC Studies

LAr TPC story...

- L.W.Alvarez (late 60'):
- T.Doke (late 60'):
- W.J.Willis & V.Radeka (70'):
- C.Rubbia (1977):
- E.Aprile, C.Giboni, C.Rubbia (1985):
- ICARUS Coll. (1993-1994):
- ICARUS Coll. (1998):
- ICARUS Coll. (2001):
- ICARUS Coll. (2003-2004):
- ICARUS Coll. (2004-2005):

noble liquids for position sensitive detectors systematic studies of noble liquids properties large calorimeters for HEP experiments LAr TPC conceived and proposed high purity \rightarrow long drift distances 3 ton LAr TPC prototype Neutrino detection at CERN with a 50 LLAr TPC cosmic-ray test of the 300 ton industrial module detector/physics papers from the T300 test T600 installation and commissioning at LNGS

... Discussion on possible LAr TPCs follow-ups

The LAr TPC Working Principle

Continuously sensitive
 Self-triggering
 t0 provided by scintillation light

The ICARUS Collaboration

- Research project jointly approved by INFN and CERN
 - CERN/SPSC 2002-027 (SPSC-P-323) LNGS-EXP 13/89
 - CNGS Physics Program: ICARUS is an official CERN experiment known as CNGS2 (April 2003)

The path to massive liquid argon detectors

The T600 Detector

ICARUS T300

Internal view

.....

and a second s

.....

Cathode

Drift Length (1.5 m

Field Shaping Electrodes
(during installation)

Electronic Bubble Chamber

Electronic Bubble Chamber

A. Bueno (Granada University)

T600 Detector: Cosmic Ray Data

- More than 27000 triggers collected during technical run on surface (summer 2001)
 - Detector performed according to expectations
 - Testing 3D reconstruction, particle ID capabilities, …
- Publications so far...
 - Design, construction and tests of the ICARUS T600 detector, accepted for publication by NIM A on 31/12/03.
 - Measurement of the muon decay spectrum with the ICARUS T600 liquid Argon TPC, Eur. Phys. Journal C33 (2004) 233-241.
 - Study of electron recombination in liquid Argon with the ICARUS TPC, Nucl. Inst. Meth. A523 (2004) 275-283.
 - Analysis of Liquid Argon Purity in the ICARUS T600 TPC, Nucl. Inst. Meth. A516 (2004) 68-79.
 - Observation of long ionizing tracks with the ICARUS T600 first half-module, Nucl. Inst. Meth. A508 (2003) 287-294.

Liquid Argon Purity

- Long drift distances demand ultra pure Argon
 - Impurities: 0.1 ppb Oxygenequivalent
- Two independent and complementary methods to measure the LAr purity:
 - **Purity Monitors** : on-line information on a fixed position of the chamber (punctual measurement).
 - Muon tracks: off-line analysis measuring the collected charge attenuation from crossing muon tracks (average measurement).
- For future modules, the present technology would allow to expand drift distances up to 3m

Liquid Argon is a mature detection technique

A. Bueno (Granada University)

Michel Electron Spectrum

Study of stopping muon sample - 3000 events analyzed and fully reconstructed in 3D ρ parameter measurement $\rho = 0.72 \pm 0.06(stat) \pm 0.08(sys)$ Standard Model ρ = 0.75 **Energy resolution for** electrons below ~50 MeV

$$\frac{\sigma(E)}{E} = \frac{11\%}{\sqrt{E}} \oplus 2\%$$

Momentum measurement: Multiple Scattering

Particle Identification

Particle Identification

- Full generation and 3D reconstruction of muons, pions, protons and kaons
- Analysis based on neural network. Discrimination given by:
 - Different stopping power for each particle type
 - Difference on secondary particle production after decay/interaction of parent track
 - Key issues:
 - Accurate energy measurement
 - Good spatial resolution for precise tracking reconstruction
- Very high identification efficiencies (>90%) while low contamination levels (few %) are expected

T600 at LNGS

Following LNGS Director's mandate, a working group of experts was set up to review:

- ICARUS T600 (cryogenics, safety, installation, commissioning, operation)
- Risk Analysis: simulation of possible major failures
- Technical infrastructure and human resources at LNGS to cope with ICARUS needs
- First approach to the T3000 project

Working Group Conclusions (Nov 2003)

The ICARUS project is sound and innovative
 Recommended improvements concerning the cryogenic system will be implemented by our collaboration

- Overall risk linked to LNGS activities is not increased when T600 becomes operational
- A significant amount of work should be carried out at LNGS to upgrade Hall B infrastructure and technical utilities

T600 can be installed right now underground in its "dry" version

Future LAr TPC Detectors

Detector	Drift Distance (m)	Mass (Ktons)	Magnetic Field
ICARUS T600	1.5 (demonstration that distances up to 3 m are feasible)	0.6	NO We're here
ICARUS T3000	3	3	NO
100 tons	3	0.1	??
LANNDD	4-8	50-100	Eventually, yes
GLACIER	20 (operation in bi- phase mode)	100	Eventually, yes

ICARUS T3000 + Muon Spectrometer

A Second-Generation Proton Decay Experiment and Neutrino Observatory at Gran Sasso Laboratory

A Rich Physics Programme

- Atmospheric, Solar and Supernova neutrinos
- Long Baseline Neutrino Experiment: CNGS
- Explicit search for ν_µ→ν_τ and ν_µ→ν_e
 Background-free proton decay searches

CNGS: $v_{\mu} \rightarrow v_{\tau}$ Oscillations

Main reaction

$$v_{\tau} + \mathbf{Ar} \rightarrow \tau + \mathbf{jet}; \quad \tau \rightarrow \begin{cases} \mu \nu \nu & 18 \\ \mu \nu \nu & 18 \\ h^{-}nh^{0}\nu & 50 \\ h^{-}h^{+}h^{-}nh^{0}\nu & 14 \end{cases}$$

- Search based on kinematical criteria
- Natural ν_{τ} contamination below 10-7 w.r.t. ν_{μ} component
- Several decay modes investigated (electron decay is the "golden" channel) Super-Kamiokande: 1.5 < Δm² < 3.4 at 90% C.L.

τ decay mode	$\begin{array}{c} \text{Signal} \\ \Delta m^2 = \end{array}$	$\begin{array}{c} \text{Signal} \\ \Delta m^2 = \end{array}$	Signal $\Delta m^2 =$	$\begin{array}{c} \text{Signal} \\ \Delta m^2 = \end{array}$	BG
, i i i i i i i i i i i i i i i i i i i	$1.6 imes 10^{-3} \ \mathrm{eV^2}$	$2.5 \times 10^{-3} \text{ eV}^2$	$3.0 imes 10^{-3} \ \mathrm{eV^2}$	$4.0 imes 10^{-3} \ \mathrm{eV^2}$	
$\tau \to e$	3.7	9	13	23	0.7
$\tau \to \rho \text{ DIS}$	0.6	1.5	2.2	3.9	< 0.1
$\tau \to \rho \ QE$	0.6	1.4	2.0	3.6	< 0.1
Total	4.9	11.9	17.2	30.5	0.7

– 5 years of CNGS operation (4.5 x 10¹⁹ p.o.t.)
 – T3000 detector (2.35 kton active LAr, 1.5 kton fiducial)

CNGS: $v_{\mu} \rightarrow v_{e}$ Oscillations

Main reaction v_e +Ar \rightarrow e⁻+jet; **Natural** v_{e} contamination 1% Limited by CNGS statistics For $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ $(\sin^2 2\theta_{13})_{CNGS,\tau} < 0.04 \quad or \quad \theta_{13} < 6^\circ$ $(\sin^2 2\theta_{13})_{CHOOZ} < 0.14 \quad or \quad \theta_{13} < 11^{\circ}$ $(\sin^2 2\theta_{13})_{MINOS} < 0.06 \quad or \quad \theta_{13} < 7^\circ$

Electron- π^0 Rejection

Figure 6: The distribution of the log-likelihood ratio sum for the same events studied by dE/dx method. A similar π^0 rejection is achieved: 4.8% pions and 90% electrons survive the cut $\sum_{i=1}^{16} ln(L_e^i/L_{\pi}^i) = 7.5$ (see the text).

Figure 3: The $\langle dE/dx \rangle$ distribution of the first 8 wires for 1000 simulated 1 GeV electrons (hatched area) and pions (blank area). 90% electrons and 3.7% pions are abtained when the $\langle dE/dx \rangle = 2.21 MeV/cm$ cut is applied.

Combining imaging (identify pions converting 1cm away from primary vertex) + dE/dx method we expect to have a π^0 contamination of **0.2%**

Determination of the oscillaton parameters

Parameter	Current measurement (90 % C.L.)	Expected measurement with ICARUS
∆m² ₂₃ (eV²)	1.5< ∆m² ₂₃ <3.4 ×10 ⁻³	2.5±0.4 ×10 ⁻³
sin²2 θ ₂₃	>0.92	0.9 ±0.1
$sin^2 2\theta_{13}$	<0.14	0.09 ±0.04

Nucleon decay sensitivity

 $\begin{aligned} \tau_{p} \,(p \rightarrow K^{+} \,\nu \,) > \, 5.7 \times 10^{-32} \, yrs \\ \tau_{p} \,(p \rightarrow e^{+} \,\pi^{0} \,) > 2.7 \times 10^{-32} \, yrs \end{aligned}$

Background free !! 5 kTon × year

Sensitivity grows essentially **linearly** with exposure for all considered channels.

Nuclear effects in signal: fully embedded in FLUKA nuclear model

Comparison with Super Kamiokande

SuperK results compiled by M.Goodman for NNN02, Jan 2002

							Needed Exp.
Channel		Eff.	Observed	Bkg.	Exposure	τ /B limit	to reach SK
		(%)	(evts.)	(evts.)	(kTon×yr)	(10^{32} yr)	(kTon×yr)
$p \rightarrow e^+ \pi^0$	SuperK	43	0	0.2	79	$50 \rightarrow 30$ [1 evt]	
	ICARUS	45	_	0.005	5	2.7	94
$p \rightarrow K^+ \bar{\nu}$	SuperK				79	$19 \rightarrow 13 [1 \text{ evt}]$	
prompt $\gamma \mu^+$	SuperK	8.7	0	0.3		$10 \rightarrow 7$	
$K^+ \rightarrow \pi^+ \pi^0$	SuperK	6.5	0	0.8		$7.5 \rightarrow 5$	
	ICARUS	-97	-	0.005	5	5.7	17
$p \rightarrow \mu^+ \pi^0$	SuperK	32	0	0.4	79	$37 \rightarrow 24 \ [1 evt]$	
	ICARUS	45	-	0.04	5	2.6	102

							Needee	d Expo	osure
Channel		Eff.	Observed	Bkg.	Exposure	τ /B limit	to read	ch PD	G'02
		(%)	(evts.)	(evts.)	(kTon×yr)	(10^{32} yr)	(k')	Fon×yr)
$p \rightarrow \mu^- \pi^+ K^+$	ICARUS	98	-	0.005	5	5.7		2.1	
$p \rightarrow e^+ \pi^+ \pi^-$	ICARUS	19	-	0.125	5	1.1		3.8	
$p \rightarrow \pi^+ \bar{\nu}$	ICARUS	42	-	4	5	1.2		0.5	
$p \rightarrow e^+ \pi^+ (\pi^-)$	ICARUS	30	-	6	5	0.7			
$p \rightarrow e^+ (\pi^+ \pi^-)$	ICARUS	16	-	20	5	0.2			
$n \to e^- \; K^+$	ICARUS	96	-	0.005	5	6.9		0.24	
$n \rightarrow \mu^- \pi^+$	ICARUS	45	-	0.12	5	3.2		1.6	
$n \rightarrow e^+ \pi^-$	ICARUS	44	-	0.04	5	3.2		2.5	
$n \rightarrow \pi^0 \bar{\nu}$	ICARUS	45	-	2.4	5	2		2.4	
$n \rightarrow \mu^{-} (\pi^{+})$	ICARUS	21	-	15	5	0.4			
$n \rightarrow e^+ (\pi^-)$	ICARUS	26	-	27	5	0.4			

A. Bueno (Granada University)

Solar neutrinos: Expected rates

	Solar model: BP2000 v flux used
⁸ B <i>hep</i>	$5.15 \times 10^{6}/\text{cm}^{2}/\text{s}$ 9.3 × $10^{3}/\text{cm}^{2}/\text{s}$ (BP98: 2.10)

(No oscillation hypothesis)

Electron	Solar neutrino events (1 $kton \times year$)					
threshold (MeV)	Elastic	Fermi	Gamow- Teller			
0.0	782806	2011	4541			
1.0	4560	1978	3287			
2.0	1854	1848	3111			
3.0	1465	1588	2762			
4.0	1114	1212	2250			
5.0	809	784	1644			
5.5	676	579	1336			
6.0	557	397	1042			
6.5	450	247	774			
7.0	358	135	540			
7.5	278	63	349			
8.0	212	26	205			
8.5	156	10	107			
9.0	112	5	49			
9.5	77	3	20			
10.0	51	2	8			
10.5	32	2	4			
11.0	19	1	3			

Solar neutrinos: expected background

T600
module

Full simulation of neutron capture events on **natural Ar**

Electron	Neutron capture events per year					
threshold (MeV)	E _{cells} >0 KeV	E _{cells} > 50 KeV	E _{cells} >150 KeV			
5.0	131	118	72			
			7			

Supernova: Expected rates

Assume Fermi-Dirac energy spectra and no oscillations

$\langle E_{v_e} \rangle = 11 Me$	$\langle V, \langle E_{\overline{v}_e} \rangle = 16$	$MeV, \Big\langle E$	$\left\langle v_{\nu_{\mu,\tau}}\right\rangle = 25 MeV$	$V, \left\langle E_{\overline{v}_{\mu,\tau}} \right\rangle$	= 25 MeV
Reaction		T (MeV)	$\langle E_{\nu} \rangle$ (MeV)	Expected 1.2 ktons	l events 5 ktons
Elastic					
	$\nu_e e^-$	3.5	11	8	33
	$\bar{\nu}_e e^-$	5	16	3	14
	$(\nu_{\mu} + \nu_{\tau}) e^{-}$	8	25	3	11
	$\left(\bar{ u}_{\mu} + \bar{ u}_{ au} ight) e^{-}$	8	25	2	9
	total νe^-			16	67
Absorption					
	$\nu_e {}^{40}$ Ar (Fermi)	3.5	11	28	118
	$\nu_e {}^{40} \mathrm{Ar} \mathrm{(GT)}$	3.5	11	41	170
Absorption					
	$\bar{\nu}_e {}^{40}$ Ar (Fermi)	5	16	?	?
	$\bar{\nu}_e {}^{40} \mathrm{Ar} \mathrm{(GT)}$	5	16	?	?
Total				85	355

Table 1: Expected neutrino rates for a supernova at a distance of 10 kpc, releasing an energy of 3×10^{53} ergs (no threshold on the electron energy has been applied).

Antineutrino electron absorption not yet included!

100 ton detector

Conceptual design of a ~100 ton LAr TPC for a near stat	ion in a	LBL facility:
a possibility being further explored Precise Calorine	ion studie netry	s of v interactions
Racks Near s	tation in L	BL facilities
Supporting str	ucture	
HV	Outer vessel	φ ≈ 5m, L≈13m, 15mm thick, weight ≈ 22 t
	Inner vessel	φ ≈ 4,2 m, L ≈ 12 m, 8 mm thick, ≈ 10 t
12 m	LAr	Total ≈ 240 t Fiducial ≈ 100 t
3m	Max e- drift	3 m @ HV=150 kV E = 500 V/cm
	Charge R/O	2 views, ± 45° 2 (3) mm pitch
3	Wires	≈10000 (7000) ¢ = 150 µm
Active volume	R/O electr.	on top of the dewar
	Scintill. light	Also for triggering
Ideas for future liquid Argon detectors A.Ereditato, A.Rubbia, to appear in Proc. of NUINT04, LNGS, March 2004	B-field	possible

100 ton LAr TPC at T2K?

 50-100 kton detector
 Magnetized Liquid Argon TPC
 4-8 meters drift distances

LANNDD at the WIPP site at Carlsbad (NM)

NuFact'01 - March 24-30, 2001

F. Sergiampietri LANNDD 6

The ultimate LAr TPC Detector?

100 kton liquid Argon TPC detector

Industrial Solutions

Detector Layout

Operation in Bi-Phase Mode

Charge extraction, amplification, readout

Detector is running in **BI-PHASE MODE**

- Long drift (≈ 20 m) ⇒ charge attenuation to be compensated by charge amplification near anodes located in gas phase (18000 e⁻/3 mm for a MIP in LAr)
- Amplification operates in proportional mode
- After maximum drift of 20 m @ 1 kV/cm ⇒ diffusion ≈ readout pitch ≈ 3 mm

Electron drift in liquid	20 m maximum drift, HV = 2 MV for E = 1 kV/cm, $v_d \approx 2 \text{ mm/}\mu$ s, max drift time $\approx 10 \text{ ms}$
Charge readout view	2 perpendicular views, 3 mm pitch, 100000 readout channels
Maximum charge diffusion	$\sigma \approx 2.8 \text{ mm} (\sqrt{2}\text{Dt}_{\text{max}} \text{ for } \text{D} = 4 \text{ cm}^2/\text{s})$
Maximum charge attenuation	$e^{-(tmax/\tau)} \approx 1/150$ for $\tau = 2$ ms electron lifetime
Needed charge amplification	From 100 to 1000
Methods for amplification	Extraction to and amplification in gas phase
Possible solutions	Thin wires ($\phi \approx 30 \ \mu m$) + pad readout, GEM, LEM,

Tentative Parameter List

Dewar		
Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)	
Argon total volume	73000 m³, ratio area/volume ≈ 15%	
Argon total mass	102000 tons	
Hydrostatic pressure at bottom	3 atmospheres	
Inner detector dimensions	Disc ¢ ≈70 m located in gas phase above liquid phase	
Charge readout electronics	100000 channels, 100 racks on top of the dewar	
Scintillation light readout	Yes (also for triggering), 1000 immersed 8" PMTs with WLS	
Visible light readout	Yes (Cerenkov light), 27000 immersed 8" PMTs of 20% coverage, single γ counting capability	

Physics with a 100 Kton LAr TPC

	Water Cerenkov (UNO)	Liquid Argon TPC
Total mass	650 kton	100 kton
Cost	≈ 500 M\$	Under evaluation
$p \rightarrow e \pi^0$ in 10 years	10 ³⁵ years ε= 43%, ≈ 30 BG events	3x10 ³⁴ years ε= 45%, 1 BG event
$p \rightarrow v K$ in 10 years	2x10 ³⁴ years ε= 8.6%, ≈ 57 BG events	8x10 ³⁴ years ε= 97%, 1 BG event
$p \rightarrow \mu \pi K$ in 10 years	No	8x10 ³⁴ years ε= 98%, 1 BG event
SN cool off @ 10 kpc	194000 (mostly $\overline{\nu_e} p \rightarrow e^+ n$)	38500 (all flavors) (64000 if NH-L mixing)
SN in Andromeda	40 events	7 (12 if NH-L mixing)
SN burst @ 10 kpc	≈330 v-e elastic scattering	380 $\nu_{\rm e}$ CC (flavor sensitive)
SN relic	Yes	Yes
Atmospheric neutrinos	60000 events/year	10000 events/year
Solar neutrinos	E _e > 7 MeV (central module)	324000 events/year E _e > 5 MeV
Review of massive underground detectors		

Review of massive underground detectors

A.Rubbia, Proc. XI Int. Conf. on Calorimetry in H.E.P., CALORO4, Perugia, March 2004

