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Abstract

We present a real-time error mitigation strategy to aid the training of Quantum-Hardware Machine
Learning (QML) models under gradient-based optimization.

In the era of Noisy Intermediate Scale Quantum (NISQ) [1, 2] devices, Variational Quantum Al-
gorithms (VQA) are the QML models that appear more promising in the near future as they have
several concrete applications today already, such as electronic structure modelization in quantum chem-
istry [3, 4, 5, 6] for instance. Different VQA ansatze have been proposed, such as the QAOA [7], but
they all share as foundation a Variational Quantum Circuit (VQC) consisting of several parametrized
gates whose parameters are updated during training. Since hardware errors and large execution times
severely hinder NISQ [1, 2] devices’ applicability in practice, this ability of VQC based models to adapt
their parameters and accomodate for the noise makes them appealing.

However, despite their improved robustness against noise, VQC models are known to suffer from the
presence of plateaus (barren plateaus) in the optimization space that lead to vanishing gradients. In
particular, these plateaus are naturally present for VQAs but [8] proved that the noise can induce them
(NIBP, i.e. Noise-Induced-Barren-Plateaus), making vain their advantage in noise mitigation.

To overcome these limitations we either have to build fault tolerant architectures carrying an usable
amount of logical qubits, or exploit as better as we can the available NISQ hardware by cleaning its
results. While the first solution might require significant technical advances, the second one is often
achieved with the help of quantum error mitigation (QEM). Therefore, we define here an algorithm to
perform real-time quantum error mitigation (RTQEM) alongside a VQA-based QML training process.

In this work, we use in particular the Clifford Data Regression [9] (CDR) QEM algorithm, which is
used to map noisy expected values into cleaned ones through a linear map Eclean = αEnoisy + β. The
two mitigation parameters θ = (α, β) are learned during training and depend on the hardware device and
on the quantum circuit’s architecture considered.

We select a specific QML problem inspired by [10]. We train a VQC to fit the u quark Parton
Density Function (PDF) using a reuploading ansatz [11] to build the model. We implement an hardware-
compatible Adam [12] optimizer for the training, in which we calculate gradients with respect to the
variational parameters using the Parameter Shift Rule [13, 14] (PSR). This setup is then used to perform
the full gradient descent on a 1-qubit device hosted in the Quantum Research Centre (QRC) of the
Technology Innovation Institute (TII) and controlled using the Qibo [15] framework. Exploiting the full-
stack environment provided by Qibo, we implement a training routine with realtime mitigation where the
θ parameters required by the CDR algorithm are gradually updated. This choice is useful for at least two
reasons. Firstly, since the noisy-to-clean map only depends on the device and the VQC, in this case (and
more in general in QML applications) we can consider the map structure fixed for any data we encode
into the circuit. Secondly, the CDR map can be easily computed at any desired moment of the training
procedure.
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Therefore, we decide to update θ periodically during the optimization, re-calculating the CDR fit
every Ncdr epochs only.

In this talk, we show how this strategy can be used to generalize the final results, reduce the number
of optimization iterations and fight against barren plateaus (see Fig. 1). We discuss both the cases of
noisy simulations and real hardware deployment on superconducting qubits.
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Figure 1: u PDF fit using a single-qubit quantum circuit with 4 (a, b) and 6 (c, d) layers, respectively.
At the end of each layer, we introduce Pauli noise that induces barren plateaus during the training. This
phenomenon is characterized by gradients that decay exponentially with the number of layers, as well
as an upper bound for the cost function. We observe that this prevents the reproduction of the PDF
in regions where it is close to one. By employing error mitigation during the training, it is possible to
overcome these barriers, thereby enabling better training.
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