Neutrino masses from unified fermion mixing

Per Osland, Benasque July 2004

with R. Gastmans and T.T. Wu

- Introduction
- Mathematics, generalized hypergeom functions, $_{2}F_{2}$
- The model
- Fits, masses

The LNW model

$$M = \left(\begin{array}{rrrr} 0 & d & 0 \\ d & c & b \\ 0 & b & a \end{array}\right)$$

Four parameters

 $b^2 = 8 c^2$ arguments based on S(3) symmetry

Three parameters \Leftrightarrow Three masses (sign ambiguity)

Lehmann, Newton, Wu, 1996

Mathematical prelude

Three-flavour MSW effect, exponential density

$$M^2 = egin{bmatrix} M_{11}^2 & M_{12}^2 & M_{13}^2 \ M_{21}^2 & M_{22}^2 & M_{23}^2 \ M_{31}^2 & M_{32}^2 & M_{33}^2 \end{bmatrix}$$

$$\begin{aligned} & \text{real and symmetric: } M_{ji}^2 = M_{ij}^2 \\ M_{ij}^2 \equiv (M^2)_{ij} \neq (M_{ij})^2 \\ & i \frac{\mathrm{d}}{\mathrm{d}r} \begin{bmatrix} \phi_1(r) \\ \phi_2(r) \\ \phi_3(r) \end{bmatrix} \\ & = \left(\begin{bmatrix} \mathbf{D}(r) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{1}{2p} \begin{bmatrix} M_{11}^2 & M_{12}^2 & M_{13}^2 \\ M_{21}^2 & M_{22}^2 & M_{23}^2 \\ M_{31}^2 & M_{32}^2 & M_{33}^2 \end{bmatrix} \right) \begin{bmatrix} \phi_1(r) \\ \phi_2(r) \\ \phi_3(r) \end{bmatrix} \end{aligned}$$

For exponential density, solution in terms of ${}_2F_2(a_1, a_2; c_1, c_2; z)$

New radial variable: $u = r/r_0 + u_0$ Rotation:

$$\begin{bmatrix} \cos \theta_0 & -\sin \theta_0 \\ \sin \theta_0 & \cos \theta_0 \end{bmatrix} \frac{r_0}{2p} \begin{bmatrix} M_{22}^2 & M_{23}^2 \\ M_{32}^2 & M_{33}^2 \end{bmatrix} \begin{bmatrix} \cos \theta_0 & \sin \theta_0 \\ -\sin \theta_0 & \cos \theta_0 \end{bmatrix}$$
$$= \begin{bmatrix} \omega_2 & 0 \\ 0 & \omega_3 \end{bmatrix}$$

$$irac{\mathrm{d}}{\mathrm{d} u}egin{bmatrix} \psi_1(u)\ \psi_2(u)\ \psi_3(u) \end{bmatrix} = egin{bmatrix} \omega_1+e^{-u} & \chi_2 & \chi_3\ \chi_2 & \omega_2 & 0\ \chi_3 & 0 & \omega_3 \end{bmatrix}egin{bmatrix} \psi_1(u)\ \psi_2(u)\ \psi_3(u) \end{bmatrix}$$

Let μ_1 , μ_2 and μ_3 be the eigenvalues of the 3 imes3 matrix

$$egin{bmatrix} \omega_1 & \chi_2 & \chi_3 \ \chi_2 & \omega_2 & 0 \ \chi_3 & 0 & \omega_3 \end{bmatrix}$$

 μ 's are the squares of the neutrino masses multiplied by $r_0/(2p)$ $z = ie^{-u}$ New variable: $\left[\left(zrac{\mathrm{d}}{\mathrm{d}z}-i\mu_1
ight)\left(zrac{\mathrm{d}}{\mathrm{d}z}-i\mu_2
ight)\left(zrac{\mathrm{d}}{\mathrm{d}z}-i\mu_3
ight)
ight.$ $-z\left(zrac{\mathrm{d}}{\mathrm{d}z}-i\omega_2
ight)\left(zrac{\mathrm{d}}{\mathrm{d}z}-i\omega_3
ight)
ight]\psi=0$ $= e^{-i\mu_1 u} {}_2 F_2 \begin{bmatrix} -i(\omega_2 - \mu_1), & -i(\omega_3 - \mu_1) \\ 1 - i(\mu_2 - \mu_1), & 1 - i(\mu_3 - \mu_1) \end{bmatrix} i e^{-u} \\ \end{bmatrix}$ $\psi^{(1)}$ $\psi^{(2)} = e^{-i\mu_2 u} F_2 \begin{vmatrix} -i(\omega_2 - \mu_2), & -i(\omega_3 - \mu_2) \\ 1 - i(\mu_1 - \mu_2), & 1 - i(\mu_3 - \mu_2) \end{vmatrix} i e^{-u}$ $\psi^{(3)} = e^{-i\mu_3 u} F_2 \begin{bmatrix} -i(\omega_2 - \mu_3), & -i(\omega_3 - \mu_3) \\ 1 - i(\mu_1 - \mu_3), & 1 - i(\mu_2 - \mu_3) \end{bmatrix} i e^{-u}$

Solutions in terms of $_2F_2$

Problem: Parameters (and argument) are large, ~ 20000 One (three) $_2F_2$ calculable by stationary phase approximation

Convert to o.d.e. for ${}_{3}F_{1}$ by $\hat{z} = z^{-1}$:

$$egin{split} &\left[\left(\hat{z}\,rac{d}{d\hat{z}}-lpha_1
ight)\left(\hat{z}\,rac{d}{d\hat{z}}-lpha_2
ight)
ight.\ &+\hat{z}\left(\hat{z}\,rac{d}{d\hat{z}}-eta_1
ight)\left(\hat{z}\,rac{d}{d\hat{z}}-eta_2
ight)\left(\hat{z}\,rac{d}{d\hat{z}}-eta_3
ight)
ight]f=0 \end{split}$$

 Exact treatment of MSW effect for 3 flavours
 Fast scan of parameter space of some model Limitation: Exponential density

Ref: P. Osland and T. T. Wu: PRD [hep-ph/9912540] see also E. Torrente Lujan: PRD [hep-ph/9505209]

The model

H. Lehmann, C. Newton and T. T. Wu, Phys. Lett. **B 384** (1996) 249 "A new variant of symmetry breaking for quark mass matrices"

Quarks:

$$egin{aligned} M(d) &= egin{pmatrix} 0 & d(d) & 0 \ d(d) & c(d) & b(d) \ 0 & b(d) & a(d) \end{pmatrix} \ M(u) &= egin{pmatrix} 0 & id(u) & 0 \ -id(u) & c(u) & b(u) \ 0 & b(u) & a(u) \end{pmatrix} & ext{Note } i \ r > ext{CP viol} \ b^2(d) &= 8c^2(d), & b^2(u) = 8c^2(u) \end{aligned}$$

The *i* can be introduced in either M(d) or M(u) - equivalent

Quarks, cont.:

Diagonalize:

$$egin{aligned} M(d) &= R(d) M_{ ext{diag}}(d) R^{ ext{T}}(d) \ M(u) &= ext{diag}(-i,1,1) R(u) M_{ ext{diag}}(u) R^{ ext{T}}(u) ext{diag}(i,1,1) \end{aligned}$$

Kobayashi-Maskawa matrix:

$$V_{\mathrm{KM}} = R^{\mathrm{T}}(u) \mathrm{diag}(i,1,1) R(d)$$

Jarlskog determinant:

 $J = \mathrm{Im}[V_{\mathrm{KM}}(1,1)V_{\mathrm{KM}}(3,3)V_{\mathrm{KM}}^*(1,3)V_{\mathrm{KM}}^*(3,1)]$

Quarks, cont.:

CKM matrix, PDG 2002:

0.9742 to 0.97570.219 to 0.2260.219 to 0.2250.9734 to 0.97490.004 to 0.0140.035 to 0.043

0.002 to 0.0050.037 to 0.0430.9990 to 0.9993

Reproduced by LNW (1996) with

LNW solution was based on expansion in these small ratios

$\frac{m_d}{m_d} = 0.05,$	$\frac{m_s}{m_s} = 0.025$
m_s	m_b
$\frac{m_u}{m_u} = 0.004.$	$\frac{m_c}{m_c} = 0.005$
m_c , m_c	m_t

and
$$|J_{CP}| = 2.6 \times 10^{-5} \quad \leftarrow \text{Result of model}$$

 $(3.0 \pm 1.3) \times 10^{-5} \quad \leftarrow \text{BABAR}$

Neutrinos:

$$M(\nu) = \begin{pmatrix} 0 & d(\nu) & 0 \\ d(\nu) & c(\nu) & b(\nu) \\ 0 & b(\nu) & a(\nu) \end{pmatrix}$$

Eigenvalues given by: m_1 , m_2 , m_3 , with $m_1 \leq m_3$

Diagonalization leads to equations:

$$egin{array}{rll} a+c&=+S_1\equiv&m_3-m_2+m_1,\ 8c^2+d^2-ac&=-S_2\equiv&m_3m_2-m_3m_1+m_2m_1,\ ad^2&=-S_3\equiv&m_1m_2m_3 \end{array}$$

Cubic equation for the parameter a

$$9a^3 - 17S_1a^2 + (8S_1^2 + S_2)a - S_3 = 0$$

Condition: *a* real and positive Sign of *d* undetermined

Consider simple limit:

$$m_1 = m_2 = 0$$

$$9a^3 - 17m_3a^2 + 8m_3^2a = 0$$

$$a = m_3, \quad \frac{8}{9}m_3, \quad 0.$$

Solution I:

Solution 2:

$$M(\nu) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} m_3 \qquad \qquad M(\nu) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{9} & \frac{2\sqrt{2}}{9} \\ 0 & \frac{2\sqrt{2}}{9} & \frac{8}{9} \end{pmatrix} m_3$$

Solution	m_1	m_2	m_3	$\chi^2_{ m atm}$	$\chi^2_{ m solar}$	χ^2	
(1,1) - +	0.0049	0.013	0.038	19.2	3.8	23.0	CP cons.
same	0.0036	0.012	0.037	18.0	3.7	21.7	CP non-cons.
(1,1)	0.0027	0.011	0.038	17.1	3.7	20.8	CP cons.
same	0.0036	0.012	0.038	17.7	3.7	21.4	CP non-cons.
(1,2) + +	0.0047	0.008	0.052	14.9	5.8	20.7	CP cons.
same	0.0030	0.007	0.052	15.3	5.7	21.0	CP non-cons.
(1,2) + -	0.0022	0.006	0.052	16.5	6.1	22.6	CP cons.
same	0.0030	0.007	0.052	16.3	5.9	22.1	CP non-cons.
(2,1) + +	0.0045	0.008	0.052	15.1	6.1	21.2	CP cons.
same	0.0028	0.006	0.052	15.4	5.3	20.8	CP non-cons.
(2,1) + -	0.0021	0.006	0.052	16.7	6.0	22.7	CP cons.
same	0.0028	0.007	0.052	16.6	5.3	21.9	CP non-cons.
same	0.0029	0.007	0.095	16.3	4.5	20.8	CP non-cons.
(2,1) - +	0.0045	0.013	0.052	14.5	3.6	18.1	CP cons.
same	0.0035	0.011	0.053	13.8	3.6	17.3	CP non-cons.
(2,1)	0.0026	0.010	0.052	12.5	3.8	16.3	CP cons.
same	0.0034	0.011	0.052	13.1	3.7	16.8	CP non-cons.

TABLE III: Best fits to the atmospheric and solar neutrino data from the fitting procedure A. The numberof degrees of freedom is 18, masses are in eV.R. Gastmans, P. Osland, T.T. Wu, hep-ph/0210260

m₁ "poorly" determined

Two fitting procedures: Procedure A: Hata & Langacker Procedure B: ignore correlations

TABLE IV: Best fits to the atmospheric and solar neutrino data from the fitting procedure B. The number of degrees of freedom is 16, masses are in eV.

Solution	m_1	m_2	m_3	$\chi^2_{\rm atm}$	$\chi^2_{\rm solar}$	χ^2	
(2,1) - +	0.0047	0.011	0.054	16.2	0.8	17.0	CP cons.
same	0.0034	0.010	0.054	15.0	0.8	15.8	CP non-cons.
(2, 1)	0.0025	0.010	0.054	15.0	0.8	15.8	CP cons.
same	0.0035	0.010	0.054	15.3	0.8	16.1	CP non-cons.

CHOOZ data have little impact (on masses)

TABLE V: Best fits from the fitting procedure A, including the CHOOZ data [34]. Masses are in eV.

Solution	m_1	m_2	m_3	$\chi^2_{ m atm}$	$\chi^2_{ m solar}$	χ^2_{CHOOZ}	χ^2	
(2,1) - +	0.0044	0.013	0.052	14.5	3.6	2.9	21.0	CP cons.
same	0.0034	0.011	0.052	13.6	3.7	3.1	20.4	CP non-cons.
(2,1)	0.0026	0.010	0.053	12.6	3.8	3.9	20.2	CP cons.
same	0.0034	0.011	0.052	13.1	3.6	3.1	19.9	CP non-cons.

Fit is already constrained to be in region of small U_{e3}

Mixing matrix elements

TABLE VI: Mixing matrix elements $U_{\alpha j}$ ($\alpha = e, \mu, \tau$) for the best fits, given as (modulus, phase/ π). Masses are in eV.

Solution	m_1	m_2	m_3	$U_{\alpha 1}$	$U_{\alpha 2}$	$U_{\alpha 3}$	J_{CP}
				(0.87, 0.00)	(0.48, 1.00)	(0.13, 0.00)	
(2,1) - +	0.0044	0.013	0.052	(0.39, 0.00)	(0.81, 0.00)	(0.44, 0.00)	0.00
				(0.31, 1.00)	(0.33, 1.00)	(0.89, 0.00)	
				(0.86, -0.49)	(0.50, 0.47)	(0.08, -0.38)	
(2,1) - +	0.0034	0.011	0.052	(0.43, 0.04)	(0.79, -0.01)	(0.44, 0.00)	0.0060
				(0.28, 1.00)	(0.34, 1.00)	(0.90, 0.00)	
				(0.85, 0.00)	(0.52, 0.00)	(0.03, 1.00)	
(2,1)	0.0026	0.010	0.053	(0.46, 1.00)	(0.77, 0.00)	(0.44, 0.00)	0.00
				(0.26, 0.00)	(0.36, 1.00)	(0.90, 0.00)	
				(0.86, -0.51)	(0.51, -0.47)	(0.08, 0.38)	
(2,1)	0.0034	0.011	0.052	(0.43, 0.96)	(0.79, 0.01)	(0.43, 0.00)	-0.0060
				(0.28, 0.00)	(0.34, 1.00)	(0.90, 0.00)	

Sign convention for mixing matrix:

- main diagonal (real case) positive
 - when $m_1 < m_2 < m_3$
- continuity

Comments

- Solution (2, I) preferred (V: 2, charged leptons: I)
- 'b-parity' negative
- 'd-parity': no preference
- CP: no preference

Degeneracies

For Solution I (which is preferred for charged leptons), if mass ratios are small, R=I

When R(l)=I, then U=R(v), and oscillation probabilities are invariant under $d \leftrightarrow -d$ and $b \leftrightarrow -b$

Refinements

- Point source (sun)
- Exponential solar density
- More data (SNO, KamLand, etc.)

Extended sun, non-exponential (Bahcall) density: with G.Vigdel

Solution	m_1	m_2	m_3					
				atm	$_{\rm solar}$	CZ	total	
Point sun	mas	sses in m	ieV					
(2,1) + +	4.4	8	52	15.2	5.7	3.0	23.9	СР с
same	2.7	6	52	15.4	5.0	3.6	24.0	CP nc
(2,1) - +	4.3	12	52	14.4	3.6	2.9	20.9	CP c
same	3.2	11	52	13.5	3.6	3.2	20.3	CP nc
(2,1)	2.5	10	52	12.5	3.6	3.9	20.0	CP c
same	3.3	11	52	13.0	3.6	3.2	19.8	CP nc
Extended a	Extended sun							
(2,1) + +	4.1	7	52	15.0	4.8	3.1	22.8	CP c
same	2.5	6	52	15.1	4.2	3.7	23.0	CP nc
(2,1) - +	4.1	11	52	15.2	4.1	2.9	22.2	CP c
same	2.9	10	52	13.6	4.1	3.4	21.1	CP nc
(2,1)	2.1	10	52	12.4	3.9	4.0	20.3	CP c
same	3.0	10	52	13.3	4.2	3.3	20.8	CP nc

Very little effect

Including more recent data (in progress):

Solution	m_1	m_2	m_3		χ^2						
				atm	$_{\rm solar}$	CZ	KL	salt	total		
(2,1) - +	4.1	10	52	16.2	3.6	3.0	5.0		27.8	CP c	
same	3.0	10	52	14.0	3.9	3.4	4.9		26.2	CP nc	
(2,1)	3.0	10	52	13.8	3.9	3.4	4.9		25.9	CP c	
same	3.0	10	52	13.8	3.9	3.4	4.9		26.0	CP nc	

Summary

Lehmann-Newton-Wu mass matrix

$$M = \begin{pmatrix} 0 & d & 0 \\ d & c & b \\ 0 & b & a \end{pmatrix} \qquad b^2 = 8 c^2$$

- describes CKM matrix
- provides economical description of V oscillations Accident??

 $m_1 = 0.003-0.004 \text{ eV}, m_2 = 0.010 \text{ eV}, m_3 = 0.052 \text{ eV},$