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Abstract

These notes are a summary of the material covered in the 2022 Taller de Altas Energias
cosmology course, and are meant to be a companion for those lectures. The course consists of three
1-hour lectures and a 1-hour tutorial covering a few specific calculations. This is obviously a very
short amount of time in which to cover all relevant theoretical aspects of modern cosmology, and
thus the material is limited in scope. I have aimed to cover the basics of cosmological background,
perturbation theory, inflation, structure formation, CMB physics, and weak gravitational lensing.
In spite of missing a wide range of important topics (e.g. reheating, Big-Bang nucleosynthesis,
tensor perturbations, CMB polarization, non-linear structure formation models, data analysis
methods), this is already a very ambitious syllabus for just three hours! Therefore, I have often
provided results without a thorough derivation, or which hold only under specific assumptions that
must be dropped in real-life calculations. Those interested in delving deeper into cosmological
theory should therefore work through the details I have only skimmed, making use of existing
textbooks as well as the primary literature that set the foundations of modern cosmology. Where
possible, I have provided references to these materials. As an example, the notes themselves are
heavily based on [1, 2, 3].
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1 Homogeneous cosmology

References

For more information on background cosmology, refer to [2, 4, 5].

1.1 The Copernican principle and FRW

Much of modern cosmology is based on the so-called “Cosmological principle”, related to the Coper-
nican principle:

On large enough scales, the Universe is homogeneous and isotropic.
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In mathematical terms, this implies that the metric describing the large-scale Universe is given by
a set of maximally-symmetric constant-time slices. The most general version of such a metric is1:

dτ2 = b2(t)dt2 − a2(t)Sijdx
idxj , (1)

where b and a are functions of time only, and Sij is a maximally-symmetric 3D metric (i.e. a space-like
metric with 6 Killing vectors). Maximally symmetric spaces can be classified in terms of a single
curvature parameter k as “closed” (k > 0), “open” (k < 0), or “flat” (k = 0). The metric in this case
takes the general form:

Sijdx
idxj = dχ2 + sinn2(χ)

[
dθ2 + sin2(θ)dφ2

]
, (2)

where

sinn(χ) =

 k−1/2 sin(
√
kχ) k > 0

χ k = 0

|k|−1/2 sinh(
√
−kχ) k < 0

(3)

Since most observational evidence seems to be compatible with a flat Universe, for simplicity we well
assume from here on that k = 0 unless otherwise stated.

To simplify things further, we will make use of “comoving coordinates” to describe the system.
These are defined as follows: consider a space-filling fluid. At some point in time, we assign a label
(3-dimensional coordinates) to each fluid element, and we synchronise the imaginary clocks carried by
each element. Then, we define the coordinates of any event in spacetime by assigning it, as spatial
coordinates, the label of the fluid element it occupies, and as time coordinate, the time measured by
the element’s clock. In this case, since t is the time measured by a comoving observer (for whom the
spatial coordinates are constant), the function b(t) must be b(t) = 1. Thus defined, t is usually called
“cosmic time”.

Under these assumptions, the metric takes the simple form (depending on whether you choose to
use spherical or Cartesian coordinates:

dτ2 = dt2 − a2(t)
[
dχ2 + χ2(dθ2 + sin2 θ dφ2)

]
= dt2 − a2(t)|dx|2. (4)

This is the flat version of the so-called Friedmann-Robertson-Walker (FRW) metric. It will sometimes
be useful to use “conformal time” η, defined as a dη = dt, in which case the metric is conformally
Minkowski:

dτ2 = a2(η)
(
dη2 − |dx|2

)
. (5)

The function a(t) is the so-called scale factor, and it reflects the “size” of the Universe with respect
to the time t0 when the comoving fluid elements were assigned their labels. It is common in cosmology
to assign t0 to the current time, so that a(t0) = 1 today.

1.2 The geodesic equation and redshift

Since most or all of our data in cosmology come from elecromagnetic radiation from various sources,
studying the propagation of photons in an expanding background is of crucial importance.

Consider a photon propagating radially towards (or from) the observer sitting at χ = 0. The
geodesic equation for the t coordinate reads, after fixing θ and φ:

dpt

dλ

(
dt

dλ

)
= −aȧ (pχ)2 , (6)

where λ is an affine parameter, ȧ ≡ da/dt, and we have defined the time component of the photon
4-momentum pt ≡ dt/dλ and its radial component pχ ≡ dχ/dλ. Likewise, the condition dτ2 = 0
implies (pt)2 = a2 (pχ)2. Using this to substitute pχ in the previous equation we obtain

dpt

dλ
= −Hpt dt

dλ
, (7)

where we have defined the expansion rate:

H ≡ ȧ

a
. (8)

1A beautiful and thorough proof of this can be found in [5].
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Integrating Eq. 7 we obtain the simple result

pt ∝ a−1. (9)

Thus, since the photon frequency measured by a comoving observer is ν ∝ pt, photons are redshifted
(or blueshifted if a(t) is a decreasing function) as they propagate. Defining the redshift z as the shift in
the wavelength of a photon observed today with respect to the rest-frame wavelength at the comoving
emitter

z ≡ λ− λem
λem

, (10)

Eq. 9 can be rewritten as a relation between scale factor and redshift

a(t) =
1

1 + z
. (11)

As we will see, t, η, a, and z are used in different contexts as time labels.

1.3 Distances

Distances to objects in the FRW metric can be calculated in different ways, more or less connected
with actual observations.

• Comoving distance. Consider a comoving source emitting photons at time tE from coordinate
χE , corresponding to redshift z, reaching us at t0 having propagated radially. Using the line
element for photons, the radial distance is

χ =

∫ χE

0

dχ =

∫ t0

tE

dt

a
. (12)

Changing the integration variable to redshift, yields:

χ(z) =

∫ z

0

dz′

H(z′)
. (13)

• Proper radial distance. Consider a set of comoving observers lying on a straight line between
us and a comoving source at χE . At a fixed cosmic time t all observers measure the distance
to the next by sending a photon to it and back, and measuring the corresponding time interval
dℓ = dt. Adding up the contributions from all observers:

d(distance) = dt = a(t)dχ. (14)

Integrating over χ yields the proper physical radial distance:

dp = a(t)χ. (15)

• Angular diameter distance. Consider an extended object at redshift z of size ∆ℓ, and sub-
tending an angle ∆θ. The angular diameter distance is defined as dA ≡ ∆ℓ/∆θ. Using the FRW
metric, ∆ℓ = χ(z)∆θ/(1 + z), and therefore

dA(z) =
χ(z)

1 + z
. (16)

• Luminosity distance. The luminosity distance dL to an object of rest-frame luminosity L at
redshift z, and measured flux F is defined as:

F =
L

4πd2L
. (17)

The luminosity is the amount of energy emitted per unit time L ≡ dEE/dtE , both measured at
the emitter’s frame. Due to the expansion, the photon energies are redshifted (dEO = dEE/(1+
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z). The expansion also stretches the arrival time between photons, so that dtO = (1 + z)dtE .
Finally, all the emitted energy is spread over an area 4πχ2 by the time it reaches the observer
at z = 0. The measured flux (energy per unit time and detector area) is then

F =
L

4π((1 + z)χ)2
, (18)

and therefore the luminosity distance is

dL(z) = (1 + z)χ(z). (19)

The relation between angular and luminosity distances dL(z) = (1 + z)2dA(z) is the so-called
Etherington relation, and actually holds in any metric theory of gravity (not just FRW).

• Particle horizon. The (comoving) particle horizon is the largest (comoving) distance covered
by a photon emitted at the initial singularity (i.e. z = ∞). Following the rationale above, the
horizon at redshift z is

dH(z) =

∫ ∞

z

dz′

H(z′)
= χ∞ − χ(z). (20)

Often dH ∼ (aH)−1, up to a factor of O(1), and therefore (aH)−1 is often used as an approxi-
mation for the size of the horizon.

1.4 Einstein equations, cosmological parameters

Let’s now work out the dynamics of the FRW metric. The first step is deriving the corresponding
Einstein equations.

The main components that make up the energy content of the Universe can be treated as perfect
fluids. In this case, the energy-momentum tensor is:

Tµν = (ρ+ p)UµUν − pgµν , (21)

where ρ and p are the energy density and pressure, and Uµ is the fluid’s 4-velocity. In comoving
coordinates Uµ ∝ (1, 0, 0, 0), and we obtain

Tµν = diag(ρ,−p,−p,−p). (22)

We will assume the fluid to be made up of several components Tµν =
∑
i T

i
µν , and that, for each of

these, pressure and energy density are related via a simple equation of state of the form

pi = wiρi, (23)

where wi is the “equation of state parameter” for the i-th component. Two important such species are
non-relativistic matter (sometimes called “dust”), for which wM = 0 (presureless fluid), and relativistic
matter or radiation, for which wR = 1/3.

Energy-momentum conservation (∇νT
µν = 0) holds for each non-interacting component separately.

In the FRW case this implies:
ρ̇i + 3H(ρi + pi) = 0. (24)

This can be integrated to give the evolution of different species

ρ(a) = ρ0 exp

[
3

∫ 1

a

da′

a
(1 + w)

]
= ρ0 a

−3(1+w), (25)

where we have assumed w = constant in the second equality. Thus, for matter ρM = ρM,0a
3, for

radiation ρR = ρR,0a
4 and, since for a cosmological constant ρΛ = const., the equation of state for

vacuum energy / Λ is wΛ = −1. A departure from wΛ = −1 would be a sign that dark energy is more
complex than a simple cosmological constant. For this reason, this parameter has become central
enough in the search for dark energy that it is often simply called “the equation of state” or w.
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Replacing the perfect-fluid Tµν in Einstein’s equations leads to the following two independent
Friedmann equations:

H2 =
8πG

3
ρ− k

a2
, (26)

ä

a
= −4πG

3
(ρ+ 3p), (27)

where we have brought back curvature for completeness. Note, from the second equation, that any
species with an equation of state w < −1/3 will contribute to a positive acceleration.

Equation 26 motivates defining the cosmological density parameters Ωi as follows:

Ωi ≡
ρi,0
ρc

, Ωk = − k

H2
0

ρc ≡
3H2

0

8πG
, (28)

where ρc is the so-called critical density today, and the subscript 0 denotes quantities evaluated at the
present time. It is sometimes convenient to make use of the cosmological parameters evaluated at a
different time a ̸= 1. In those cases, we will make the time-dependence of the parameters explicit (e.g.
Ωi(a)).

Note that the two Friedmann equations are not independent of the energy conservation equation
(Eq. 24). Only two of these three equations are independent. Using the solution in Eq. 25, we obtain
a compact form for the first Friedmann equation:

H2 = H2
0

∑
i

Ωi a
−3(1+wi), (29)

where wk ≡ −1/3.
When a single component dominates the expansion rate, the solution to this equation is

a ∝ t
2

3(1+w) , or a ∝ eHt for w = −1. (30)

Current observations from CMB, supernovae and galaxy surveys point to the following values for the
cosmological parameters:

Ωk ≲ 10−3, ΩR ∼ 8× 10−5, ΩM ∼ 0.3, ΩΛ ∼ 0.7, H0 ∼ 70 km/s/Mpc. (31)

Thus, at early times the Universe underwent a radiation-dominated phase with a ∝ t1/2, the expansion
slowed down later, during matter domination, to a ∝ t2/3, and is currently accelerating towards
exponential expansion during Λ domination. The redshifts at which the transitions between radiation
and matter domination, and matter and Λ domination take place are approximately

zR→M ∼ 3000, zM→Λ ∼ 0.3. (32)

2 Inhomogeneities: The Newtonian treatment

Even though the standard cosmological model is based on the premise that the Universe is homogeneous
and isotropic on large scales, it is evident to anyone who has ever looked at the sky at night that it
is not so on smaller scales. Structures with very different sizes can be found, from stars and planets
at the AU scale (∼ 4µpc) to galaxies at the kpc scale and clusters and superclusters of galaxies at the
Mpc scale. As we will see, these structures have their origin in small linear perturbations at early times
in an otherwise homogeneous Universe, which have grown to reach their present non-linear state via
gravitational collapse. The theory of inflation gives a fairly satisfactory explanation for the origin of
these perturbations in terms of quantum fluctuations in the primordial density field, while the theory
of cosmological perturbations and large scale structure studies and models their evolution throughout
the history of the Universe.

The evolution of density fluctuations in a cosmological background is a rich topic, and in fact
most of cosmological science today focuses on extracting fundamental physics constraints by study-
ing inhomogeneities, rather than the background expansion directly. This is because, for instance,
the background expansion affects the way in which structures grow over time. The inhomogeneities
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we observe today also contain information about the primordial fluctuations that seeded them, and
therefore can advance our understanding of the very early Universe. Furthermore, the statistics of the
anisotropies in the Cosmic Microwave Background (CMB) can be used to place very tight constraints
on the components that made up the Universe at early times. Finally, the way structure forms and
evolves on large scales plays a central role in the formation and evolution of galaxies, and thus a good
understanding of structure formation is important for astrophysics too.

References

For more information on Newtonian perturbation theory and structure formation at late times, refer
to [1, 2, 6, 7, 8].

2.1 Newtonian perturbations

We will consider a simplified scenario to begin our study of structure formation. We model the density
of non-relativistic matter in the Universe as a fluid with density fluctuations around the mean evolving
in an expanding background. Although simplified, this treatment turns out to work very well in many
regimes of interest in cosmology, particularly at late times, when matter and dark energy dominate
the expansion. A more sophisticated, fully-relativistic treatment of perturbations (which we will turn
to in Section 3) is necessary if:

• Studying perturbation in a relativistic fluid.

• Studying perturbations on horizon-sized scales 1/ℓ ∼ H.

The evolution of a fluid with density ρ(r, t) and velocity field V(r, t) under gravity is governed by
three equations:

• The continuity equation, which states the conservation of mass:

∂tρ+∇r · (ρV) = 0. (33)

• The Euler equation, following from Newton’s second law:

∂tV + (V · ∇r)V +
∇rp

ρ
+∇rΨ = 0, (34)

where p and Ψ are the pressure and gravitational potential respectively.

• The Poisson equation, stating the connection between matter density and gravity:

∇2
rΨ = 4πGρ. (35)

It is useful to note that the continuity and Euler equations can be derived from moments of the
collisionless Boltzmann equation (or the Liouville theorem):

∂f

∂t
+V · ∂f

∂r
+ ṗ · ∂f

∂p
= 0, (36)

where f(t, r,p) is the phase-space distribution of fluid particles.
Consider now an expanding background, in which the physical coordinates r are related to La-

grangian coordinates x (comoving with the background expansion) via r = a(t)x. In this case, the
derivatives with respect to x or r are related via:

∇r =
1

a
∇x, ∂t|r = ∂t|x −Hx · ∇x. (37)

Let’s also split ρ, V, Ψ and p into background and perturbations:

ρ(t,x) = ρ̄(t)[1 + δ(x, t)], V = ȧx+ v, Ψ = Ψ̄ + ψ(x, t), p = p̄(t) + c2sρ̄(t)δ(x, t), (38)
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which defines the overdensity δ and the peculiar velocity v and potential ψ. cs is the sound speed,
defined as c2s ≡ ∂p/∂ρ. It is worth noting that, in order to ensure that the background components
satisfy the continuity, Euler and Poisson equations, the background potential must be set to

Ψ̄ = −1

2
aä|x|2. (39)

Substituting these in Eqs. 33, 34 and 35 we obtain the perturbation equations:

δ̇ +
1

a
∇ · ((1 + δ)v) = 0 (40)

v̇ +Hv +
1

a
(v · ∇)v +

c2s
a

∇δ
1 + δ

+
1

a
∇ψ = 0 (41)

∇2ψ = 4πGa2ρ̄δ, (42)

where we abbreviate ∇ ≡ ∇x.

2.2 Linear theory

Linealising the previous set of equations we obtain

δ̇ +
1

a
∇ · v = 0 (43)

v̇ +Hv +
c2s
a
∇δ + 1

a
∇ψ = 0 (44)

∇2ψ = 4πGa2ρ̄δ. (45)

Let us define Fourier transform of a field f as:

fk(t) ≡
∫
d3x e−ik·xf(x, t), f(x, t) =

∫
d3k

(2π)3
eik·xfk(t). (46)

The three equations above can then be written in terms of the Fourier transforms of all fields involved
as

δ̇k +
i

a
k · vk = 0 (47)

v̇k +Hvk +
i

a
k
[
c2sδk + ψk

]
= 0 (48)

k2ψk = −4πGa2ρ̄δk. (49)

2.2.1 Vorticity

Let us decompose the velocity field vk into components parallel and perpendicular to the wavevector
k:

vk = v∥
k

k
+ vk,⊥, (50)

where

v∥ ≡ v · k
k

, vk,⊥ ≡
(

1 − kkT

k2

)
vk. (51)

Projecting Eq. 48 on the plane perpendicular to k, we obtain

v̇k,⊥ +Hvk,⊥ = 0, (52)

with an immediate solution

vk,⊥ ∝ 1

a
. (53)

Thus, at linear level, vorticity is a purely decaying mode. Vorticity can only be generated via non-
linear evolution (through the third term in Eq. 41), or if sourced by viscosity-like terms (which we
have ignored here).
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2.2.2 The Jeans equation

We will hereafter consider only the longitudinal velocity component. Taking the divergence of Eq. 48,
and substituting in the Poisson equation, we obtain a pair of coupled equations:

δ̇k +
1

a
θk = 0 (54)

θ̇k +Hθk +
1

a

[
4πGa2ρ̄− c2sk

2
]
δk = 0 (55)

These can be combined into a second-order equation for δk:

δ̈k + 2Hδ̇k +

(
c2sk

2

a2
− 4πGρ̄

)
δ = 0. (56)

The second term, caused by the background expansion, acts as a friction-like term, slowing down
structure growth (which would otherwise be exponential). The third term displays a competition
between pressure and gravity.

On small scales, k ≫ kJ , where

kJ ≡ a

cs

√
4πGρ̄ (57)

is the Jeans scale, the combination of the last two terms leads to decaying sound waves of the form

δk ∝ 1√
csa

exp

[
±ik

∫
dt

a
cs

]
. (58)

On large scales, or for a pressureless fluid, the last term leads to growing and decaying modes. In
this regime, and changing the time variable to the scale factor a, the equation reads

d

da

(
a3H

dδ

da

)
=

3

2
ΩM (a) aH(a) δ. (59)

We have omitted the wavenumber label k here, since the equation holds both in real and Fourier spaces.
Analytical solutions can be found several interesting limits:

• Matter domination. In this limit the equation reads

d2δ

da2
+

3

2a

dδ

da
− 3

2a2
δ = 0, (60)

which has, as growing and decaying solutions:

δ(a) = δ+ a+ δ− a
−3/2. (61)

Overdensites thus grow proportionally to the scale factor during matter domination.

• Λ domination. In this limit, the equation reads

d2δ

da2
+

3

a

dδ

da
= 0, (62)

with solution
δ(a) = δ+ + δ−a

−3. (63)

• Fluid mixture. In the presence of non-relativistic matter and another background species with
equation of state w, an analytical solution can be find of the form

δ(a) =δ+ a 2F1

(
w − 1

2w
,− 1

3w
,
6w − 5

6w
;
ΩM − 1

ΩM
a−3w

)
+

δ− a
−3/2

2F1

(
3w + 2

6w
,
1

2w
,
6w + 5

6w
;
ΩM − 1

ΩM
a−3w

)
, (64)

where 2F1 is a hypergeometric function.
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• Radiation domination. Setting w = 1/3 above, asymptotically we obtain, for the growing
mode

δ ∝
{
A+B log a a≪ aeq

a a≫ aeq,
(65)

where aeq is the scale factor at which matter and radiation contribute equally to the total energy
density (the matter-radiation equality epoch).

The two main conclusions from this discussion are:

1. In the absence of pressure, and in the linear regime, overdensities grow in a scale-independent
fashion, i.e.:

δ(t,x) = D(a) δ(x, t∗), (66)

where D(a) is the growth factor. The growth factor is commonly normalised such that D(a =
1) = 1 today (in which case t∗ = t0), or such that we recover the matter-dominated limit at early
times: D(a≪ 1) = a. Unless otherwise stated, we will assume the former normalisation.

2. Growth is linear with a during matter domination, but stalls during either Λ domination,
or during radiation domination (where the growth is at most logarithmic in a). Since the Poisson
equation (Eq. 49) reads

ψk(a) = −4πGρ̄0
k2

δk(a)

a
(67)

during matter domination, the gravitational potentials stay constant, and they decay in ampli-
tude otherwise.

3 Relativistic perturbation theory

References

For more information on relativistic perturbation theory, refer to [1, 2, 3, 9, 10].

3.1 Gauge invariance

The presence of matter density inhomogeneities will result in perturbations to the background FRW
metric. However, we are confronted with a problem inherent to GR. A general change of coordinates
can create fictitious inhomogeneities/metric perturbations in a homogeneous Universe. Although this
problem can be ignored if one expresses the final quantities of interest in terms of true observables (e.g.
electromagnetic intensity measured by a particular observer), a wise choice of coordinates can often
simplify otherwise lengthy calculations, or lead to equations with a simpler physical interpretation.
Understanding the role of this gauge freedom is therefore important before we try to make predictions
in a relativistic setting.

3.1.1 Gauge transformations for linear perturbations

Consider the case of infinitesimal changes of the form x̃µ = xµ + ξµ(x). How does this affect our
interpretation of what a perturbation is for different types of quantities?

• Scalars. Consider a scalar function ϕ(x) which, in coordinates xµ is composed of a “background”
mode ϕ̄(x) and a perturbation δϕ, i.e.:

ϕ(x) = ϕ̄(x) + δϕ(x). (68)

Since ϕ is a scalar, in the new coordinates ϕ̃(x̃) = ϕ(x), therefore:

ϕ̃(x̃) = ϕ(x) = ϕ(x̃− ξ) = ϕ̄(x̃) + δϕ(x̃)− ξµ∂µϕ̄, (69)

where we have ignored all terms of higher order than 1 in δϕ or ξ. In the new coordinates, the
perturbation is therefore

δ̃ϕ = δϕ− ξµδµϕ̄. (70)

An example of such a scalar is the energy density ρ, which can be expressed as ρ = UµUνTµν .
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• Vectors. As before, contravariant vector V µ(x) = V̄ µ(x) + δV µ. In this case, we need to take
into account the transformation law for vectors, and expanding to linear order:

Ṽ µ(x̃) =
∂x̃µ

∂xν
V ν(x)

= (δµν + ∂νξ
µ)

(
V̄ ν(x̃) + δV ν − ξρ∂ρV̄

ν
)

= V̄ µ(x̃) + δvµ − ξν∂ν V̄
µ + V̄ ν∂νξ

µ, (71)

and thus the perturbation is modified as

˜δV
µ
= δV µ − ξν∂ν V̄

µ + V̄ ν∂νξ
µ. (72)

• Tensors. For a rank-2 covariant tensor, such as the metric,

g̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
gµν(x). (73)

Proceeding as in the case of vectors, we find that linear metric perturbations transform as:

δ̃gµν = δgµν − ξρ∂ρḡµν − ḡµρ∂νξ
ρ − ḡρν∂µξ

ρ. (74)

Inspecting Eqs. 70, 72, and 74, a general transformation law is easy to infer for tensor of arbitrary
rank and index position.

3.1.2 SVT decomposition

Let us now apply the previous results to the FRW metric. The background FRW preserves the SO(3)
symmetry, and therefore it makes sense to separate perturbations into the irreducible representations
of this group. Under rotations, g00 transforms as a scalar, and therefore we can write:

δg00 ≡ a2 2ψ. (75)

g0i is a vector. By Helmholtz’s theorem, general vectors can be separated into the gradient of a scalar,
and the curl of a vector (or, in other words, a component with zero divergence). Using this, we can
write:

δg0i = a2(∂iB + Si), (76)

where the vector S must satisfy ∂iSi = 0. Finally a similar decomposition for gij yields

δgij = a2(2ϕηij + 2∂i∂jE + ∂iFj + ∂jFi + hij), (77)

where the vector F must also be transverse (∂iFi = 0), and h is symmetric, transverse, and traceless:

hii = 0, ∂ih
i
j = 0. (78)

The perturbed line element therefore reads, in general:

dτ2 = a2
[
(1 + 2ψ)dη2 + 2(∂iB + Si)dη dx

i + (−(1− 2ϕ)ηij + 2∂i∂jE + ∂iFj + ∂jFi + hij)dx
i dxj

]
.

Before accounting for gauge freedom, the metric perturbations are thus, in general, described by 4 scalar
functions (ψ, ϕ,B,E), two transverse vector fields (Fi, Si) (i.e. 3 + 3− 2 = 4 degrees of freedom), and
a symmetric, transverse, and traceless tensor (hij) (i.e. 9 − 3 − 3 − 1 = 2 degrees of freedom), for a
total of 10 degrees of freedom.

We can similarly split the gauge perturbation ξµ into scalar and vector components:

(ξ0, ξi) = (ξ0, ∂iζ + ξi⊥), (79)

where (ξ0, ζ) are scalars, and ξi⊥ is a transverse vector.
Applying Eq. 74 to these perturbations, we obtain the transformation laws:

Scalars : ψ̃ = ψ − a−1(aξ0)′, ϕ̃ = ϕ+Hξ0, B̃ = B + ζ ′ − ξ0, Ẽ = E + ζ. (80)

Vectors : S̃i = Si + ξ′⊥,i, F̃i = Fi + ξ⊥,i. (81)

Tensors : h̃ij = hij . (82)
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Thus, scalar gauge modes only affect scalar perturbations, vectors only affect vectors, and tensor metric
perturbations are gauge-invariant by construction!

Since there are two scalar gauge modes, they can be used to null out two of the scalar pertur-
bation modes or, in other words, only two perturbation modes are gauge-invariant. Likewise, vector
perturbations can be described with a single transverse vector.

If going the gauge-invariant way, the equations above can be used to construct following gauge-
invariant combinations of perturbations:

Ψ = ψ − a−1(a(B − E′))′, Φ = ϕ+H(B − E′), Vi = Si − F ′
i , hij . (83)

Instead, we will pick a specific gauge, and rely on computing only pure observables (in which case
the gauge we picked is irrelevant). Arguably the most commonly used gauge is the “longitudinal” or
“Newtonian” gauge. This is defined by setting B = E = 0. Considering only scalar perturbations, the
Newtonian gauge metric reads:

dτ2 = a2
[
(1 + 2ψ)dη2 − (1− 2ϕ)|dx|2

]
. (84)

Note that we have only included scalar modes above. In this course we will not cover vector and tensor
perturbations. Fortunately, a beautiful result of cosmological perturbation theory is the fact that, at
linear order, if perturbations are decomposed into their SVT components, the field equations (which
we will present in the next section), for scalar, vector, and tensor modes, are actually decoupled. I.e.
vector modes do not affect the evolution of scalar or tensor modes, etc. Thus, having ignored vectors
and tensors will not affect the results obtained here for scalar perturbations.

3.2 Field equations for linear perturbations

3.2.1 Einstein’s equations

Substituting the Newtonian gauge metric in Eq. 84 into Einsten’s field equations Gµν = 8πGTµν , and
considering only linear terms in the metric potentials, we obtain the following set of equations:

∇2ϕ− 3H(ϕ′ +Hψ) = 4πGa2 δT 0
0 , (85)

∂i(ϕ
′ +Hψ) = 4πGa2 δT 0

i , (86)

ϕ′′ +H(2ϕ+ ψ)′ + (2H′ +H2)ψ +
1

3
∇2(ψ − ϕ) = −4π

3
Ga2 δT ii , (87)

∂i∂j(ψ − ϕ) = 8πGa2 δT ij (i ̸= j). (88)

The last equation is only sourced by the off-diagonal components of the perturbed energy-momentum
tensor. These components are zero except for fluid species with significant shear stress. In the standard
cosmological model, this is only the case for neutrinos, and the effect is very small. Thus assuming
that ϕ = ψ is often an excellent approximation.

3.2.2 Hydrodynamical perturbations

Consider a perfect fluid, with energy-momentum tensor given by Eq. 21. The density and pressure
are defined as the density and pressure measured by an observer that is co-moving with the fluid
(ρ ≡ TµνU

µUν , p ≡ Tµν(g
µν − UµUν)/3). In the homogeneous case, Ūµ = (a, 0, 0, 0), and therefore

any spatial component of Uµ denotes a small coordinate velocity of the fluid, which can be treated as
a linear perturbation. In detail, we write the perturbed 4-velocity as

Uµ =

(
1− ψ

a
,
v

a

)
, (89)

where the 0-th component is fixed by the normalisation UµUν = 1. The perturbations to the energy-
momentum tensor can then be written as:

δT 0
0 = ρ̄δ, δT 0

i = (ρ̄+ p̄)vi, δT ij = −δp δij . (90)
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It will also be convenient to work with the velocity divergence θ ≡ ∂iv
i. Moreover, the spatial

dependence of the equations takes a simpler form in Fourier space. For a given field f(x, η), we define
its Fourier transform as

f(k, η) =

∫
d3x eik·x f(x, η). (91)

Substituting this into Einstein’s equations, we obtain:

k2ψ + 3H(ψ′ +Hψ) = −4πGa2 ρ̄ δ, (92)

k2(ψ′ +Hψ) = 4πGa2 (ρ̄+ p̄)θ, (93)

ψ′′ + 3Hψ′ + (2H′ +H2)ψ = 4πGa2 c2sρ̄ δ, (94)

where, as before, c2s ≡ δp/δρ. Eq. 92 is the relativistic generalisation of Poisson’s equation, with the
second term on the right-hand side corresponding to relativistic corrections, which become relevant
only on horizon-sized scales k ≲ η−1.

During matter domination (a ∝ η2, H = 2/η), and assuming no pressure (c2s = 0), Eq. 94 reads

ψ′′ +
6

η
ψ′ = 0, (95)

which has solution:

ψ = C1 +
C2

η5
. (96)

Thus, as we found in the Newtonian case, during matter domination ψ does not evolve. Substituting
this result into Eq. 92, discarding the decaying mode, the density perturbations then evolve as

δ =

[
− (kη)2

6
− 2

]
ψ. (97)

Hence, on sub-horizon scales, we recover the Newtonian result δ ∝ ak2ψ (as should be the case!). On
superhorizon scales, relativistic effects come into play and the overdensity is frozen δ ≃ −2ψ. Note,
however, that the behavior on large scales is gauge-dependent, and this contribution can be completely
nulled in other coordinate frames (e.g. the so-called “comoving gauge”).

In a more general case, in the presence of pressure support, the behaviour can be described quali-
tatively in a rather generic way as

ψ(k, η) =

{
f(η) k ≪ 1/(csη)

g(η)eicskη k ≫ 1/(csη)
, (98)

where f(η) is a slowly-varying (almost constant) function, and g(η) is a decaying function of time. In
fact, during radiation domination it’s possible to find that g ∝ η−2 (see Problem 2).

Before we finalise this section, the following quantity is of crucial importance in cosmology:

R ≡ −ψ − H(ψ′ +Hψ)
4πGa2(ρ̄+ p̄)

. (99)

This is the so-called “curvature perturbation” and has a key advantage over ψ: while we can show
that ψ is constant on superhorizon scales as long as the equation of state stays constant, it undergoes
small variation as the Universe transitions between different epochs (e.g. from inflation to radiation
domination, and then to matter domination). In turn, it is possible to show that R stays constant on
super-horizon scales (k ≪ aH) at all times (see Problem 3).

3.2.3 Energy-momentum conservation

For a perfect fluid, the conservation of the energy-momentum tensor ∇µT
µ
ν leads to the following two

equations:

ν = 0 : δ′ = −(1 + w)(θ − 3ϕ′)− 3H(c2s − w)δ, (100)

ν = i : θ′ = −H(1− 3w)θ − w′

1 + w
θ +

c2s
1 + w

k2δ + k2ψ. (101)
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These equations are valid for the total Tµν (as long as it conforms to Eq. 21), or for any individual
non-interacting component. In the former case, it contains no more information than the Einstein
equations (Eqs. 92-94), since the Einstein tensor automatically satisfies the Bianchi identities. In the
latter case, however, the individual energy-momentum conservation equations do contain additional
information, and can be used to solve for the evolution of multiple species. For interacting species,
additional terms must be added to account for the momentum transfer between them. This will be
the case for baryons and radiation before the decoupling epoch.

4 Inflation

References

For more information on inflation, refer to [1, 3, 4, 11].

4.1 Why inflation?

The standard “Hot Big-Bang” scenario predicts, extrapolating the evolution of a radiation-dominated
Universe, an initial singularity where a → 0. As we will see, this leads to a number of fundamental
problems when confronted with cosmological data. The theory of inflation is arguably the most popular
model to naturally solve these problems, while incidentally providing a well motivated mechanism to
explain the origin of the density inhomogeneities we observe around us.

The two main problems that motivate inflation are related to the observations of the CMB:

• The horizon problem. The CMB is emitted at zd ≃ 1100. At that point, the comoving horizon
is

χH =

∫ ∞

zd

dz′

H(z′)
≃ 250Mpc. (102)

In turn, the distance from us to the last-scattering surface is

χLSS =

∫ zd

0

dz′

H(z′)
≃ 14Gpc. (103)

Thus, the horizon subtends an angle θH = χH/χLSS ∼ 1◦. This means that a map of the
CMB should show O(104) causally-disconnected patches, and yet the temperature of the CMB
is homogeneous to 1 part in 105 across the whole sky.

• The curvature problem. The curvature parameter at a given point during the Universe’s
evolution is

Ωk(t) =
k

(aH)2
=

k

ȧ2
. (104)

In a decelerating Universe, ȧ decreases with time, and thus |Ωk| must grow. Since CMB observa-
tions indicate that today |Ωk,0| ≲ 10−3, it must have been significantly smaller in the past (e.g.
|Ωk| ≲ 10−17 during the nucleosynthesis epoch). Why were the initial conditions so finely tuned
to give rise to a Universe that is so close to Euclidean?

The root of the horizon problem is that, if we assume a power-law expansion at early times (a ∝ tα)
the size of the horizon is finite when integrated from t = 0 as long as α < 1:

χH =

∫ td

0

dt

a
∝ 1

1− α
t1−α

∣∣td
0

(105)

For the integral to diverge, and thus for the size of causally-connected regions to become arbitrarily
large, we need α > 1, in which case ä ∝ α(α − 1) > 0, and the expansion must be accelerated. The
horizon problem thus can only be solved through an epoch of accelerated expansion at early times.

The existence of such an epoch is also able to help with the curvature problem. Since Ωk ∝ ȧ−2,
an accelerated expansion will increase ȧ, decreasing Ωk, allowing it to take arbitrarily large values at
sufficiently early times.
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We will therefore define inflation as an epoch at early times when ä > 0. Remember that this can
only happen for fluids violating the strong energy condition, p < −ρ/3, and therefore it necessarily
involves the presence of some exotic field. As we will see, the easiest and most popular way to
achieve inflation usually reduces to a de Sitter-like expansion during inflation (i.e. a vacuum-dominated
Universe), with

p = −ρ, H = constant, and a ∝ eHt. (106)

Before we look at specific models of inflation, let us calculate roughly how long inflation must last
in order to solve the horizon problem. Let’s take a toy model where inflation is exactly de-Sitter until
it swiches off, with ȧ/a = HI , and afterwards the scale factor expands as in a radiation-dominated
universe (a ∝ t1/2). Let us consider three times: ti: the start of inflation, te: the end of inflation, and
t0: the current time. The comoving causal horizon at the end of inflation is

χe =

∫ te

ti

dt

a
=

1

aiHI

(
1− e−HI(te−ti)

)
≃ (aiHI)

−1. (107)

Meanwhile, the comoving size of the observable Universe today is

χo =

∫ t0

0

dt

(
t0
t

)1/2

∼ H−1
0 . (108)

To explain the observed homogeneity of the Universe today, we require χo < χe, which means

1 >
aiHI

H0
=
ai
ae

aeHI

H0
≃ ai
ae

(
HI

H0

)1/2

, (109)

where we have used the fact that, during radiation domination, a ∝ H−1/2.
If we identify the start of inflation with the Planck era, HI ∼ EPlanck ≃ 1019GeV, and use H0 ≃

10−41GeV, we obtain a total number of e-folds

N ≡ log(ae/ai) >
1

2
log(HI/H0) ∼ 69. (110)

Using the GUT scale instead (HI ∼ 1015 GeV), the result is N ∼ 64. Accounting for matter and Λ in
the post-inflationary expansion only leads to small modifications in the prefactor of Eq. 110, and the
general picture is that between 50 and 70 e-folds of inflation are needed to solve the main problems
that motivate it. Finally, note that the cosmic time interval during which inflation takes place is
∆t = N/HI ≳ 10−37 s. So inflation is indeed very fast, assuming it takes place at these energy scales.

4.2 Scalar fields and slow roll

4.2.1 Scalar fields

Although a vacuum-dominated Universe is the simplest model for an exponentially accelerated Uni-
verse, we know that inflation must end (unlike the ongoing accelerated era!). A successful inflationary
model must therefore have a graceful exit that allows for inflation to end, which is not possible in a
pure de-Sitter Universe.

The next simplest model leading to acceleration, and allowing for a graceful exit, is a Universe
dominated by a scalar field φ (which we will call the “inflaton”). In its simplest incarnation, a scalar
field φ is described by a Lagrangian density

L =
1

2
gµν∇µφ∇νφ− V (φ). (111)

In the homogeneous limit, this Lagrangian, and the associated energy-momentum tensor, are simply
given by

L =
1

2
φ̇2 − V (φ), Tµν = diag(ρ,−p,−p,−p), (112)

with

ρ ≡ 1

2
φ̇2 + V, p ≡ 1

2
φ̇2 − V. (113)
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The equation of motion for φ, the Klein-Gordon equation (which can also be derived from the conser-
vation of Tµν ), reads:

φ̈+ 3Hφ̇+ V ′ = 0, (114)

where we have denoted V ′ ≡ dV/dφ (do not confuse this with a derivative with respect to the conformal
time η). Finaly, the Friedmann equation for this fluid reads

H2 =
8πG

3

[
1

2
φ̇2 + V

]
. (115)

4.2.2 Slow roll

We can see from Eq. 113 that, in the regime where the field’s kinetic energy is small compared to
the potential, φ̇2 ≪ V , φ behaves as a fluid with an effective equation of state w = −1, leading to
an exponential expansion. Observing now, that the Klein-Gordon equation (Eq. 114) is equivalent to
that of a particle in a one-dimensional potential with a friction term (3Hφ̇) caused by the expansion,
a picture emerges that makes inflation rather natural. Consider a scalar field in a potential V (φ) with
a minimum, starting with a small velocity from a value φi such that V (φi) ≫ φ̇2. At the start, the
scalar field drives an accelerated expansion. Then, as the field rolls down the potential towards the
minimum, it gathers velocity. However, the friction term slows down this descent, so that inflation can
last for a long time. Eventually, the field reaches the minimum and oscillates around it, φ̇2/2 becomes
larger than V , and inflation ends. This mechanism is known as “slow-roll” inflation.

For a model to be successful, during the slow-roll regime the following conditions must be satisfied:

φ̇2 ≪ V, So as to drive an accelerated expansion. (116)

|φ̈| ≪ 3Hφ̇, So that inflation lasts. (117)

In this approximation, Eqs. 114 and 115 simplify to a system of linear differential equations:

3φ̇ = − 1

H
V ′, H2 =

8πG

3
V. (118)

It is common to define two parameters: ε, characterising whether inflation happens, and η, char-
acterising how long it lasts:

ε = − Ḣ

H2
= 1− äa

ȧ2
≪ 1, η =

d log ε

d log a
≪ 1. (119)

For a Klein-Gordon field, these are equivalent to:

ε = 3
φ̇2/2

φ̇2/2 + V
≃ MPl

2

(
V ′

V

)2

, η = 2ε− 2φ̈

Hφ̇
≃M2

Pl

V ′′

V
, (120)

where the second approximate equality in each case holds in the slow-roll approximation. The slow-roll
parameters are therefore directly related to the conditions in Eqs. 116 and 117, and can be associated
with the slope and curvature of the inflaton potential.

As an example, let’s study the case of a canonical quadratic potential:

V (φ) =
1

2
m2φ2. (121)

From the Friedmann equation in the slow-roll approximation, we obtain:

H = qφ, q2 ≡ 4πGm2

3
. (122)

Subtituting this in the K-G equation:

φ̇ = −m
2

3q
. (123)

Now, for inflation to begin we need φ̇2/2 ≪ V , and herefore initially the field must start at a value

φi ≫
1√

12πG
∼

√
2/3MPl. (124)
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We can now solve Eq. 122, then substitute in Eq. 123 to find a(t). The solution is:

φ(t) = φi −
m2

3q
t, (125)

log

(
a(t)

ai

)
= 2πGφ2

i −
m2

6

(
t− 3qφ2

i

m2

)2

(126)

Now, inflation ends when Eq. 124 ceases to hold. Using Eq. 125, this happens at

te =
3qφi
m2

− 1

m
. (127)

Evaluating Eq. 126 at this time, we obtain the number of e-folds of inflation:

N = log(ae/ai) =

(
φi

2MPl

)2

(128)

As expected, the field must start at high, super-Planckian values.

4.2.3 Graceful exit and reheating

As the field settles around the potential minimum, H starts decreasing, and eventually the oscillation
frequency ∝ m becomes larger than it. In this approximation, the K-G equation reads

φ̈+m2φ = 0, ⇒ φ ∝ cos(mt+ α), (129)

where we have assumed that the minimum of the potential can be approximated as a quadratic function.
In this regime, the pressure associated with the fluid is

p = L =
1

2
(φ̇2 −m2φ2), (130)

which averages to zero over many oscillations. Since p = 0, the fluid behaves, on average, as non-
relativistic matter, and the Universe expands as a ∝ t2/3 (in addition to small residual oscillations).
Since we do not want an empty Universe after inflation ends, the inflaton field must couple to other
matter fields, to which it transfers its energy. This energy is eventually transferred into the standard
model particles we know and love, through a highly speculative process that we call “reheating”.

4.3 Perturbations from inflation

Soon after inflation was proposed, it was discovered that, besides solving the horizon and curvature
problems, it could also provide a natural explanation for the origin of the small inhomogeneities we
observe in an otherwise homogeneous Universe. Metric perturbations are sourced by quantum field
fluctuations around the vacuum state that are inflated during the accelerated expansion into super-
horizon scales. These re-enter the horizon after the end of inflation, and evolve into the matter density
fluctuations that we observe today. Here we explore the origin and evolution of perturbations during
inflation within a single-field, slow-roll framework.

Crucial to this discussion is the fact that, during inflation, the comoving hubble scale, (aH)−1 =
H−1 decreases quickly with time (e.g. in the de-Sitter phase H−1 ∝ exp(−Ht)), and conformal
time η ≃ −(aH)−1 takes negative values, from −∞ to 0). Thus, small scales that were initially
within the horizon (i.e. smaller than this scale), are quickly able to exit it. As we saw at the end
of Section 3.1, curvature perturbations R stay constant on super-horizon scales, and are therefore a
freeze-frame picture of the metric fluctuations during inflation at the time they exited the horizon.
These inhomogeneities are thus pickled outside the horizon, and can survive until the end of inflation,
when they re-enter the horizon and are able to evolve again. We will split our discussion in two
then, studying perturbations in the inflaton field on sub-horizon scales, and then the corresponding
superhorizon curvature perturbations they give rise to.
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4.3.1 Sub-horizon perturbations

Consider a perturbed scalar field φ(x, t) = φ̄(t) + δφ(x, t). In the Newtonian gauge of a perturbed
FRW metric, the Klein-Gordon equation reads2

δφ′′
k + 2Hδφ′

k + k2δφk + a2V ′′ δφk − 4φ̄′ψ′
k + 2a2V ′ψk = 0. (131)

Since the energy-momentum tensor for a scalar field is diagonal, ψ = ϕ. Thus, we only need one of
Einstein’s equation to have a complete set of ODEs. Choosing the (0, i) component (Eq. 86), we
obtain:

ψ′
k +Hψk = 4πGφ̄′ δφk. (132)

In the slow-roll approximation, and on scales k ≫ |H| ∼ |η|, the last three terms of Eq. 131 are
negligible (this can be verified a posteriori). Changing variables to fk ≡ a δφk, the equation reads:

f ′′k +

(
k2 − a′′

a

)
fk = 0. (133)

On small scales, the second term in parentheses can be ignored, and the field evolves as a harmonic
oscillator

δφk = Ck
e±ikη

a
. (134)

Now, can we think of a physical criterion to fix the initial condition amplitude Ck?

4.3.2 Quantization and vacuum fluctuations

A field cannot be perfectly homogeneous, as soon as quantum effects are taken into account. Even if
we assume that the system is in its lowest possible energy state (the vacuum), there is an inherent
uncertainty to what its true value is at all points in space. We can therefore determine the amplitude
of δφk by considering the minimum fluctuation amplitude allowed by QFT. To do so, we first need to
quantise the field.

This is straightforward to do for a canonical scalar field such as f . We promote fk to an operator
f̂k and, for convenience, write it in terms of ladder operators âk and â†k:

f̂k(η) = fk(η)âk + f∗k (η)â
†
k, (135)

where fk is the positive-energy solution to the K-G equation

fk(η) =
e−ikη√

2k
, (136)

the ladder operators satisfy the commutation relation

[âk, â
†
k′ ] = (2π)3δD(k− k′), (137)

and the vacuum state |0⟩ satisfies âk|0⟩ = 0. As a reminder: the specific normalisation and choice of

frequency of fk(η) guarantees that f̂ satisfies the appropriate commutation relation with its conjugate
momentum field, and that the vacuum |0⟩ is the minimum-energy state of the Hamiltonian.

The vacuum expectation value (VEV) of the field is therefore ⟨f̂k⟩ ≡ ⟨0|f̂ |0⟩ = 0, while its variance
is:

⟨f̂†kf̂k′⟩ = ⟨0|f̂†kf̂k′ |0⟩ = Pf (k, η)(2π)
3δD(k− k′). (138)

This defines the power spectrum of any field f̂ . In our case, this is given by

Pf (k, η) = |fk(η)|2 =
1

2k
. (139)

The picture that arises is thus the following: inhomogeneities are sourced by quantum fluctuations
in the inflaton field on sub-horizon scales. The inhomogeneities we observe are therefore one realisation
of those allowed by the quantum theory. The theory does not determine the values of the particular

2Remember that, confusingly, δφ′ ≡ ∂ηδφ, but V ′ ≡ dV/dφ.
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realisation, but it does provide predictions for its statistical cumulants (e.g. the power spectrum).

Effectively, this allows us to treat the perturbation variable f̂k as a stochastic field of the form

fk(η) = ak
e−ikη√

2k
, (140)

where the random field ak satisfies the statistics

⟨ak⟩ = 0, ⟨a∗kak′⟩ = (2π)3δD(k− k′). (141)

This will come in very handy in what follows!
To summarize, the sub-horizon perturbation to the inflaton takes the form:

δφk = ak
e−ikη

a
√
2k
, (142)

where ak is a random field with a unit power spectrum.

4.3.3 The primordial scalar spectrum

As a given perturbation exits the horizon during inflation (i.e. when k < aH), the term proportional
to k2 in Eq. 131 becomes subdominant, and the oscillatory behaviour ceases (as we are now used to).
Tracking perturbations outside the horizon, especially during a transition in the background expansion,
such as the end of inflation, is easiest in terms of the curvature perturbation R. Using Eq. 99, and
assuming slow roll, the relation between R and δφ becomes

Rk = −H
˙̄φ
δφk (143)

Let us define the dimensionless primordial power spectrum ∆2
R(k) as the variance of Rk at the

time of horizon exit (after which, R is constant) as:

⟨R∗
kRk′⟩ ≡ 2π2

k3
∆2

R(k) (2π)3δD(k− k′). (144)

I.e. the relation between ∆2
R and PR is

∆2
R(k) =

k3

2π2
PR(k). (145)

The dimensionless power spectrum is often preferred to PR because it is dimensionless (as its name
suggests), and represents the amount of variance in the field per logarithmic interval of wavenumber
k.

Combining Eqs. 142 and 143, we find

∆2
R(k) =

k3

2π2

H2

˙̄φ2

1

2ka2

∣∣∣∣
k=aH

=
1

2M2
Plε

(
H

2π

)2
∣∣∣∣∣
k=aH

, (146)

where ε is the slow-roll parameter of Eq. 120. During slow roll, both H and ε are almost constant, and
thus we arrive at one of the key predictions of inflation: an almost-scale-invariant primordial power
spectrum. The small time variation in ε and H towards the end of inflation will endow ∆R with some
scale dependence. This is usually parametrised in terms of a spectral index ns, defined as

ns − 1 ≡ d log∆2
R

d log k
. (147)

From Eq. 146, this can be written in terms of the slow-roll parameters

ns − 1 = −2ε− η, (148)

and thus departures from ns = 1 must be small.
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xe zSaha zexact

0.5 1370 1210

0.1 1250 980

0.01 1140 820

Table 1: Estimates of the recombination redshift using Saha’s equation and the exact non-equilibrium
result.

5 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the observable that has allowed cosmologists to make the
most precise measurements of the abundances of the main energy species, the current expansion rate,
and the spectrum of primordial perturbations. The CMB has its origin in the epoch of recombination.
As the Universe expanded, and the background radiation cooled down, electrons and protons were able
to form neutral hydrogen atoms before being immediately reionised. As the density of free electrons
sharply decreased, the photons effectively ceased to interact with them via Thomson scattering, and
were able to travel freely. The resulting background of photons (the CMB) has an almost perfect
black-body spectrum, and spatial fluctuations in the temperature of this spectrum provide us with a
picture of the cosmic perturbations at the time of recombination. Here we will try to provide a brief
description of these fluctuations using the tools from perturbation theory we developed in Section 3,
connecting them with the primordial metric perturbations predicted by inflation, and discussed in
Section 4.

References

For more information on the physics of the CMB, refer to [1, 3, 2, 9, 10].

5.1 Recombination

When did recombination happen? A quick, but highly inaccurate calculation would tell us that, since
the ionization potential of the neutral hydrogen atom in its fundamental state is χ = 13.6 eV, and the
CMB temperature today is TCMB = 2.7255K, recombination must have happened at redshift

1 + zrec =
χ

kBTCMB
∼ 5× 104, (149)

deep in the radiation-dominated era. This is a wild over-estimation!
A better (but still inaccurate) estimate, can be made by assuming that, while recombination takes

place, the neutral and ionised hydrogen, as well as the free electrons, are in thermal equilibrium. This
will be good enough as long as the recombination rate is much higher than the expansion rate. In this
case, the densities of the three species are related by the Saha equation:

nHIIne
nHI

=

(
2πmekBT

h2P

)3/2

e−χ/kBT . (150)

This can be rewritten in terms of the ionisation fraction xe ≡ ne/(nHI +nHII), and the baryon density
parameter ωb ≡ Ωbh

2 as
x2e

1− xe
=

5.8× 1015

ωbT
3/2
4

e−15.8/T4 , (151)

where T4 ≡ T/(104 K). Solving for T4 as a function of xe (which must be done numerically), and
remembering that 1 + z = T/TCMB, we obtain the estimates in the second column of Table 1.

According to this calculation, by redshift z ∼ 1250, well in the matter-dominated regime, the
Universe is ∼ 90% neutral. The huge difference with respect to the naive calculation is due to the low
baryon density in our Universe, which means that the photons in the tail of the blackbody spectrum
are able to keep the Universe ionised even when the blackbody peak has redshifted significantly below
the ionisation energy.
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The equilibrium calculation gets qualitatively the right answer: recombination happens during
matter domination, at around z ∼ 1000. A full non-equilibrium calculation, accounting for the recom-
bination rates to different excited states, and the transitions between them, obtains the results in the
third column of Table 1. As it turns out, the equilibrium approximation is not a very good one! This
is because the non-thermal photons created when an atom recombines directly to the ground state,
or those due to the Lyman-α transition, enhance the blackbody tail. Recombination must take place
through forbidden channels (e.g. the 2s → 1s transition), making the effective recombination rate
comparable with the expansion rate, spoiling the equilibrium assumption.

5.2 Perturbations before and after recombination

5.2.1 The perturbation equations

At the time of recombination, the following set of 7 perturbation play a central role in setting the
properties of the CMB temperature fluctuations:

• δc and θc: the overdensity and velocity divergence of the cold dark matter.

• δb and θb: the overdensity and velocity divergence of baryonic matter.

• δγ and θγ : the overdensity and velocity divergence of radiation.

• ψ: the metric potential.

The cold dark matter is de-coupled from the other species, and thus follows its own conservation
laws (Eqs. 100 and 101):

δ′c + θc − 3ϕ′ = 0, θ′c +Hθc − k2ψ = 0. (152)

The photons and baryons are tightly coupled before recombination, and thus their conservation laws
must include the transfer of momentum between both species via Thomson scattering. The result is

δ′b + θb − 3ϕ′ = 0, θ′b +Hθb − k2ψ = c2s,bk
2δb +

4ρ̄γ
3ρ̄b

ane σT (θγ − θb) (153)

δ′γ +
4

3
θγ − 4ϕ′ = 0 θ′γ − k2ψ =

1

4
k2δγ + ane σT (θb − θγ), (154)

where σT is the Thomson scattering cross-section, and c2s,b is the sound speed in the baryon fluid.
Finally, we need one more equation for ψ. For this, we can use any of the three independent Einstein’s
equations (Eqs. 92-94), for instance, the relativistic Poisson’s equation

k2ψ + 3H(ψ′ +Hψ) = −4πGa2 ρ̄ δ, (155)

where ρ̄ = ρ̄c + ρ̄b + ρ̄γ , and

δ =
ρ̄c
ρ̄
δc +

ρ̄b
ρ̄
δb +

ρ̄γ
ρ̄
δγ . (156)

The evolution of the cold dark matter component is simple: since recombination takes place dur-
ing matter domination, CDM dominates over the baryons and radiation, and sets the gravitational
potentials via Poisson’s equation (i.e. δ ∼ δc). δc thus evolves as we discussed in Section 2, as δc ∝ a.

Calculating the evolution of the baryon-photon fluid is more complicated, due to the transfer of
momentum between them. The behaviour can be understood, however, by using the “tight-coupling
approximation”: before recombination baryons and photons are tightly coupled, and the baryon-
photon fluid can be thought of as a single coupled fluid with an effective sound speed and some
viscosity (caused by Thomson scattering). The origin of this sound speed is easy to understand: the
photons drag the baryons via Thomson scattering, and thus the baryons feel the radiation pressure.
Thus, pressure waves develop in the baryon-photon fluid (as we saw when solving Jeans’ equation).
On scales below the photon mean free path, viscosity due to Thomson scattering damps the amplitude
of these waves exponentially. After recombination, photons and baryons decouple. The baryons follow
the pressureless Jeans’ equation (like the CDM), falling into the gravitational potentials set by the
dark matter, and contributing to them. Shortly afterwards, CDM and baryons mix into a single
non-relativistic fluid with the same evolution and scale dependence.
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Figure 1: Linear matter power spectrum without (dashed red) and with (solid black) a baryonic
component.

5.2.2 The linear matter power spectrum

Although this is not directly related to the CMB itself, the discussion in the previous section provides us
with all the tools to understand the shape of a key ingredient in the evolution of cosmic structures: the
linear matter power spectrum after recombination. We are therefore not able to resist the temptation
to discuss that here!

On sub-horizon scales, we can make use of the non-relativistic Poisson’s equation to relate the
matter fluctuations and the gravitational potential (Eq. 49):

δk = −a k
2

Q
ψk, Q ≡ 4πGρ̄0 =

3

2
H2

0ΩM,0. (157)

On these same scales, we can approximate ψ ∼ R. Perturbations re-entering the horizon after
inflation will do so either during radiation domination or during matter domination. Perturbations on
the largest scales will re-enter later, during the matter-domination era. Since ψ does not evolve during
matter domination, these perturbations thus preserve their amplitude. On smaller scales, perturbations
enter the horizon during radiation domination and therefore their amplitude decreases approximately
as 1/η2 (see Eq. 98). Smaller modes have a stronger suppression, since they entered the horizon
earlier. Since re-entry happens when k ∼ η, the suppression factor is ∝ k−2. After matter-radiation
equality ηeq, these modes preserve their amplitude. Therefore, during matter domination, the scale
dependence of the gravitational potential is, approximately:

ψ(k, η)

R(k, η∗)
=

{
1 k ≪ keq(

keq
k

)2

k ≫ keq
, (158)

where η∗ is some early time before any of these modes re-entered the horizon, and we have defined the
equality scale keq ≡ η−1

eq .
During matter domination, the matter power spectrum is thus related to the primordial power

spectrum via:

Pδ(k) ∝ k4Pψ(k) ∝ k4
(
ψ(k, η)

R(k, η∗)

)2

PR(k) ∝ k

(
ψ(k, η)

R(k, η∗)

)2

∆2
R(k). (159)

Then, using ∆2
R ∝ kns−1:

Pδ(k) ∝
{

kns k ≪ keq
kns−4 k ≫ keq

. (160)
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With ns ∼ 1 we therefore expect a kink at k = keq. This is shown as the dashed red lines in Fig. 1.
Including the impact of the baryonic component in the linear matter power spectrum involves two

effects:

• First, a slight decrease in amplitude on smaller scales, since the overdensity in the baryonic
component was not able to grow effectively before recombination.

• Second, an oscillatory component caused by the acoustic oscillations in the baryon-photon fluid
before recombination (these are the so-called “baryon acoustic oscillations”, BAOs). Their ampli-
tude is significantly smaller than the oscillations we’ll see in the CMB power spectrum, although
they reproduce the same small-scale damping. Their comoving frequency is the so-called sound
horizon:

rs ≡
∫ ηd

dη cs. (161)

The resulting power spectrum is shown black in Fig. 1.
The evolution of this spectrum in time, during matter or Λ domination is simply through a multi-

plicative time-dependent factor since, as we saw, growth is self-similar in this regime (see Eq. 66). The
growth factor is D(z) ∝ a = 1/(1 + z) during matter domination, and then decelerates after entering
the Dark Energy era. It is hoped, that studying the evolution in structure growth may thus shed
light onto the nature of Dark Energy, and potentially provide evidence for deviations from a perfect
cosmological constant.

OK, back to the main topic of this section: the CMB.

5.3 Temperature anisotropies and the CMB power spectrum

The CMB anisotropies are fluctuations in the temperature of photons emitted during recombination,
and observed today. Since the temperature determines the properties of the black-body spectrum, a
rigorous derivation of all the terms contributing to the observed temperature fluctuation requires solv-
ing for the evolution of the photon distribution function, by solving the Boltzmann equation, including
the contribution from Thomson scattering before and during recombination. We can, however, get a
reasonably good description of the temperature fluctuations by making two approximations:

• We will assume “instantaneous recombination”. The CMB photons were emitted exactly at the
time recombination happened. We can define this as whenever the ionization fraction reached
a particular threshold. The results are not too sensitive to this, since recombination is indeed
quite fast.

• Instead of solving the Boltzmann equation, we will quantify how the frequency of a single photon
changes as it propagates. Since the peak of the blackbody spectrum is at ν ∝ kBT/h, we can
estimate the temperature fluctuation as

δT

T̄
=
δν

ν̄
, (162)

where barred quantities are those in an unperturbed Universe, and ν = ν̄ + δν.

We will therefore start by studying the propagation of photons in a perturbed FRW metric, before
examining the different contributions to the CMB power spectrum.

5.3.1 Photon propagation in a perturbed Universe

Photons move along null geodesics, and therefore the photon 4-momentum pµ ≡ dxµ/dλ satisfies:

ṗµ + Γµνσp
µpσ = 0, pµpνgµν = 0, (163)

22



where here ṗ denotes derivatives with respect to an affine parameter λ (we will use η as a time variable
here). In the Newtonian gauge, these read:

ṗ0 +

[
H+ 2

dψ

dη
− ψ′

]
(p0)2 + [H(1− 2ϕ− 2ψ)− ϕ′]|p|2 = 0, (164)

ṗi +

[
2H− 2

dϕ

dη

]
pip0 + ∂iψ(p

0)2 + ∂iϕ|p|2 = 0, (165)

(p0)2(1 + 2ψ)− |p|2(1− 2ϕ) = 0. (166)

Here d/dη indicates total derivatives with respect to η along the photon trajectory:

dα

dη
≡ α′ +

pi

p0
∂iα, α′ ≡ ∂ηα. (167)

Consider now a comoving observer (i.e. an observer with dxi = 0), with 4-velocity uµc = a−1(1 −
ψ)δµ0 . The equations above can be simplified by changing variables to the comoving energy ϵ ≡ apµu

µ
c ,

and the direction vector ê ≡ p/|p|2. These are related to the components of the 4-momentum via:

dη

dλ
≡ p0 = a−2ϵ(1− ψ),

dx

dη
≡ p

p0
= (1 + ψ + ϕ)ê. (168)

Since ϵ and ê are constant in an unperturbed FRW metric, the geodesic equations in terms of these
variables are directly sourced by first-order terms. These are:

1

ϵ

dϵ

dη
= −dψ

dη
+ ψ′ + ϕ′, (169)

dê

dη
= −∇⊥ (ϕ+ ψ) , (170)

where we have defined the transverse gradient ∇⊥ ≡ ∇− ê (ê · ∇).
These equations can be readily integrated along the unperturbed photon trajectory (which is correct

to first order in the perturbations), obtaining,

ϵ

ϵ0
= 1 + ψ0 − ψ +

∫ η

η0

dη′ (ϕ′ + ψ′) (171)

x(η) = −ê0

∫ η0

η

dη′ (1 + ϕ+ ψ)−
∫ η0

η

dη′(η′ − η)∇⊥(ϕ+ ψ). (172)

where the subscript 0 denotes quantities evaluated at Earth.
The photon frequency measured by an observer with 4-velocity uµ is hP ν = pµuµ. An observer

with peculiar velocity v has a 4-velocity uµ = a−1(1−ψ,v), and therefore the frequency can be related
to the variable ϵ via:

hP ν = a−1ϵ (1 + n̂ · v), (173)

where n̂ is the line-of-sight unit vector n̂ = −ê. The observed and emitted frequencies are therefore
related via the perturbed redshift relation:

ν

ν0
= 1 + z =

1

a

[
1− ψ + ψ0 + n̂ · (v − v0) +

∫ η

η0

dη′ (ϕ′ + ψ′)

]
(174)

The three perturbation terms on the right hand side of this equation have clear physical interpretations:

• ψ0 − ψ represents the effect of gravitational redshifting as photons climb out of the potential at
the source and fall into that at the observer. This is often called the “Sachs-Wolfe” effect.

• n̂ · (v − v0) is the standard Doppler redshifting.

•
∫
dη (ϕ′ + ψ′) is the so-called “Integrated Sachs-Wolfe” effect (ISW for short). Photons will get

a net energy loss or gain (redshift or blueshift) if the potential wells evolve while they are being
traversed. As we saw, the gravitational potential only evolves during radiation and Λ domination,
giving rise to the “early” and “late” ISW effects.

23



Using Eq. 162, the observed temperature fluctuation is related to the temperature fluctuation at
recombination via:

δT

T

∣∣∣∣
0

=

(
δT

T
+ ψ − n̂ · v

)
rec

+

∫ η0

ηrec

dη(ϕ′ + ψ′). (175)

Note that we have discarded the terms dependent on the gravitational potential and the peculiar
velocity at the observer, since they only contribute to the monopole (ℓ = 0) and dipole (ℓ = 1) of
the temperature fluctuations. Finally, using the Stefan-Boltzmann law ργ ∝ T 4, the temperature
fluctuation at recombination can be related to the radiation overdensity as δT/T = δγ/4, and we
obtain the final result:

δT

T
(n̂) =

(
δγ
4

+ ψ − n̂ · v
)
(ηrec, χrecn̂) +

∫ η0

ηrec

dη (ϕ′ + ψ′)(η, χn̂), (176)

where the comoving distance along the unperturbed photon trajectory is χ = η0 − η.

5.3.2 Angular power spectra

The temperature fluctuation δT/T is a quantity defined on the sphere. The natural basis to decompose
such a quantity is the spherical harmonics:

δT

T
(n̂) =

∑
ℓm

aℓm Yℓm(n̂), aℓm =

∫
dn̂

δT

T
(n̂)Y ∗

ℓm(n̂). (177)

For a statistically isotropic field, such as δT/T , the angular power spectrum Cℓ is defined in analogy
to the power spectrum P (k) as:

⟨aℓma∗ℓ′m′⟩ = Cℓ δℓℓ′δmm′ . (178)

Our goal now is to connect the angular power spectrum of the CMB with the primordial power spectrum
∆2

R(k).
Consider a quantity f(n̂), defined on the sphere in terms of a radial lightcone integral over a

three-dimensional quantity F (x, η):

f(n̂) =

∫ η0

dη qf (χ)F (χn̂, η), (179)

where qf (χ) is a radial kernel. Assume now that the three-dimensional quantity is linearly related to
the primordial curvature perturbation Rk through a transfer function TF (k, η), such that

Fk(η) = TF (k, η)Rk. (180)

The harmonic coefficients of f are then related to Rk through:

fℓm =

∫
dk

2π2
k2 ∆f

ℓ (k)i
ℓ

∫
dn̂k Y

∗
ℓm(n̂k)Rk, (181)

where n̂k ≡ k/k, and

∆f
ℓ (k) =

∫
dχ qv(χ)TF (k, η) jℓ(kχ). (182)

This can be proven by separating F into its Fourier coefficients, and using the plane-wave expansion:

eik·x = 4π
∑
ℓm

iℓ jℓ(kχ)Yℓm(n̂)Y ∗
ℓm(n̂k), (183)

where jℓ(x) is the spherical Bessel function of order ℓ.
The angular power spectrum of f can then be found by squaring fℓm and taking the ensemble

average over realisations of the primordial metric fluctuations. Using Eq. 144, the result is:

Cfℓ =
2

π

∫
dk

k
|∆f

ℓ (k)|2 ∆2
R(k). (184)
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Figure 2: Angular power spectrum of the CMB temperature fluctuations. The black line shows the
contribution from the density and Sachs-Wolfe terms. The red and blue lines then show the result of
including the Doppler and ISW terms (in this order).

In general, a projected quantity, such as the CMB temperature fluctuation, may be a sum of several
contributions: f(n̂) =

∑
α fβ(n̂). In this case the previous expression generalises trivially to

Cfℓ =
2

π

∫
dk

k

∑
αβ

∆α
ℓ (k)∆

β
ℓ (k)

 ∆2
R(k). (185)

Note that, while this treatment applies to the δγ , Sachs-Wolfe and ISW terms in Eq. 176, we must

modify the definition of ∆f
ℓ for Doppler-like terms of the form

g(n̂) =

∫ ηo

dη qg(χ) n̂ · v. (186)

It is easy to show that, in this case, the angular transfer function reads:

∆g
ℓ (k) = −

∫
dχ qg(χ)χTθ(k, η)

j′ℓ(kχ)

kχ
, (187)

where Tθ is the transfer function for the velocity divergence, and j′ℓ(x) ≡ djℓ(x)/dx.
Figure 2 shows the angular power spectrum of the CMB temperature fluctuations, separated into

its different contributions. Although the density term is responsible for setting the structure of acoustic
peaks, associated with the pressure waves in the baryon-photon fluid, the Doppler and ISW contribu-
tions are not subdominant, and must always be taken into account in the calculation. It is worth noting
that the ISW term is dominated by the early ISW contribution, whereas the late-time contribution,
due to Dark Energy, is negligible in the CMB power spectrum. The late ISW effect has been detected,
however, by cross-correlating CMB maps with probes of the late-time structure such as galaxies, which
trace the time-varying potentials that give rise to this effect. This measurement can be used to put
constraints on the Dark Energy abundance.

6 Gravitational lensing

At late times, most cosmological information from metric perturbations comes from the study of the
inhomogeneities in the matter density. Although nature has provided us with a wide variety of proxies
for these inhomogeneities, such as the distribution of galaxies, or the fluctuations in gas pressure and
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density from observations of the Sunyaev Zel’dovich effect and the Lyman-α forest, the only direct
observations of the matter overdensities are those based on gravitational lensing. Here we provide a
very quick review of the theory of “weak lensing”, the regime in which gravitational lensing causes
only small variations in the photon path, and how it are utilised in modern cosmology.

References

For more information on weak gravitational lensing for cosmology, refer to [2, 12, 13].

6.1 Lensing potential, deflection, convergence and shear

As we derived in Section 5.3.1, metric perturbations modify photon trajectories and energies, and thus
cause observers to assign angular coordinates that differ from those of the point from which the photon
originated. Keeping only the transverse part of Eq. 172, and changing the time variable from η to the
radial coordinate along the unperturbed geodesic χ = η0 − η, the equation reads:

δθ⃗ =

∫ χs

0

dχ

(
1− χ

χs

)
∇⊥(ϕ+ ψ), (188)

where χs is the radial coordinate of the source, and δθ⃗ ≡ P⊥
n̂ (n̂ − n̂s) is the difference between

the observed arrival direction (n̂) and the true angular coordinates of the source n̂s ≡ x/χs. Here,
P⊥
n̂ ≡ 1 − n̂n̂T is the projector onto the space perpendicular to the line of sight n̂.
We can then write the transverse gradient inside the integral as ∇⊥ = χ−1∇θ, where ∇θ ≡

(∂θ, ∂φ/ sin θ) is the gradient on the sphere, to obtain:

δθ⃗ = ∇θΦL, (189)

where we have defined the lensing potential ΦL

ΦL(n̂, χs) ≡
∫ χs

0

dχ
χs − χ

χsχ
(ϕ+ ψ). (190)

Since gravitational lensing typically causes displacements of at most |δθ⃗| ∼ 1 arcmin, we will now
proceed using the flat-sky approximation. Around the source position we define an orthogonal basis
such that points around the sphere can be labelled in terms of Cartesian coordinates θ⃗ = (θx, θy).
Here we will use the so-called “HEALPix convention”, which defines the θx and θy coordinates in the
directions of increasing θ and φ respectively. This is different from the IAU convention, which defines
θx in the directon of decreasing θ (while θy is the same in both). The particular convention used to label
points in the tangent space is usually a headache, since individual experiments do not always adhere
to either of these two conventions exactly. In the flat-sky, we replace spherical harmonic coefficients
fℓm with 2D Fourier transforms:

f(θ⃗) =

∫
dl2

(2π)2
eil·θ⃗, fl ≡

∫
dθ⃗

2
f(n̂) e−il·θ⃗. (191)

The power spectrum of the corresponding curved-sky quantities Cfℓ is directly related to the Fourier-
space variance in complete analogy with the 3D power spectra defined in previous sections:

⟨flf∗l′⟩ = (2π)2δD(l− l′)Cfℓ , (192)

where ℓ ≡ |l|2. The use of the flat-sky approximation here will only affect the angular derivatives, and
we use it so we are not encumbered by covariant derivatives, Laplacians, Hessians etc.. This will thus
only affect the ℓ-dependent prefactors that are only negligibly different from 1 [14].

The lensing displacement vector δθ⃗ is therefore the gradient of the lensing potential. In what
follows we will also make use of the Hessian Hij ≡ ∂θi∂θjΦL. We will write this 2× 2 matrix as:

H =

(
κ+ γ1 γ2
γ2 κ− γ1,

)
(193)
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where we have defined the convergence κ and shear ≡ (γ1, γ2) as

κ ≡ 1

2
∇2
θΦL, γ1 ≡ 1

2
(∂2θx − ∂2θy )ΦL, γ2 ≡ ∂θx∂θyΦL. (194)

It is common to bundle up the two components of the displacement into a single complex number:

α ≡ δθx + iδθy, (195)

and to do the same thing with the two shear components:

γ ≡ γ1 + iγ2. (196)

The resulting quantities quantities then respond to rotations of the local flat coordinate system by an
angle β as

α→ αeiβ , γ → γei2β . (197)

This is simply a manifestation of the fact that the fields α and γ are spin-1 and spin-2 irreducible
representations of the U(1)/SO(2) group.

Now let us define the following two combinations of the Fourier components of γ (the so-called
E-mode and B-mode components):

El ≡ γ1,l
l2x − l2y
l2x + l2y

+ γ2,l
2lxly
l2x + l2y

, Bl ≡ −γ1,l
2lxly
l2x + l2y

+ γ2,l
l2x − l2y
l2x + l2y

. (198)

It is straightforward to show that there is a direct correspondence between the shear E-mode and the
convergence κ, and that the B-mode should be zero:

El = κl, Bl = 0. (199)

Thus, a map of γ can always be converted into κ.
Finally, we can relate κ to the matter overdensity δ. To do so, we pull the angular Laplacian

defining κ into the radial integral, and transform it back into the 3D Laplacian as ∇2
θ = χ2(∇2 − ∂2χ).

The radial derivative component can be cancelled out after integrating Eq. 190 by parts. The result
can then be related to δ assuming ψ = ϕ, and using Poisson’s equation (Eq. 42). The result is:

κ(n̂, χs) =
3

2
H2

0Ωm

∫ χs

0

dχ
χ

a(χ)

χs − χ

χs
δ(χn̂, η). (200)

6.2 Galaxy weak lensing

Through its perturbation of the photon trajectories, gravitational lensing will distort the observed
shapes of galaxies in a coherent way. By correlating the shapes of these galaxies we can therefore
statistically study the properties of the matter distribution.

Let I(θ⃗) be the observed intensity (flux per solid angle) from a galaxy. Because lensing preserves
intensity (it only moves photons around, but does not create more of them),

I(θ⃗) = Iu(θ⃗u), (201)

where Iu(θ⃗u) is the true intensity (in the absence of lensing), evaluated at the unlensed angular
coordinates. From Eq. 189, the unlensed and observed coordinates are related by:

θ⃗ = θ⃗u +∇θΦL. (202)

Let θ⃗0 and θ⃗u,0 be the angular position of the galaxy’s centre in both coordinates, and let us define

the displacements from this centre: ∆θ⃗ ≡ θ⃗− θ⃗0, and ∆θ⃗u ≡ θ⃗u− θ⃗u,0. Expanding ∇θΦL, the relation
between displacements in the observed and true coordinates are given by

∆θ⃗ = (1 + H) ∆θ⃗u. (203)
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With this, the galaxy flux is given by:

F =

∫
d2θ⃗ I(θ⃗) = det(1 + H)

∫
d2θ⃗u Iu(θ⃗u) = (1 + 2κ)Fu, (204)

where Fu is the unlensed flux, and we have only kept terms to lowest order in H. Note that we pull
1+H out of the integral under the assumption that gravitational lensing varies over scales (∼ arcmin)
larger than the scale over which the galaxy image varies (∼ arcsec.).

To characterise the shape of the galaxy, we define the galaxy’s inertia tensor as

qij =
1

F
=

∫
d2θ⃗ I(n̂)∆θi∆θj . (205)

It will be useful to split q into its trace and its traceless components:

q =
Q

2

(
1 + ε1 ε2
ε2 1− ε1

)
. (206)

Here, Q ≡ Tr(q) is a measure of the source area, while (ε1, ε2) parametrize the galaxy ellipticity. As
before, transforming the integral defining q to the unlensed coordinates, we obtain, to lowest order in
H:

q = qu + qu H+ Hqu. (207)

This leads to the following relation between the lensed and unlensed areas and ellipticities:

Q = Qu(1 + 2κ) +QN , εi = 2γi + εN,i, (208)

where the noise components QN , εN are

QN = QuδN , εN,i = εu,i(1− δN ), δN ≡ 2(εu,1γ1 + εu,2γ2). (209)

The terms proportional to δN are often neglected. If the true ellipticities are uncorrelated, they
are simply an additional noise-like contribution. If the true ellipticities are partially correlated (e.g.
through intrinsic alignments), these term are of the same order (second) as several other terms we
have so far discarded.

Hence, galaxy ellipticities receive a coherent contribution from lensing of the form 2γ, which can
be mapped by effectively averaging over many galaxies. In deriving this, we have also uncovered two
more effects: the apparent source area and the observed flux both receive a correction of the form
1+2κ. In both cases, this is caused by a perturbation to the angular diameter distance (or luminosity
distance) of the form 1 + κ. This effect is known as magnification, and can in fact be detected from
the observed clustering of galaxies. The modification to the angular diameter distance perturbs the
observed angular positions of galaxies, diluting their density in the presence of matter overdensities
along the line of sight. On the other hand, the corresponding positive modification to the observed
source flux also causes galaxies beyond the sample flux limit to be detected, increasing the observed
overdensity. These two effects lead to an overall effective contribution to the overdensity of galaxies,
labelled magnification bias, and given by

δµg = (5s− 2)κ, (210)

where s ≡ d log10N/dm is the logarithmic slope of the sample number counts with respect to apparent
magnitude at the flux limit.

6.3 CMB lensing

Gravitational lensing also modifies the trajectories of CMB photons, thus affecting the properties of the
observed temperature anisotropies. Since gravitational lensing does not modify intensity, the impact
of lensing is second-order in perturbations. The effect, however, is larger than other second-order
contributions, and can be detected to very high significance in CMB data.

Since intensity is conserved, lensing simply reshuffles the observed photon angular coordinates. The
lensed and unlensed temperature fluctuations are thus related to one another via:

δT (θ⃗) = δTu(θ⃗ − δθ⃗) ≃ δTu(θ⃗)−∇θΦL(θ⃗) · ∇θδTu(θ⃗). (211)
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In Fourier space this reads:

δTl = δTu,l +

∫
d2l′

(2π)2
l′ · (l− l′) ΦL,l′ δTu,l−l′ . (212)

Since the lensing potential is mostly caused by the large-scale structure at low redshifts (z ≲ 10),
ΦL is to a good approximation uncorrelated with δTu. In this sense, the second term in Eq. 211
can be interpreted, for a fixed ΦL as breaking the statistical isotropy of the unlensed temperature
fluctuations. As such, lensing will induce correlations between different Fourier modes and these can
be used to reconstruct the lensing potential. Consider the correlator of two lensed temperature modes
with different angular wave vectors l ̸= l′ for a fixed lensing potential, and expand it to lowest order
int ΦL

⟨δTlδT ∗
l′ ⟩ΦL

= ΦL,l−l′ (l− l′) · (lCTℓ − l′CTℓ′ ),

where ⟨· · · ⟩ΦL
indicates ensemble averaging keeping ΦL constant.

Thus, for a given mode L, ΦL,L can be estimated by combining products of lensed temperature
modes δTlδT

∗
l′ such that l− l′ = L, i.e.:

Φ̂L,L =

∫
d2l

(2π)2
δTl δTl−L g(l,L). (213)

This is the so called quadratic estimator for lensing reconstruction. The optimal kernel g(l,L) can be
found by minimising the variance of the resulting lensing potential map (see [13]).

Lensing reconstruction allows us to obtain maps of the lensing convergence at the surface of last
scattering. As shown in Eq. 200, such a map contains information about the matter density fluctuations
integrated along the line of sight from z = 1100, and thus can be used to study the growth history from
the moment of recombination. This is particularly powerful in cross-correlation with other tracers of
the matter fluctuations at specific redshifts, allowing us to easily recover the redshift dependence of
structure growth, which is an invaluable tool to study the nature of dark energy and modified gravity.
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A Problems

Problem 1: Photon geodesics

The trajectory and energy of a photon propagating through the Universe will be affected by perturba-
tions in the metric. For a perturbed FRW in conformal coordinates, and using the Newtonian gauge,
i.e.

dτ2 = a2(η)
[
(1 + 2ψ)dη2 − (1− 2ϕ)|dx|2

]
, (214)

show that the redshift of a photon propagating from a source with velocity vs to an observer with
velocity v0 is given by

1 + z =
1

a

[
1− ψ + ψ0 + n̂ · (vs − v0) +

∫ η

η0

dη′ (ϕ′ + ψ′)

]
, (215)

where n̂ is a unit vector along the line of sight, and the subscript 0 denotes quantities evaluated at the
observer. What is the physical interpretation of the different terms entering this equation?

Show also that the photon follows a trajectory

x(η) = n̂

∫ η0

η

dη′ (1 + ϕ+ ψ)−
∫ η0

η

dη′(η′ − η)∇⊥(ϕ+ ψ). (216)

Hints:

• Start by writing down the geodesic equation for the photon 4-momentum pµ = dxµ/dλ:

dpµ

dλ
+ Γµνσp

νpσ = 0, (217)

as well as the null condition
pµpνgµν = 0 (218)

to first order in the perturbations.

• Change variables to the directional vector ê ≡ p/|p|2, and the comoving energy ϵ ≡ a pµu
µ
c ,

where uµc = a−1(1 − ψ)δµ0 is the 4-velocity of an observer with constant comoving coordinates
(why?). Integrate the resulting two equations to find ϵ(η) and x(η) along the photon trajectory.

• Noting that the frequency measured by an observer with 4-velocity uµ is hP ν = pµuµ, write the
4-velocity of source and observer as uµq = a−1(1 − ψ,v) (why?), and use the equation for ϵ to
obtain Eq. 215, where the redshift is defined as 1 + z ≡ (uµs pµ)/(u

µ
0pµ).
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Problem 2: Perturbations during radiation domination

In the lectures we showed that the Newtonian potential ψ stays constant during matter domination.
Let’s now examine the solution during radiation domination. Solve Einstein’s equations in the New-
tonian gauge during radiation domination to show that the gravitational potential evolves as

ψ(k, η) ∝ j1(cskη)

cskη
, (219)

where cs = 1/
√
3 is the sound speed for radiation, and j1(x) is the spherical Bessel function of the

first kind:

j1(x) =
sinx− x cosx

x2
. (220)

What is the behaviour on super-horizon and sub-horizon scales?

Hints:

• Recall Einstein’s equations for a perfect fluid in the Newtonian gauge:

k2ψ + 3H(ψ′ +Hψ) = −4πGa2 ρ̄ δ, (221)

k2(ψ′ +Hψ) = 4πGa2 (ρ̄+ p̄)θ, (222)

ψ′′ + 3Hψ′ + (2H′ +H2)ψ = 4πGa2 c2sρ̄ δ. (223)

Combine two of these to write an equation involving ψ alone.

• Use the fact that a ∝ t1/2 ∝ η during radiation domination to simplify this equation.

• Solve the resulting equation by noting that the spherical Bessel functions satisfy the equation

x2j′′n + 2xj′n + (x2 − n(n+ 1))jn = 0. (224)
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Problem 3: Curvature perturbations

In the lectures we argued that ψ stays constant on super-horizon scales as long as the equation of state
doesn’t vary. Show that the following quantity (the “curvature perturbation”) does stay constant even
if the equation of state varies:

R ≡ −ϕ− H(ψ′ +Hϕ)
4πGa2(ρ̄+ p̄)

. (225)

Hints:

• Use Einstein’s equations (Eqs. 221-223) to write R in terms of ϕ and δ alone, on super-horizon
scales (k ≪ H), as

R ≃ −ϕ− ρ̄δ

3(ρ̄+ p̄)
. (226)

• Remember that the continuity equation reads:

δ′ = −(1 + w)(θ − 3ϕ′)− 3H(c2s − w)δ. (227)

Show that the term involving θ can be dropped (why?), and use Eq. 226 to replace ψ with R.
This gives you an ODE for R.

• Use the continuity equation for the background (ρ̄′ = −3H(ρ̄+ p̄)) to simplify this equation, and
show that

R′ = − Hρ̄
ρ̄+ p̄

(
δp

ρ̄
− p̄′

ρ̄′
δ

)
. (228)

Can we say that the right hand side is zero, thus proving what we wanted?
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Problem 4: From 3D to 2D.

Consider a quantity defined on the sphere f(n̂) in terms of a radial lightcone integral over a three-
dimensional quantity F (x, η):

f(n̂) =

∫ η0

dη qf (χ)F (χn̂, η), (229)

where qf (χ) is a radial kernel. Assume now that the three-dimensional quantity is linearly related to
the primordial curvature perturbation Rk through a transfer function TF (k, η):

Fk(η) = TF (k, η)Rk. (230)

Show that the harmonic coefficients of f are then related to Rk through:

fℓm =

∫
dk

2π2
k2 ∆f

ℓ (k)i
ℓ

∫
dn̂k Y

∗
ℓm(n̂k)Rk, (231)

where n̂k ≡ k/k, and

∆f
ℓ (k) =

∫
dχ qv(χ)TF (k, η) jℓ(kχ). (232)

Then, show that the angular power spectrum of f is related to the primordial power spectrum ∆2
R(k)

through

Cfℓ =
2

π

∫
dk

k
|∆f

ℓ (k)|2 ∆2
R(k). (233)

Hints:

• Use the plane-wave expansion to relate the harmonic coefficients of f to the Fourier coefficients
of F :

eik·x = 4π
∑
ℓm

iℓ jℓ(kχ)Yℓm(n̂)Y ∗
ℓm(n̂k), (234)

where jℓ(x) is the spherical Bessel function of order ℓ.

• Remember the definition of the primordial power spectrum

⟨R∗
kRk′⟩ ≡ 2π2

k3
∆2

R(k) (2π)3δD(k− k′). (235)
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Problem 5: The growth factor

The evolution equation for the overdensity of non-relativistic, pressureless matter, neglecting all per-
turbations in any other species can be written, in the Newtonian limit, as:

δ̈ + 2Hδ̇ − 4πGρM (t) δ = 0,

where H = ȧ/a is the expansion rate and ρM is the non-relativistic matter density.

1. Change the time variable from t to a to change the form of this equation to:

δ′′ +

(
H ′

H
+

3

a

)
δ′ − 3

2

H2
0ΩM
H2 a5

δ = 0, (236)

where f ′ ≡ df/da and ΩM and H0 are the matter parameter and expansion rate today.

2. Show that, for a matter dominated universe, a possible solution to this equation is δ1 = H.
For this you’ll need to use the fact that in this case H2 ≃ H2

0ΩM/a
3. Is this a growing-mode

solution?

3. Consider the more general case where H2 = H2
0

(
ΩM/a

3 +
∑
iΩi a

−3(1+wi)
)
. For what values of

the equation of state parameter wi is δ1 = H still a solution? What components do these values
correspond to?

4. For a second-order equation with two independent solutions δ1 and δ2 the WronskianW is defined
as W ≡ δ′1δ2 − δ1δ

′
2. Prove that for equation 236 the Wronskian satisfies

W ′

W
= −

(
H ′

H
+

3

a

)
. (237)

Integrate this equation to show that W = C/(a3H), where C is an integration constant.

5. Using the previous result and under the ansatz δ2(a) = δ1(a) g(a) prove that the second solution
is

δ2 = −C H(a)

∫ a

0

da′

[a′H(a′)]3
. (238)

6. We know that at early times (a << 1), during matter domination, δ = a. Find the value of the
integration constant C that gives this normalization.
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