

David Alonso - University of Oxford

Cosmology

Cosmology:

"Study of the origin, evolution, and fate of the Universe on large scales"

- Extreme physical systems (large scales, high-energies)
- Fundamental physics problems:* Dark matter
 - * Dark energy
 - * Inflation
- Data-driven science since ~2000 Confronted with astrophysical questions more and more often. We dabble in astrophysics!

Cosmology

Lesson 1: background cosmology and Newtonian perturbations

- a) **Homogeneous cosmology.** The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) The CMB. Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Lecture notes: https://www.overleaf.com/read/gdndjchkksnq Books:

- Mukhanov: "Physical foundations of cosmology"
- Dodelson: "Modern cosmology"
- Mo, van den Bosch & White: "Galaxy formation and evolution"

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) Homogeneous cosmology. The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) Relativistic perturbations. Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) **The CMB.** Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

In math: on large scales the Universe has maximally-symmetric time slices.

$$d\tau^2 = b^2(t)dt^2 - a^2(t)S_{ij}dx^i dx^j,$$

Proof: Weinberg "Gravitation and Cosmology"

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

In math: on large scales the Universe has maximally-symmetric time slices.

$$d\tau^{2} = b^{2}(t)dt^{2} - a^{2}(t)S_{ij}dx^{i}dx^{j},$$

$$(S_{ij}dx^i dx^j = d\chi^2 + \sin^2(\chi) \left[d\theta^2 + \sin^2(\theta) d\varphi^2 \right]$$

Proof: Weinberg "Gravitation and Cosmology"

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

In math: on large scales the Universe has maximally-symmetric time slices.

$$d\tau^{2} = b^{2}(t)dt^{2} - a^{2}(t)S_{ij}dx^{i}dx^{j},$$

$$S_{ij}dx^{i}dx^{j} = d\chi^{2} + \frac{\sin^{2}(\chi)}{\sin^{2}(\chi)} \left[d\theta^{2} + \sin^{2}(\theta)d\varphi^{2} \right]$$

$$\frac{\sin(\chi)}{\left[k + \frac{1}{2}\sin(\sqrt{k\chi}) - k > 0 - \frac{\chi}{k} \right]}{\left[k + \frac{1}{2}\sin(\sqrt{-k\chi}) - k < 0 - \frac{1}{2} - \frac{1}{2}\sin(\sqrt{-k\chi}) - k < 0 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2}\sin(\sqrt{-k\chi}) - \frac{1}{2} - \frac$$

Proof: Weinberg "Gravitation and Cosmology"

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

In math: on large scales the Universe has maximally-symmetric time slices.

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

In math: on large scales the Universe has maximally-symmetric time slices.

The cosmological principle:

"On sufficiently large scales, the Universe is homogeneous and isotropic"

In math: on large scales the Universe has maximally-symmetric time slices.

Using comoving coordinates:

$$d\tau^2 = dt^2 - a^2(t)|d\mathbf{x}|^2$$

$$d\tau^{2} = dt^{2} - a^{2}(t) \left[d\chi^{2} + \chi^{2} (d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}) \right]$$

Scale factor

Radial comoving distance

The cosmological principle:

"On sufficiently large scales, the Universe is <u>homogeneous</u> and <u>isotropic</u>"

In math: on large scales the Universe has maximally-symmetric time slices.

Using comoving coordinates:
$$d\tau^2 = dt^2 - a^2(t) |d\mathbf{x}|^2$$

 $d\eta$

$$d\tau^{2} = dt^{2} - a^{2}(t) \left[d\chi^{2} + \chi^{2} (d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}) \right]$$
$$d\tau^{2} = a^{2}(\eta) \left(d\eta^{2} - |d\mathbf{x}|^{2} \right).$$
$$\dot{a} \equiv \frac{da}{dt}, \quad a' \equiv \frac{da}{dn} \qquad \text{Conformal time}$$

Photon propagation in an expanding Universe.

Geodesic equation:

$$\frac{dp^{\mu}}{d\lambda} + \Gamma^{\mu}_{\nu\sigma} p^{\nu} p^{\sigma} = 0 \qquad p^{\mu} \equiv \frac{dx^{\mu}}{d\lambda}$$

1 11

For μ =0: $\frac{dp^0}{d\lambda} \left(\frac{dt}{d\lambda}\right) = -a\dot{a} \left(p^{\chi}\right)^2$

Photon propagation in an expanding Universe.

Geodesic equation:

$$\frac{dp^{\mu}}{d\lambda} + \Gamma^{\mu}_{\nu\sigma} p^{\nu} p^{\sigma} = 0 \qquad p^{\mu} \equiv \frac{dx^{\mu}}{d\lambda}$$

For
$$\mu$$
=0: $\frac{dp^0}{d\lambda} \left(\frac{dt}{d\lambda}\right) = -a\dot{a} \left(p^{\chi}\right)^2$

For photons d au^2 =0, which implies: $p^0=ap^{\chi}$

Therefore: $\frac{dp^0}{d\lambda} = -Hp^0\frac{dt}{d\lambda}, \qquad H \equiv \frac{\dot{a}}{d\lambda}$

Integrating:

$$a\lambda \qquad a\lambda \\ p^0 \propto \nu \propto a^{-1}$$

Photon propagation in an expanding Universe.

Geodesic equation:

$$\frac{dp^{\mu}}{d\lambda} + \Gamma^{\mu}_{\nu\sigma} p^{\nu} p^{\sigma} = 0$$

$$dp^{0} \left(dt \right) \qquad \sin \left(m^{\chi} \right)^{2}$$

$$p^{\mu} \equiv \frac{dx^{\mu}}{d\lambda}$$

For μ =0: $\frac{dp^0}{d\lambda}\left(\frac{dt}{d\lambda}\right) = -a\dot{a}\left(p^{\chi}\right)^2$

For photons d au^2 =0, which implies: $p^0=ap^{\chi}$

Therefore:

 $\frac{dp^0}{d\lambda} = -Hp^0\frac{dt}{d\lambda}, \quad \left(H \equiv \frac{a}{a}\right)$ Integrating: $p^0 \propto \nu \propto a^{-1}$ Expansion rate

Defining redshift:

Radial photon geodesics:

$$ds^2 = 0 \longrightarrow \chi = \int \frac{dt}{a} = \int_0^z \frac{dz}{H(z)}$$

Radial photon geodesics:

$$ds^2 = 0 \longrightarrow \chi = \int \frac{dt}{a} = \int_0^z \frac{dz}{H(z)}$$

Standard rulers:

$$\delta s = d_A \,\delta \theta \ \to \ d_A(z) = \frac{\chi(z)}{1+z}$$

Radial photon geodesics:

$$ds^2 = 0 \longrightarrow \chi = \int \frac{dt}{a} = \int_0^z \frac{dz}{H(z)}$$

Standard rulers:

Ideal fluid

uid:
$$T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu},$$
 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$
Fluid velocity. In comoving coords: $U_{\mu} = (1, 0, 0, 0)$
Pressure in comoving frame: $p = \frac{T_{\mu\nu}}{3} [U^{\mu}U^{\nu} - g^{\mu\nu}]$
Energy density in comoving frame: $\rho \equiv T_{\mu\nu}U^{\mu}U^{\nu}$

In comoving coords: $T^{\mu}_{\nu} = \operatorname{diag}(\rho, -p, -p, -p)$

Discards heat conduction, shear and bulk viscosity.

iid:
$$T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu},$$

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Energy-momentum conservation:

$$\nabla_{\mu}T^{\mu}_{\nu} = 0$$

- Holds for any non-interacting species -
- And for the overall fluid -
- With v=0, energy conservation _____ $\dot{\rho} + 3H(\rho + p) = 0$

$$T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu},$$

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Energy-momentum conservation:

$$\nabla_{\mu}T^{\mu}_{\nu} = 0$$

- Holds for any non-interacting species
- And for the overall fluid
- With v=0, energy conservation _____ $\dot{\rho}+3H(\rho+p)=0$

Equation of state:

$$p = w\rho \rightarrow \rho(t) = \rho_0 a^{-3(1+w)}$$

d:
$$T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu},$$

$$\nabla_{\mu}T^{\mu}_{\nu}=0$$

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

dilution

- Holds for any non-interacting species
- And for the overall fluid
- With v=0, energy conservation _____ $\dot{\rho}+3H(\rho+p)=0$

Equation of state:

$$p = w\rho \rightarrow \rho(t) = \rho_0 a^{-3(1+w)}$$

- Relativistic matter (radiation): w_R

$$= 1/3 \rightarrow \rho_R \propto a^{-4}$$
 \leftarrow dilution + redshifting

- Cosmological constant (vacuum): $ho_{\Lambda} = {
m const.}
ightarrow w_{\Lambda} = -1$

d:
$$T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu},$$

$$\nabla_{\mu}T^{\mu}_{\nu}=0$$

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

dilution

- Holds for any non-interacting species
- And for the overall fluid
- With v=0, energy conservation _____ $\dot{\rho}+3H(\rho+p)=0$

Equation of state:

$$\rho = w\rho \rightarrow \rho(t) = \rho_0 a^{-3(1+w)}$$

- Non-relativistic matter (dust): $w_M = 0 \rightarrow \rho_M \propto a^{-3}$
- Relativistic matter (radiation): $w_R = 1/3$
- Cosmological constant (vacuum): $ho_\Lambda = {
 m const.}
 ightarrow w_\Lambda = -1$

Natural scenario:

- R dominates at early times
- Then M takes over
- Finally *A* dominates over everything else.

The (0,0) component of the Einstein equations yields the **1st Friedmann eq.**:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

- Equation analogous to expansion of a gas in Newtonian gravity.

- Expansion (or "Hubble") rate: $H \equiv \frac{\dot{a}}{c}$

Later we will also use: $\mathcal{H} \equiv \frac{a'}{a} = aH$

The (0,0) component of the Einstein equations yields the **1st Friedmann eq.**:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

- Equation analogous to expansion of a gas in Newtonian gravity.

- Expansion (or "Hubble") rate: $H \equiv \frac{a}{a}$ - Critical density: $k = 0 \rightarrow \rho_c = \frac{3H^2}{8\pi G}$ Since k~0, $\rho_{\text{tot}} \sim \rho_c$ - Cosmological parameters: $\Omega_i \equiv \frac{\rho_{i,0}}{\rho_c}$, $\Omega_k = -\frac{k}{H_0^2}$

Later we will also use:

$$\mathcal{H} \equiv \frac{a'}{a} = aH$$

The (0,0) component of the Einstein equations yields the **1st Friedmann eq.**:

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

- Equation analogous to expansion of a gas in Newtonian gravity.

- Expansion (or "Hubble") rate: $H \equiv \frac{a}{a}$ - Critical density: $k = 0 \rightarrow \rho_c = \frac{3H^2}{8\pi G}$ Since k~0, $\rho_{tot} \sim \rho_c$ - Cosmological parameters: $\Omega_i \equiv \frac{\rho_{i,0}}{\rho_c}, \quad \Omega_k = -\frac{k}{H_0^2}$
- Later we will also use: $\mathcal{H} \equiv \frac{a'}{a} = aH$

- Using energy conservation, Friedman eq. reads:

$$H^{2} = H_{0}^{2} \sum_{i} \Omega_{i} (1+z)^{3(1+w_{i})}$$

"de-Sitter" Universe

- Specific solutions: Radiation domination: $a \propto t^{1/2} \propto \eta$ Matter domination: $a \propto t^{2/3} \propto \eta^2$ Dark-energy domination: $a \propto e^{Ht}$

The spatial components lead to **2nd Friedmann eq.**:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$

- Not independent of 1st Eq. + conservation of energy.
- Interesting consequence: $w < -1/3 \rightarrow \ddot{a} > 0$

Background cosmology data:

- BAO (standard ruler)
- SNe (standard candles)
- BBN (baryon abundance)
- T_{CMB} (from CMB spectrum)

$$\Omega_M \sim 0.3, \ \Omega_\Lambda \sim 0.7, \ \Omega_b \sim 0.05$$

 $\Omega_R \sim 8 \times 10^{-5}, \ \Omega_k \le 10^{-3}, \ H_0 \sim 70 \,\mathrm{km/s/Mpc}$

Background cosmology data:

- BAO (standard ruler)
- SNe (standard candles)
- BBN (baryon abundance)
- T_{CMB} (from CMB spectrum)

$$\Omega_M \sim 0.3, \ \Omega_\Lambda \sim 0.7, \ \Omega_b \sim 0.05$$

 $\Omega_R \sim 8 \times 10^{-5}, \ \Omega_k \le 10^{-3}, \ H_0 \sim 70 \,\mathrm{km/s/Mpc}$

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) Homogeneous cosmology. The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) **The CMB.** Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Credit: Zhao et al. 2012

Credit: Zhao et al. 2012

Newtonian perturbation theory:

- Simplified treatment that forgoes all complications associated with GR.
- Idea: perturbations in non-relativistic fluid in an expanding background.
- Not valid when
 - Perturbations in relativistic fluid (e.g. radiation at early times).
 - Scales comparable to the horizon.
- Good approximation when studying structure at late times on most scales!

Newtonian fluid characterised by a density $\rho(\mathbf{r},t)$ and velocity field $\mathbf{V}(\mathbf{r},t)$ in Eulerian coordinates \mathbf{r} .

Evolution governed by 2 equations of motion:

- Conservation of mass (continuity eq.):

$$\begin{array}{ll} \text{law (Continuity eq.):} & \partial_t \rho + \nabla_r \cdot (\rho \mathbf{V}) = 0 \\ \text{law (Euler eq.):} & \partial_t \mathbf{V} + (\mathbf{V} \cdot \nabla_r) \mathbf{V} + \frac{\nabla_r p}{\rho} + \nabla_r \Psi = 0 \end{array}$$

- 2nd Newton's law (Euler eq.):

Newtonian fluid characterised by a density $\rho(\mathbf{r},t)$ and velocity field $\mathbf{V}(\mathbf{r},t)$ in Eulerian coordinates \mathbf{r} .

Evolution governed by 2 equations of motion:

$$\begin{array}{ll} \text{Conservation of mass (continuity eq.):} & \partial_t \rho + \nabla_r \cdot (\rho \mathbf{V}) = 0 \\ \text{2nd Newton's law (Euler eq.):} & \partial_t \mathbf{V} + (\mathbf{V} \cdot \nabla_\mathbf{r}) \mathbf{V} + \frac{\nabla_\mathbf{r} p}{\rho} + \nabla_\mathbf{r} \Psi = 0 \end{array}$$

Relation between density and gravity (Poisson's eq.):

$$\nabla_{\mathbf{r}}^2 \Psi = 4\pi G\rho.$$
Newtonian fluid characterised by a density $\rho({f r},t)$ and velocity field ${f V}({f r},t)$ in Eulerian coordinates ${f r}$.

Evolution governed by 2 equations of motion:

$$\begin{array}{ll} \text{Conservation of mass (continuity eq.):} & \partial_t \rho + \nabla_r \cdot (\rho \mathbf{V}) = 0 \\ \text{2nd Newton's law (Euler eq.):} & \partial_t \mathbf{V} + (\mathbf{V} \cdot \nabla_\mathbf{r}) \mathbf{V} + \frac{\nabla_\mathbf{r} p}{\rho} + \nabla_\mathbf{r} \Psi = 0 \end{array}$$

Relation between density and gravity (Poisson's eq.):

$$\nabla_{\mathbf{r}}^2 \Psi = 4\pi G\rho.$$

Relation between pressure and density (eq. of state):

$$w\equiv p/
ho, \ c_s^2\equiv dp/d
ho$$
 Sound

speed

Introducing background expansion:

1. Change to comoving coordinates

$$\mathbf{r} = a(t)\mathbf{x}, \quad \nabla_r = a^{-1}\nabla_x, \quad \partial_t|_r = \partial_t|_x - H\mathbf{x} \cdot \nabla_x$$

Introducing background expansion:

1. Change to comoving coordinates

$$\mathbf{r} = a(t)\mathbf{x}, \quad \nabla_r = a^{-1}\nabla_x, \quad \partial_t|_r = \partial_t|_x - H\mathbf{x} \cdot \nabla_x$$

2. Split fields into background and perturbations:

$$\rho(\mathbf{x},t) = \bar{\rho}(t) \left[1 + \delta(\mathbf{x},t)\right], \quad \mathbf{V}(\mathbf{x},t) = \dot{a}\mathbf{x} + \mathbf{v}$$
$$\Psi = \bar{\Psi} + \psi(\mathbf{x},t), \quad p = \bar{p}(t) + c_s^2 \bar{\rho}(t) \delta(\mathbf{x},t)$$

Background follows Friedmann eqs.

Introducing background expansion:

1. Change to comoving coordinates

$$\mathbf{r} = a(t)\mathbf{x}, \quad \nabla_r = a^{-1}\nabla_x, \quad \partial_t|_r = \partial_t|_x - H\mathbf{x} \cdot \nabla_x$$

2. Split fields into background and perturbations:

$$\rho(\mathbf{x},t) = \bar{\rho}(t) \left[1 + \delta(\mathbf{x},t)\right], \quad \mathbf{V}(\mathbf{x},t) = \dot{a}\mathbf{x} + \mathbf{v}$$
$$\Psi = \bar{\Psi} + \psi(\mathbf{x},t), \quad p = \bar{p}(t) + c_s^2 \bar{\rho}(t) \delta(\mathbf{x},t)$$

Background follows Friedmann eqs.

3. Substitute and isolate contribution from perturbations:

$$\dot{\delta} + a^{-1}\nabla \cdot ((1+\delta)\mathbf{v}) = 0$$
$$\dot{\mathbf{v}} + H\mathbf{v} + \frac{c_s^2}{a}\nabla\delta + \frac{1}{a}\nabla\psi = 0$$
$$\nabla^2\psi = 4\pi G a^2 \bar{\rho}\delta$$

In comoving coords we can now take advantage of translational invariance. Fourier transform:

$$f_{\mathbf{k}}(t) \equiv \int d^3x \, e^{-i\mathbf{k}\cdot\mathbf{x}} f(\mathbf{x},t), \quad f(\mathbf{x},t) = \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{x}} f_{\mathbf{k}}(t)$$

Makes gradients easier:

$$\nabla f(\mathbf{x},t) \rightarrow i\mathbf{k}f(\mathbf{k},t)$$

Consider small perturbations and linearise. Keep only terms linear in δ , **v**, and ϕ

$$\dot{\delta}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \cdot \mathbf{v}_{\mathbf{k}} = 0$$

$$\dot{\mathbf{v}}_{\mathbf{k}} + H \mathbf{v}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \left[c_s^2 \delta_{\mathbf{k}} + \psi_{\mathbf{k}} \right] = 0$$

$$k^2 \psi_{\mathbf{k}} = -4\pi G a^2 \bar{\rho} \delta_{\mathbf{k}}$$

Consider small perturbations and linearise. Keep only terms linear in δ , **v**, and ϕ

$$\dot{\delta}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \cdot \mathbf{v}_{\mathbf{k}} = 0$$

$$\dot{\mathbf{v}}_{\mathbf{k}} + H \mathbf{v}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \left[c_s^2 \delta_{\mathbf{k}} + \psi_{\mathbf{k}} \right] = 0$$

$$k^2 \psi_{\mathbf{k}} = -4\pi G a^2 \bar{\rho} \delta_{\mathbf{k}}$$

Vorticity

Split Euler equation into longitudinal and transverse modes:

$$\mathbf{v}_{\mathbf{k}} = v_{\parallel} \hat{\mathbf{k}} + \mathbf{v}_{\perp}, \ \hat{\mathbf{k}} \cdot \mathbf{v}_{\perp} = 0$$

Gradient-like Curl-like

Consider small perturbations and linearise. Keep only terms linear in δ , **v**, and ϕ

$$\dot{\delta}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \cdot \mathbf{v}_{\mathbf{k}} = 0$$

$$\dot{\mathbf{v}}_{\mathbf{k}} + H \mathbf{v}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \left[c_s^2 \delta_{\mathbf{k}} + \psi_{\mathbf{k}} \right] = 0$$

$$k^2 \psi_{\mathbf{k}} = -4\pi G a^2 \bar{\rho} \delta_{\mathbf{k}}$$

Vorticity

Split Euler equation into longitudinal and transverse modes:

 $\begin{aligned} \mathbf{v}_{\mathbf{k}} &= v_{\parallel} \hat{\mathbf{k}} + \mathbf{v}_{\perp}, \quad \hat{\mathbf{k}} \cdot \mathbf{v}_{\perp} = 0 \\ & & \\$

We can disregard transverse modes and focus only on v_{\parallel} Non-linear evolution will create vorticity.

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq.

$$\dot{\delta}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \cdot \mathbf{v}_{\mathbf{k}} = 0$$

$$\dot{\mathbf{v}}_{\mathbf{k}} + H \mathbf{v}_{\mathbf{k}} + \frac{i}{a} \mathbf{k} \left[c_s^2 \delta_{\mathbf{k}} + \psi_{\mathbf{k}} \right] = 0$$

$$k^2 \psi_{\mathbf{k}} = -4\pi G a^2 \bar{\rho} \delta_{\mathbf{k}}$$

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq.

$$\dot{\delta}_{\mathbf{k}} + \frac{1}{a}\theta_{\mathbf{k}} = 0$$

$$\dot{\theta}_{\mathbf{k}} + H\theta_{\mathbf{k}} + \frac{1}{a} \left[4\pi G a^2 \bar{\rho} - c_s^2 k^2 \right] \delta_{\mathbf{k}} = 0$$

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq.

$$\begin{pmatrix} \dot{\delta}_{\mathbf{k}} + \frac{1}{a}\theta_{\mathbf{k}} = 0 \\ \dot{\theta}_{\mathbf{k}} + H\theta_{\mathbf{k}} + \frac{1}{a} \left[4\pi G a^2 \bar{\rho} - c_s^2 k^2 \right] \delta_{\mathbf{k}} = 0 \\ \end{pmatrix}$$

Finally, sub in continuity eq.

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

$$\ddot{\delta}_{\mathbf{k}} + 2H\dot{\delta}_{\mathbf{k}} + \frac{c_s^2}{a^2} \left(k^2 - k_J^2\right)\delta = 0$$

Jeans scale $k_J \equiv \frac{a}{c_s} \sqrt{4\pi G\bar{\rho}}$ separates behaviour into two regimes: 1. Small scales (k >> k_J) $\ddot{\delta}_{\mathbf{k}} + 2H\dot{\delta}_{\mathbf{k}} + \frac{c_s^2}{a^2}k^2\delta_{\mathbf{k}} = 0$?? 22

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

$$\ddot{\delta}_{\mathbf{k}} + 2H\dot{\delta}_{\mathbf{k}} + \frac{c_s^2}{a^2} \left(k^2 - k_J^2\right)\delta = 0$$

<u>Jeans scale</u> $k_J \equiv \frac{a}{c_s} \sqrt{4\pi G\bar{\rho}}$ separates behaviour into two regimes: 1. Small scales (k >> k_J) $\ddot{\delta}_{\mathbf{k}} + 2H\dot{\delta}_{\mathbf{k}} + \frac{c_s^2}{a^2}k^2\delta_{\mathbf{k}} = 0$

Damped Oscillations

$$\delta_{\mathbf{k}} \propto \frac{1}{\sqrt{c_s a}} \exp\left[\pm ik \int \frac{dt}{a} c_s\right]$$

Remember this!!

Pressure waves!

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

$$\ddot{\delta}_{\mathbf{k}} + 2H\dot{\delta}_{\mathbf{k}} + \frac{c_s^2}{a^2} \left(k^2 - k_J^2\right)\delta = 0$$

<u>Jeans scale</u> $k_J \equiv \frac{a}{c_s} \sqrt{4\pi G \bar{\rho}}$ separates behaviour into two regimes:

1. Small scales (k >> k_J)
$$\delta_{\mathbf{k}} \propto \frac{1}{\sqrt{c_s a}} \exp\left[\pm ik \int \frac{dt}{a} c_s\right]$$

2. Large scales or pressureless:
$$\frac{d}{da}\left(a^{3}H\frac{d\delta}{da}\right) = \frac{3}{2}\Omega_{M}(a) a H(a) \delta$$

Scale-independent growth!

Solutions in the form:
$$\delta(\mathbf{k},t) = \delta_+(\mathbf{k})D_+(a) + \delta_-(\mathbf{k})D_-(a)$$

Growing mode Decaying mode

Jeans equation

Take divergence of Euler eq. and substitute Poisson eq., sub in continuity eq.

$$\ddot{\delta}_{\mathbf{k}} + 2H\dot{\delta}_{\mathbf{k}} + \frac{c_s^2}{a^2} \left(k^2 - k_J^2\right)\delta = 0$$

<u>Jeans scale</u> $k_J \equiv \frac{a}{c_s} \sqrt{4\pi G \bar{\rho}}$ separates behaviour into two regimes: 1. Small scales (k >> k_J) $\delta_{\mathbf{k}} \propto \frac{1}{\sqrt{c_s a}} \exp\left[\pm ik \int \frac{dt}{a} c_s\right]$

2. Large scales or pressureless:
$$\frac{d}{da}\left(a^{3}H\frac{d\delta}{da}\right) = \frac{3}{2}\Omega_{M}(a) a H(a) \delta$$

Scale-independent growth!

Solutions in the form:
$$\delta(\mathbf{k},t) = \delta_{+}(\mathbf{k})D_{+}(a) + \delta_{-}(\mathbf{k})D_{-}(a)$$

Growing mode Decaying mode

Jeans equation

Examples:

1. Matter domination:
$$\frac{d^2\delta}{da^2} + \frac{3}{2a}\frac{d\delta}{da} - \frac{3}{2a^2}\delta = 0$$

Solution:

Jeans equation

Examples:

1. Matter domination: $\frac{d^2\delta}{da^2} + \frac{3}{2a}\frac{d\delta}{da} - \frac{3}{2a^2}\delta = 0$ Solution: $\delta(a) = \delta_+ a + \delta_- a^{-3/2}$.

Jeans equation

Examples:

1. Matter domination: $\frac{d^2\delta}{da^2} + \frac{3}{2a}\frac{d\delta}{da} - \frac{3}{2a^2}\delta = 0$ Solution: $\delta(a) = \delta_+ a + \delta_- a^{-3/2}$. 2. A domination: $\frac{d^2\delta}{da^2} + \frac{3}{a}\frac{d\delta}{da} = 0$ Solution: $\delta(a) = \delta_+ + \delta_- a^{-3}$.

Jeans equation

Examples:

- 1. Matter domination: $\frac{d^2\delta}{da^2} + \frac{3}{2a}\frac{d\delta}{da} \frac{3}{2a^2}\delta = 0$ Solution: $\delta(a) = \delta_+ a + \delta_- a^{-3/2}$. 2. A domination: $\frac{d^2\delta}{da^2} + \frac{3}{a}\frac{d\delta}{da} = 0$ Solution: $\delta(a) = \delta_+ + \delta_- a^{-3}$.
- 3. Radiation domination (Meszaros solution):

$$\delta \propto \begin{cases} A + B \log a & a \ll a_{eq} \\ a & a \gg a_{eq}, \end{cases} \qquad \delta \text{ also stalls}$$

Gravitational potential decays at early and late times, and stays constant during matter domination.

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) Homogeneous cosmology. The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) **The CMB.** Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations.

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations. **Relativistic PT** requires a mathematically arid introduction. We'll skip most of it for brevity, and only report the main results. Check the notes!

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations. **Relativistic PT** requires a mathematically arid introduction. We'll skip most of it for brevity, and only report the main results. Check the notes!

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations. **Relativistic PT** requires a mathematically arid introduction. We'll skip most of it for brevity, and only report the main results. Check the notes!

 $\tilde{x}^{\mu} = x^{\mu} + \xi^{\mu}(x)$

But 4 of them can be cancelled by coordinate transformations

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations. **Relativistic PT** requires a mathematically arid introduction. We'll skip most of it for brevity, and only report the main results. Check the notes!

 $\tilde{x}^{\mu} = x^{\mu} + \xi^{\mu}(x)$

transformations

But 4 of them can be cancelled by coordinate

Result: 6 real perturbative d.o.f.s

- 2 scalar
- 2 vector
- 2 tensor

Defined wrt SO(3) (symmetry group of FRW background). They evolve independently

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations. **Relativistic PT** requires a mathematically arid introduction. We'll skip most of it for brevity, and only report the main results. Check the notes!

 $\tilde{x}^{\mu} = x^{\mu} + \xi^{\mu}(x)$

But 4 of them can be cancelled by coordinate transformations

Defined wrt SO(3) (symmetry group of FRW background). They evolve independently

Density fluctuations will perturb the FRW metric (and vice-versa)! **Problem:** freedom to choose coordinates (no preferred frame, unlike in FRW). General coordinate transformations can cause fictitious perturbations. **Relativistic PT** requires a mathematically arid introduction. We'll skip most of it for brevity, and only report the main results. Check the notes!

Defined wrt SO(3) (symmetry group of FRW background). They evolve independently

The conformal Newtonian gauge

With a wise choice of coordinates, we can express general scalar perturbations as:

$$d\tau^{2} = a^{2} \left[(1+2\psi)d\eta^{2} - (1-2\phi)|d\mathbf{x}|^{2} \right]$$

 ϕ and ψ are closely related to the usual Newtonian potential.

The conformal Newtonian gauge

With a wise choice of coordinates, we can express general scalar perturbations as:

$$d\tau^{2} = a^{2} \left[(1+2\psi)d\eta^{2} - (1-2\phi)|d\mathbf{x}|^{2} \right]$$

 ϕ and ψ are closely related to the usual Newtonian potential.

Important notes:

- We use conformal time because it makes life simpler.

The conformal Newtonian gauge

With a wise choice of coordinates, we can express general scalar perturbations as:

$$d\tau^{2} = a^{2} \left[(1+2\psi)d\eta^{2} - (1-2\phi)|d\mathbf{x}|^{2} \right]$$

 ϕ and ψ are closely related to the usual Newtonian potential.

Important notes:

- We use conformal time because it makes life simpler.
- Careful when drawing physical conclusions! Gauge-dependent results for non-observable quantities.

The conformal Newtonian gauge

With a wise choice of coordinates, we can express general scalar perturbations as:

$$d\tau^{2} = a^{2} \left[(1+2\psi)d\eta^{2} - (1-2\phi)|d\mathbf{x}|^{2} \right]$$

 ϕ and ψ are closely related to the usual Newtonian potential.

Important notes:

- We use conformal time because it makes life simpler.
- Careful when drawing physical conclusions!
 Gauge-dependent results for non-observable quantities.
- Multitude of other gauges out there. Simpler equations for specific cases.

The conformal Newtonian gauge

With a wise choice of coordinates, we can express general scalar perturbations as:

$$d\tau^{2} = a^{2} \left[(1+2\psi)d\eta^{2} - (1-2\phi)|d\mathbf{x}|^{2} \right]$$

 ϕ and ψ are closely related to the usual Newtonian potential.

Important notes:

- We use conformal time because it makes life simpler.
- Careful when drawing physical conclusions!
 Gauge-dependent results for non-observable quantities.
- Multitude of other gauges out there. Simpler equations for specific cases.
- Einstein's equations for these perturbations:
 - a) Linearised!
 - b) Even so, tedious calculation. Worth doing at least once in your life!

The conformal Newtonian gauge

The result is:

$$\nabla^2 \phi - 3\mathcal{H}(\phi' + \mathcal{H}\psi) = 4\pi G a^2 \,\delta T_0^0,$$

$$\partial_i (\phi' + \mathcal{H}\psi) = 4\pi G a^2 \,\delta T_i^0,$$

$$\phi'' + \mathcal{H}(2\phi + \psi)' + (2\mathcal{H}' + \mathcal{H}^2)\psi + \frac{1}{3}\nabla^2(\psi - \phi) = -\frac{4\pi}{3}G a^2 \,\delta T_i^i,$$

$$\partial_i \partial_j (\psi - \phi) = 8\pi G a^2 \,\delta T_j^i \ (i \neq j).$$

The conformal Newtonian gauge

Finding Einstein's equations for a perturbed FRW is lengthy (but worth doing once in your life!). The result is:

$$\nabla^{2}\phi - 3\mathcal{H}(\phi' + \mathcal{H}\psi) = 4\pi Ga^{2} \,\delta T_{0}^{0},$$

$$\partial_{i}(\phi' + \mathcal{H}\psi) = 4\pi Ga^{2} \,\delta T_{i}^{0},$$

$$\phi'' + \mathcal{H}(2\phi + \psi)' + (2\mathcal{H}' + \mathcal{H}^{2})\psi + \frac{1}{3}\nabla^{2}(\psi - \phi) = -\frac{4\pi}{3}Ga^{2} \,\delta T_{i}^{i},$$

$$\partial_{i}\partial_{j}(\psi - \phi) = 8\pi Ga^{2} \,\delta T_{j}^{i} \quad (i \neq j).$$

This looks like Poisson's equation + relativistic corrections.

If T_{ii} is diagonal, $\phi = \psi$

Perturbing
$$T_{\mu\nu}$$
 $T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu}$,

In the background $U_{\mu} = (1, 0, 0, 0)$

A spatial component will be already a perturbation. The time component is fixed by normalisation:

$$U^{\mu} = \frac{1}{a}(1 - \psi, \mathbf{v})$$
Perturbing T_{$$\mu\nu$$} $T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu}$,
In the background $U_{\mu} = (1, 0, 0, 0)$

A spatial component will be already a perturbation. The time component is fixed by normalisation:

$$U^{\mu} = \frac{1}{a}(1-\psi, \mathbf{v})$$

This yields:

$$\delta T_0^0 = \bar{\rho}\delta, \ \delta T_i^0 = (\bar{\rho} + \bar{p})v_i, \ T_j^i = -\bar{\rho}c_s^2\delta\,\delta_j^i$$

where **v** is a pure gradient.

Diagonal! $\psi = \phi$

Perturbing T_{$$\mu\nu$$} $T_{\mu\nu} = (\rho + p)U_{\mu}U_{\nu} - pg_{\mu\nu}$,
In the background $U_{\mu} = (1, 0, 0, 0)$

A spatial component will be already a perturbation. The time component is fixed by normalisation:

$$U^{\mu} = \frac{1}{a}(1-\psi, \mathbf{v})$$

This yields:

$$\delta T_0^0 = \bar{\rho}\delta, \ \delta T_i^0 = (\bar{\rho} + \bar{p})v_i, \ T_j^i = -\bar{\rho}c_s^2\delta\,\delta_j^i$$

where **v** is a pure gradient.

Back to Einstein eq. and into Fourier space:

$$k^{2}\psi + 3\mathcal{H}(\psi' + \mathcal{H}\psi) = -4\pi Ga^{2} \bar{\rho} \delta,$$

$$k^{2}(\psi' + \mathcal{H}\psi) = 4\pi Ga^{2} (\bar{\rho} + \bar{p})\theta, \quad \longleftarrow \quad \theta_{\mathbf{k}} \equiv i\mathbf{k} \cdot \mathbf{v}_{\mathbf{k}}$$

$$\psi'' + 3\mathcal{H}\psi' + (2\mathcal{H}' + \mathcal{H}^{2})\psi = 4\pi Ga^{2} c_{s}^{2} \bar{\rho} \delta,$$

Example: Einstein deSitter

Matter domination: $c_s^2 = 0$, $a \propto \eta^2$, $\mathcal{H} = 2/\eta$

$$k^{2}\psi + 3\mathcal{H}(\psi' + \mathcal{H}\psi) = -4\pi Ga^{2} \bar{\rho} \delta,$$

$$k^{2}(\psi' + \mathcal{H}\psi) = 4\pi Ga^{2} (\bar{\rho} + \bar{p})\theta,$$

$$\psi'' + 3\mathcal{H}\psi' + (2\mathcal{H}' + \mathcal{H}^{2})\psi = 4\pi Ga^{2} c_{s}^{2} \bar{\rho} \delta,$$

Scale-independent growth

Example: Einstein deSitter

Matter domination:
$$c_s^2 = 0$$
, $a \propto \eta^2$, $\mathcal{H} = 2/\eta$

$$\begin{split} k^{2}\psi + 3\mathcal{H}(\psi' + \mathcal{H}\psi) &= -4\pi Ga^{2}\,\bar{\rho}\,\delta, \\ k^{2}(\psi' + \mathcal{H}\psi) &= 4\pi Ga^{2}\,(\bar{\rho} + \bar{p})\theta, \\ \psi'' + 3\mathcal{H}\psi' + (2\mathcal{H}' + \mathcal{H}^{2})\psi &= 4\pi Ga^{2}\,c_{s}^{2}\bar{\rho}\,\delta, \end{split} \qquad \qquad \text{Scale-independent growth}$$

$$\psi'' + \frac{6}{\eta}\psi' = 0, \quad \rightarrow \quad \psi = C_1 + \frac{C_2}{\eta^5}$$

Potential stays constant (as we found in Newtonian case)

Example: Einstein deSitter

Matter domination: $c_s^2=0, \ a\propto \eta^2, \ \mathcal{H}=2/\eta$

$$\psi'' + \frac{6}{\eta}\psi' = 0, \quad \rightarrow \quad \psi = C_1 + \frac{C_2}{\eta^5}$$
$$\delta_{\mathbf{k}} = \begin{bmatrix} -\frac{(k\eta)^2}{6} - 2 \end{bmatrix} \psi_{\mathbf{k}}$$
$$\int_{\mathbf{k}} \delta \text{ grows like } \mathbf{a} \text{ (as in Newtonian PT)}$$

Example: Einstein deSitter

Matter domination:
$$c_s^2 = 0$$
, $a \propto \eta^2$, $\mathcal{H} = 2/\eta$

$$\psi'' + \frac{6}{\eta}\psi' = 0, \quad \rightarrow \quad \psi = C_1 + \frac{C_2}{\eta^5}$$

$$\delta_{\mathbf{k}} = \begin{bmatrix} -\frac{(k\eta)^2}{6} & 2 \end{pmatrix} \psi_{\mathbf{k}} \\ & \downarrow & \downarrow & k_H \sim 1/\eta \sim \mathcal{H} \\ & \delta \text{ grows like } \mathbf{a} \text{ (as in Newtonian PT) + relativistic horizon-sized correction} \end{bmatrix}$$

Example: Einstein deSitter

Matter domination: $c_s^2 = 0, \ a \propto \eta^2, \ \mathcal{H} = 2/\eta$

$$\psi'' + \frac{6}{\eta}\psi' = 0, \quad \rightarrow \quad \psi = C_1 + \frac{C_2}{\eta^5}$$

$$\delta_{\mathbf{k}} = \begin{bmatrix} -\frac{(k\eta)^2}{6} & 2 \end{bmatrix} \psi_{\mathbf{k}}$$
These actually depend on the gauge!
$$k_H \sim 1/\eta \sim \mathcal{H}$$

$$\delta \text{ grows like } \mathbf{a} \text{ (as in Newtonian PT) + relativistic horizon-sized correction}$$

General behavior

$$\psi(k,\eta) = \begin{cases} f(\eta) & k \ll 1/(c_s\eta) \\ g(\eta)e^{ic_sk\eta} & k \gg 1/(c_s\eta) \end{cases}$$

Where:

- $C_s \eta \sim \text{sound horizon} \sim \text{horizon}$ (e.g. $c_s^2 = \frac{1}{3}$ for radiation).
- $f(\eta)$ is a slowly-varying (almost constant) function
- $g(\eta)$ is a decaying amplitude

General behavior

$$\psi(k,\eta) = \begin{cases} f(\eta) & k \ll 1/(c_s \eta) \\ g(\eta) e^{ic_s k \eta} & k \gg 1/(c_s \eta) \end{cases}$$

Note that ψ may vary on large scales in between epochs (e.g. radiation to matter domination).

 η

General behavior

$$\psi(k,\eta) = \begin{cases} f(\eta) & k \ll 1/(c_s\eta) \\ g(\eta)e^{ic_sk\eta} & k \gg 1/(c_s\eta) \end{cases}$$

Note that ψ may vary on large scales in between epochs (e.g. radiation to matter domination).

However, the following quantity ("curvature perturbation"), is always constant on superhorizon modes:

$$\mathcal{R} \equiv -\psi - \frac{\mathcal{H}(\psi' + \mathcal{H}\psi)}{4\pi Ga^2(\bar{\rho} + \bar{p})}$$

Energy-momentum conservation

In the presence of perturbations, $\nabla_{\mu}T^{\mu}_{\nu} = 0$ yields $\nu = 0: \quad \delta' = -(1+w)(\theta - 3\phi') - 3\mathcal{H}(c_s^2 - w)\delta,$ $\nu = i: \quad \theta' = -\mathcal{H}(1 - 3w)\theta - \frac{w'}{1+w}\theta + \frac{c_s^2}{1+w}k^2\delta + k^2\psi.$ Relativistic Euler eq.

Energy-momentum conservation

In the presence of perturbations, $\nabla_{\mu}T^{\mu}_{\nu} = 0$ yields $\nu = 0: \quad \delta' = -(1+w)(\theta - 3\phi') - 3\mathcal{H}(c_s^2 - w)\delta,$ $\nu = i: \quad \theta' = -\mathcal{H}(1 - 3w)\theta - \frac{w'}{1+w}\theta + \frac{c_s^2}{1+w}k^2\delta + k^2\psi.$ Relativistic Euler eq.

Reminder: these hold for the total T_{uv} , or for each independent component.

- When applied to the total fluid, these do not contain more information than the Einstein eqs.
- Additional information when applied to independent species.
- In the presence of interactions, momentum transfer terms must be added. (E.g. radiation-baryons before decoupling).

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) **Homogeneous cosmology.** The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) **The CMB.** Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

$$\chi_H(t) = \int_0^t \frac{dt'}{a(t')}$$

The lower limit converges if $a \propto t^{\alpha}$ with α <1. During radiation domination α =1/2.

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Then, the causal horizon when the CMB was emitted ("photon decoupling") is:

$$\chi_H = \int_{z_d}^{\infty} \frac{dz'}{H(z')} \simeq 250 \,\mathrm{Mpc}$$

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Then, the causal horizon when the CMB was emitted ("photon decoupling") is:

$$\chi_H = \int_{z_d}^{\infty} \frac{dz'}{H(z')} \simeq 250 \,\mathrm{Mpc}$$

However, the distance to the last-scattering surface is:

$$\chi_{\rm LSS} = \int_0^{z_d} \frac{dz'}{H(z')} \simeq 14 \,\rm{Gpc}$$

So the horizon subtends an angle:

$$\theta_H = \chi_H / \chi_{\rm LSS} \sim 1^\circ$$

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

 $\theta_H = \chi_H / \chi_{\rm LSS} \sim 1^\circ$

Why do so many causally disconnected patches have the same temperature (within 10⁻⁵)?

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

$$\chi_H(t) = \int_0^t \frac{dt'}{a(t')}$$

We can solve this if there was an epoch before rad. dom. with $a \propto t^{\alpha}$ and α >1.

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

$$\chi_H(t) = \int_0^t \frac{dt'}{a(t')}$$

We can solve this if there was an epoch before rad. dom. with $a \propto t^{\alpha}$ and α >1.

But α >1 means <u>acceleration</u>! This violates the Strong Energy Principle, and involves some exotic fluid. <u>Can we find more justification</u> for something this bizarre?

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!

$$\Omega_k(t) = \frac{k}{(aH)^2} = \frac{k}{\dot{a}^2}$$

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!

$$\Omega_k(t) = \frac{k}{(aH)^2} = \frac{k}{\dot{a}^2}$$

In a decelerating Universe, $|\Omega_{K}| < 10^{-3}$, and therefore it must have been $|\Omega_{K}| < 10^{-17}$ during R. dom. Can we justify such a finely-tuned initial condition?

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!

$$\Omega_k(t) = \frac{k}{(aH)^2} = \frac{k}{\dot{a}^2}$$

In a decelerating Universe, $|\Omega_{K}| < 10^{-3}$, and therefore it must have been $|\Omega_{K}| < 10^{-17}$ during R. dom. Can we justify such a finely-tuned initial condition?

An early period of large acceleration would increase \dot{a} , driving Ω_{κ} to zero before radiation domination.

Why inflation?

The hot Big-Bang model (radiation domination at early times) predicts a singularity in the past. This is problematic when confronted with observations.

Firstly, the causal horizon is finite!

Secondly, the Universe is very flat!

$$\Omega_k(t) = \frac{k}{(aH)^2} = \frac{k}{\dot{a}^2}$$

In a decelerating Universe, $|\Omega_{K}| < 10^{-3}$, and therefore it must have been $|\Omega_{K}| < 10^{-17}$ during R. dom. Can we justify such a finely-tuned initial condition?

An early period of large acceleration would increase \dot{a} , driving Ω_{κ} to zero before radiation domination.

Inflation ($\ddot{a} > 0$) at early times) can therefore solve the horizon and curvature problems!

To solve them, the scale factor must expand by

$$\frac{a_{\rm end}}{a_{\rm start}}\gtrsim e^{60}$$

How inflation?

The simplest accelerating model we've seen is a cosmological constant (de-Sitter universe)

How inflation?

The simplest accelerating model we've seen is a cosmological constant (de-Sitter universe)

However, once vacuum dominates, it dominates forever. We need a "graceful exit"

Scalar fields

Next simplest model is a scalar field

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - V(\varphi)$$

Scalar fields

Next simplest model is a scalar field

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - V(\varphi)$$

In the homogeneous limit:

$$\mathcal{L} = \frac{1}{2}\dot{\varphi}^2 - V(\varphi), \quad T^{\mu}_{\nu} = \operatorname{diag}(\rho, -p, -p, -p)$$
$$\rho \equiv \frac{1}{2}\dot{\varphi}^2 + V, \quad p \equiv \frac{1}{2}\dot{\varphi}^2 - V$$

Scalar fields

Next simplest model is a scalar field

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - V(\varphi)$$

In the homogeneous limit:

$$\mathcal{L} = \frac{1}{2}\dot{\varphi}^2 - V(\varphi), \quad T^{\mu}_{\nu} = \text{diag}(\rho, -p, -p, -p)$$
$$\rho \equiv \frac{1}{2}\dot{\varphi}^2 + V, \quad p \equiv \frac{1}{2}\dot{\varphi}^2 - V$$

In the limit $\dot{\varphi}^2/2 \ll V$, the field behaves as a fluid with equation of state p=- ρ , leading to an exponential acceleration!

Scalar fields

Next simplest model is a scalar field

$$\mathcal{L} = \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - V(\varphi)$$

In the homogeneous limit:

$$\mathcal{L} = \frac{1}{2}\dot{\varphi}^2 - V(\varphi), \quad T^{\mu}_{\nu} = \operatorname{diag}(\rho, -p, -p, -p)$$
$$\rho \equiv \frac{1}{2}\dot{\varphi}^2 + V, \quad p \equiv \frac{1}{2}\dot{\varphi}^2 - V$$

In the limit $\dot{\varphi}^2/2 \ll V$, the field behaves as a fluid with equation of state p=- ρ , leading to an exponential acceleration!

Dynamics in an expanding Universe:

$$\ddot{\varphi} + 3H\dot{\varphi} + V' = 0$$
Klein-Gordon equation
$$H^{2} = \frac{8\pi G}{3} \left[\frac{1}{2} \dot{\varphi}^{2} + V \right]$$
Friedmann equation

The slow-roll picture

The slow-roll picture

The slow-roll picture

The slow-roll math

A successful inflaton model must achieve:

 $\dot{\varphi}_{\,\star}^2 \!\ll V$ So we get acceleration

 $\left|\ddot{\varphi}\right| \ll 3H\dot{\varphi}$ So inflation can last

The slow-roll math

A successful inflaton model must achieve: $\dot{\varphi}^2 \ll V \qquad \qquad |\ddot{\varphi}| \ll 3H\dot{\varphi}$ So we get acceleration It is common to define two parameters: $\varepsilon = -\frac{\dot{H}}{H^2} = 1 - \frac{\ddot{a}a}{\dot{a}^2} \ll 1, \quad \eta = \frac{d\log\varepsilon}{d\log a} \ll 1$

The slow-roll math

A successful inflaton model must achieve:

These can be related to model properties

$$\varepsilon = 3 \frac{\dot{\varphi}^2/2}{\dot{\varphi}^2/2 + V} \simeq \frac{M_{\rm Pl}}{2} \left(\frac{V'}{V}\right)^2, \quad \eta = 2\epsilon - \frac{2\ddot{\varphi}}{H\dot{\varphi}} \simeq M_{\rm Pl}^2 \frac{V''}{V},$$
The slow-roll math

A successful inflaton model must achieve: $\dot{\varphi}_{_}^2 \ll V$

So we get acceleration

In this approximation:

$$3\dot{\varphi} = -\frac{1}{H}V', \quad H^2 = \frac{8\pi G}{3}V$$

The slow-roll math

Example: quadratic potential (massive scalar field)

The slow-roll math

Example: quadratic potential (massive scalar field)

$$V(\varphi) = \frac{1}{2}m^2\varphi^2$$

In slow-roll regime, Friedmann equation and K-G equation read:

$$\dot{\varphi} = -\frac{1}{H}V', \quad H^2 = \frac{8\pi G}{3}V$$

$$\dot{\varphi} = -\frac{m^2}{3q} \qquad \qquad H = q\varphi, \quad q^2 \equiv \frac{1}{6}\frac{m^2}{M_{\rm Pl}^2}$$

The slow-roll math

```
Example: quadratic potential (massive scalar field)
```

$$V(\varphi) = \frac{1}{2}m^2\varphi^2$$

In slow-roll regime, Friedmann equation and K-G equation read:

The slow-roll math

Example: quadratic potential (massive scalar field)

$$\varphi(t) = \varphi_i - \frac{m^2}{3q}t,$$
$$\log\left(\frac{a(t)}{a_i}\right) = 2\pi G\varphi_i^2 - \frac{m^2}{6}\left(t - \frac{3q\varphi_i^2}{m^2}\right)^2$$

Inflation ends when $\dot{\varphi}^2/2 \sim V$

At which point:

$$\log(a_e/a_i) = \left(\frac{\varphi_i}{2M_{\rm Pl}}\right)^2$$

Since we want this to be \sim 60, the field must start at high, Planckian values.

$$V(\varphi) = \frac{1}{2}m^2\varphi^2$$

Graceful exit, reheating

When the field reaches the minimum:

$$\ddot{\varphi} + 3H\dot{\varphi} + m^2\varphi = 0$$

$$\downarrow$$

$$\varphi \propto \cos(mt + \alpha)$$

Graceful exit, reheating

When the field reaches the minimum:

$$\ddot{\varphi} + 3H\dot{\varphi} + m^{2}\varphi = 0$$

$$\varphi \propto \cos(mt + \alpha)$$

$$\varphi = \left\langle \frac{1}{2}(\dot{\varphi}^{2} - m^{2}\varphi^{2}) \right\rangle = 0$$

$$\varphi$$

Field behaves like presureless fluid: $a \propto t^{2/2}$

Graceful exit, reheating

When the field reaches the minimum:

$$\ddot{\varphi} + 3H\dot{\varphi} + m^{2}\varphi = 0$$

$$\varphi \propto \cos(mt + \alpha)$$

$$\varphi = \left\langle \frac{1}{2}(\dot{\varphi}^{2} - m^{2}\varphi^{2}) \right\rangle = 0$$

$$\varphi$$

Field behaves like presureless fluid: $a \propto t^2$

Through couplings, inflaton energy transfers to other fields, eventually generating SM particles (reheating).

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) **Homogeneous cosmology.** The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) **The CMB.** Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Quantum fluctuations and the hubble scale

Inflation provides a natural way to generate the initial metric fluctuations. The key fact is that the *comoving Hubble scale* (aH)⁻¹ shrinks dramatically during inflation:

Quantum fluctuations and the hubble scale

Inflation provides a natural way to generate the initial metric fluctuations. The key fact is that the *comoving Hubble scale* (aH)⁻¹ shrinks dramatically during inflation. Perturbations on scales above or below (aH)⁻¹ behave very differently.

• They are preserved on super-horizon scales.

Quantum fluctuations and the hubble scale

Inflation provides a natural way to generate the initial metric fluctuations.

• Perturbations are preserved on super-horizon scales.

At the same time quantum mechanics prevents a field from being perfectly homogeneous.

Quantum fluctuations and the hubble scale

- Perturbations are preserved on super-horizon scales.
- At the same time quantum mechanics prevents a field from being perfectly homogeneous. Even in vacuum state, quantum fluctuations are always present.

Quantum fluctuations and the hubble scale

- Perturbations are preserved on super-horizon scales.
- Even in vacuum, quantum fluctuations are always present.

Quantum fluctuations and the hubble scale

- Perturbations are preserved on super-horizon scales.
- Even in vacuum, quantum fluctuations are always present.
- Quickly inflated beyond the horizon, and frozen.

Quantum fluctuations and the hubble scale

- Perturbations are preserved on super-horizon scales.
- Even in vacuum, quantum fluctuations are always present.
- Quickly inflated beyond the horizon, and frozen.
- Eventually re-enter horizon and evolve again (classically).

Quantum fluctuations and the hubble scale

- Perturbations are preserved on super-horizon scales.
- Even in vacuum, quantum fluctuations are always present.
- Quickly inflated beyond the horizon, and frozen.
- Eventually re-enter horizon and evolve again (classically).

Our goal: Predict the spectrum from quantum fluctuations after inflation

1. Sub-horizon perturbations during inflation

During slow-roll, and on sub-horizon scales: KG equation for the perturbation:

$$\varphi = \bar{\varphi}(t) + \delta\varphi(\mathbf{x}, t)$$

$$\delta\varphi_{\mathbf{k}}'' + 2\mathcal{H}\delta\varphi_{\mathbf{k}}' + k^2\delta\varphi_{\mathbf{k}} \simeq 0$$

1. Sub-horizon perturbations during inflation

During slow-roll, and on sub-horizon scales: KG equation for the perturbation:

$$\delta\varphi_{\mathbf{k}}'' + 2\mathcal{H}\delta\varphi_{\mathbf{k}}' + k^2\delta\varphi_{\mathbf{k}} \simeq 0$$

 $\varphi = \bar{\varphi}(t) + \delta\varphi(\mathbf{x}, t)$

Through a change of variables:

$$f_{\mathbf{k}} \equiv a \,\delta\varphi_{\mathbf{k}} \quad \rightarrow \quad f_{\mathbf{k}}'' + \left(k^2 - \frac{a''}{a}\right) f_{\mathbf{k}} = 0$$

1. Sub-horizon perturbations during inflation

During slow-roll, and on sub-horizon scales: KG equation for the perturbation:

$$\delta\varphi_{\mathbf{k}}'' + 2\mathcal{H}\delta\varphi_{\mathbf{k}}' + k^2\delta\varphi_{\mathbf{k}} \simeq 0$$

Through a change of variables:

$$f_{\mathbf{k}} \equiv a \,\delta\varphi_{\mathbf{k}} \rightarrow f_{\mathbf{k}}'' + \left(k^2 - \frac{a''}{a}\right) f_{\mathbf{k}} = 0$$

On sub-horizon scales

 $\varphi = \bar{\varphi}(t) + \delta\varphi(\mathbf{x}, t)$

f_k behaves like a harmonic oscillator. Let's quantize it!

2. Quantize fluctuations and get vacuum statistics

Quick review of canonical quantization

1. Promote f_k to operator and split into ladder operators

$$\hat{f}_{\mathbf{k}}(\eta) = f_k(\eta)\hat{a}_{\mathbf{k}} + f_k^*(\eta)\hat{a}_{\mathbf{k}}^{\dagger}$$

2. Quantize fluctuations and get vacuum statistics

Quick review of canonical quantization

1. Promote f_k to operator and split into ladder operators

- 2. Fix normalisation by:
 - a. Ensuring commutation relations of field and conjugate momentum operator.
 - b. Ensuring that field's vacuum state is also lowest-energy eigenstate.

2. Quantize fluctuations and get vacuum statistics

Quick review of canonical quantization

1. Promote f_k to operator and split into ladder operators

$$\hat{f}_{\mathbf{k}}(\eta) = f_{k}(\eta)\hat{a}_{\mathbf{k}} + f_{k}^{*}(\eta)\hat{a}_{\mathbf{k}}^{\dagger}$$

$$f_{k}(\eta) = \frac{e^{-ik\eta}}{\sqrt{2k}}$$

$$\hat{a}_{\mathbf{k}}|0\rangle = 0$$

$$\hat{a}_{\mathbf{k}}|0\rangle = 0$$

- 2. Fix normalisation by:
 - a. Ensuring commutation relations of field and conjugate momentum operator.
 - b. Ensuring that field's vacuum state is also lowest-energy eigenstate.
- 3. Compute field's vacuum statistics

$$\langle \hat{f}_{\mathbf{k}} \rangle \equiv \langle 0 | \hat{f} | 0 \rangle = 0$$

$$\begin{split} \hat{f}_{\mathbf{k}}^{\dagger} \hat{f}_{\mathbf{k}'} \rangle &= \langle 0 | \hat{f}_{\mathbf{k}}^{\dagger} \hat{f}_{\mathbf{k}'} | 0 \rangle = \frac{2\pi^2 \Delta_f^2(k)}{k^3} (2\pi)^3 \delta^D(\mathbf{k} - \mathbf{k}') \\ \Delta_f^2(k) &= \left(\frac{k}{2\pi}\right)^2 - \end{split}$$
 Power spectrum

2. Quantize fluctuations and get vacuum statistics

Quick review of canonical quantization

1. Promote f_k to operator and split into ladder operators

 f_k

 \mathbf{k}'

- 2. Fix normalisation by:
 - a. Ensuring commutation relations of field and conjugate momentum operator.
 - b. Ensuring that field's vacuum state is also lowest-energy eigenstate.

3. Super-horizon perturbations

The behavior of $\delta \varphi_{\mathbf{k}}$ changes after k crosses the Hubble scale. Simplest strategy:

- 1. Relate $\delta \varphi_{\mathbf{k}}$ to $\boldsymbol{\mathcal{R}}_{\mathbf{k}}$ at horizon crossing.
- 2. \mathcal{R}_{k} is then preserved until it crosses back inside the horizon after inflation ends.
- 3. Relate $\mathcal{R}_{\mathbf{k}}$ to all other perturbations of interest (ψ , δ , θ ...) through transfer functions.

$$\mathcal{R} \equiv -\phi - rac{\mathcal{H}(\psi' + \mathcal{H}\phi)}{4\pi G a^2 (\bar{
ho} + \bar{p})}$$

3. Super-horizon perturbations

The behavior of $\delta \varphi_{\mathbf{k}}$ changes after k crosses the Hubble scale. Simplest strategy:

- 1. Relate $\delta \varphi_{\mathbf{k}}$ to $\boldsymbol{\mathcal{R}}_{\mathbf{k}}$ at horizon crossing.
- 2. $\mathcal{R}_{\mathbf{k}}$ is then preserved until it crosses back inside the horizon after inflation ends.
- 3. Relate $\mathcal{R}_{\mathbf{k}}$ to all other perturbations of interest (ψ , δ , θ ...) through transfer functions.

For single-field inflation:

$$\mathcal{R} \equiv -\phi - \frac{\mathcal{H}(\psi' + \mathcal{H}\phi)}{4\pi G a^2(\bar{\rho} + \bar{p})} = -\frac{H}{a\dot{\bar{\varphi}}}f_{\mathbf{k}}$$

3. Super-horizon perturbations

The behavior of $\delta \varphi_{\mathbf{k}}$ changes after k crosses the Hubble scale. Simplest strategy:

- 1. Relate $\delta \varphi_{\mathbf{k}}$ to $\boldsymbol{\mathcal{R}}_{\mathbf{k}}$ at horizon crossing.
- 2. \mathcal{R}_{k} is then preserved until it crosses back inside the horizon after inflation ends.
- 3. Relate $\mathcal{R}_{\mathbf{k}}$ to all other perturbations of interest (ψ , δ , θ ...) through transfer functions.

For single-field inflation:

$$\mathcal{R} \equiv -\phi - \frac{\mathcal{H}(\psi' + \mathcal{H}\phi)}{4\pi G a^2(\bar{\rho} + \bar{p})} = -\frac{H}{a\dot{\varphi}}f_{\mathbf{k}}$$
Using $\Delta_f^2(k) = \left(\frac{k}{2\pi}\right)^2$, and evaluating at $k = aH$:
 $\Delta_{\mathcal{R}}^2(k) = \left.\frac{1}{2M_{\text{Pl}}^2\varepsilon}\left(\frac{H}{2\pi}\right)^2\right|_{k=aH}$,

The primordial power spectrum

$$\Delta_{\mathcal{R}}^2(k) = \left. \frac{1}{2M_{\rm Pl}^2 \varepsilon} \left(\frac{H}{2\pi} \right)^2 \right|_{k=aH},$$

During inflation, both H and ε vary very slowly. Spectrum is almost scale-invariant.

The primordial power spectrum

$$\Delta_{\mathcal{R}}^2(k) = \left. \frac{1}{2M_{\rm Pl}^2 \varepsilon} \left(\frac{H}{2\pi} \right)^2 \right|_{k=aH},$$

During inflation, both H and ε vary very slowly. Spectrum is almost scale-invariant.

Common parametrisation:

$$\Delta_{\mathcal{R}}^2(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}$$

A specific model does not provide a prediction for A_s, but it does for n_s:

$$n_s - 1 = -2\varepsilon - \eta$$

The primordial power spectrum

$$\Delta_{\mathcal{R}}^2(k) = \left. \frac{1}{2M_{\rm Pl}^2 \varepsilon} \left(\frac{H}{2\pi} \right)^2 \right|_{k=aH},$$

During inflation, both H and ε vary very slowly. Spectrum is almost scale-invariant.

Common parametrisation:

$$\Delta_{\mathcal{R}}^2(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1}$$

A specific model does not provide a prediction for A_s , but it does for n_s :

$$n_s - 1 = -2\varepsilon - \eta$$

Latest measurement from *Planck*:

$$n_s - 1 = -0.035 \pm 0.004$$

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) **Homogeneous cosmology.** The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) The CMB. Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Recombination and last scattering

At early times, energetic photons prevent recombination

Recombination and last scattering

At early times, energetic photons prevent recombination

Many free electrons ——— short mean-free path

Recombination and last scattering

Recombination and last scattering

Recombination and last scattering

When does recombination happen?

1. Wild guess: hydrogen ionisation potential χ =13.6 eV.

$$1+z_{\rm rec}=rac{\chi}{k_BT_{\rm CMB}}\sim 5 imes 10^4$$
 Rad. domination?

When does recombination happen?

1. Wild guess: hydrogen ionisation potential χ =13.6 eV.

2. Equilibrium calculation: Saha equation.

$$\frac{n_{\rm HII}n_e}{n_{\rm HI}} = \left(\frac{2\pi m_e k_B T}{h_P^2}\right)^{3/2} e^{-\chi/k_B T}$$

When does recombination happen?

1. Wild guess: hydrogen ionisation potential χ =13.6 eV.

$$1 + z_{\rm rec} = \frac{\chi}{k_B T_{\rm CMB}} \sim 5 \times 10^4 - \text{Rad. domination?}$$

2. Equilibrium calculation: Saha equation.

When does recombination happen?

1. Wild guess: hydrogen ionisation potential χ =13.6 eV.

$$1 + z_{\rm rec} = \frac{\chi}{k_B T_{\rm CMB}} \sim 5 \times 10^4 - \text{Rad. domination?}$$

2. Equilibrium calculation: Saha equation.

$$\frac{n_{\rm HII}n_e}{n_{\rm HI}} = \left(\frac{2\pi m_e k_B T}{h_P^2}\right)^{3/2} e^{-\chi/k_B T} \xrightarrow{\qquad} \frac{x_e^2}{1 - x_e} = \frac{5.8 \times 10^{15}}{\omega_b T_4^{3/2}} e^{-15.8/T_4}$$
$$T_4 \equiv T/(10^4 \,\rm K) \quad \omega_b \equiv \Omega_b h^2$$

- 3. Non-equilibrium corrections due to:
 - Re-absorption
- Lyman- α resonant scattering

x_e	$z_{ m Saha}$	z_{exact}
0.5	1370	1210
0.1	1250	980
0.01	1140	820

Perturbations during recombination

Perturbations during recombination

We need to solve for the evolution of 6 quantities: (δ_c, θ_c) , (δ_b, θ_b) , $(\delta_\gamma, \theta_\gamma)$, ψ

CDM baryons photons potential

Perturbations during recombination

We need to solve for the evolution of 6 quantities:
$$(\delta_c, \theta_c)$$
, (δ_b, θ_b) , $(\delta_\gamma, \theta_\gamma)$, ψ

CDM

$$\delta_c' + \theta_c - 3\phi' = 0, \quad \theta_c' + \mathcal{H}\theta_c - k^2\psi = 0$$

DM uncoupled (except gravitationally)

Perturbations during recombination

We need to solve for the evolution of 6 quantities: (δ_c, θ_c) , (δ_b, θ_b) , $(\delta_\gamma, \theta_\gamma)$, ψ

CDM

$$\delta'_c + \theta_c - 3\phi' = 0, \quad \theta'_c + \mathcal{H}\theta_c - k^2\psi = 0$$

DM uncoupled (except gravitationally)

Baryon + photon fluid $\delta'_{b} + \theta_{b} - 3\phi' = 0, \quad \theta'_{b} + \mathcal{H}\theta_{b} - k^{2}\psi = c_{s,b}^{2}k^{2}\delta_{b} + \frac{4\bar{\rho}_{\gamma}}{3\bar{\rho}_{b}}a n_{e} \sigma_{T}(\theta_{\gamma} - \theta_{b})$ $\delta'_{\gamma} + \frac{4}{3}\theta_{\gamma} - 4\phi' = 0 \quad \theta'_{\gamma} - k^{2}\psi = \frac{1}{4}k^{2}\delta_{\gamma} + a n_{e} \sigma_{T}(\theta_{b} - \theta_{\gamma}), \quad z < z_{rec}: \text{ single, tightly-coupled, viscous fluid}$ $c_{s} \sim 1/\sqrt{3} \longrightarrow \text{ Acoustic waves before recombination.}$

Perturbations during recombination

We need to solve for the evolution of 6 quantities:
$$(\delta_c, \theta_c)$$
, (δ_b, θ_b) , $(\delta_\gamma, \theta_\gamma)$, ψ

CDM

$$\delta'_c + \theta_c - 3\phi' = 0, \quad \theta'_c + \mathcal{H}\theta_c - k^2\psi = 0$$

DM uncoupled (except gravitationally)

Baryon + photon fluid

$$\delta'_{b} + \theta_{b} - 3\phi' = 0, \quad \theta'_{b} + \mathcal{H}\theta_{b} - k^{2}\psi = c_{s,b}^{2}k^{2}\delta_{b} + \frac{4\bar{\rho}_{\gamma}}{3\bar{\rho}_{b}}a \, n_{e} \, \sigma_{T}(\theta_{\gamma} - \theta_{b})$$

$$\delta'_{\gamma} + \frac{4}{3}\theta_{\gamma} - 4\phi' = 0 \quad \theta'_{\gamma} - k^{2}\psi = \frac{1}{4}k^{2}\delta_{\gamma} + a \, n_{e} \, \sigma_{T}(\theta_{b} - \theta_{\gamma}) \stackrel{z < z_{rec}}{=} \text{ single, tightly-coupled, viscous fluid} \\ c_{s} \sim 1/\sqrt{3} \longrightarrow \text{ Acoustic waves before recombination.}$$

Perturbations during recombination

We need to solve for the evolution of 6 quantities: (δ_c, θ_c) , (δ_b, θ_b) , $(\delta_\gamma, \theta_\gamma)$, ψ

CDM

$$\delta'_c + \theta_c - 3\phi' = 0, \quad \theta'_c + \mathcal{H}\theta_c - k^2\psi = 0$$

DM uncoupled (except gravitationally)

Baryon + photon fluid $\delta'_{b} + \theta_{b} - 3\phi' = 0, \quad \theta'_{b} + \mathcal{H}\theta_{b} - k^{2}\psi = c_{s,b}^{2}k^{2}\delta_{b} + \frac{4\bar{\rho}_{\gamma}}{3\bar{\rho}_{b}}a n_{e} \sigma_{T}(\theta_{\gamma} - \theta_{b})$ $\delta'_{\gamma} + \frac{4}{3}\theta_{\gamma} - 4\phi' = 0 \quad \theta'_{\gamma} - k^{2}\psi = \frac{1}{4}k^{2}\delta_{\gamma} + a n_{e} \sigma_{T}(\theta_{b} - \theta_{\gamma}), \quad z < z_{rec}: \text{ single, tightly-coupled, viscous fluid}$ Gravitational potential $k^{2}\psi + 3\mathcal{H}(\psi' + \mathcal{H}\psi) = -4\pi Ga^{2}\bar{\rho}\delta, \qquad c_{s} \sim 1/\sqrt{3} \longrightarrow \text{Acoustic waves before}$ recombination.

Potential set mostly by DM ⁽ at recombination.

Temperature fluctuations

Approximations:

- 1. Instantaneous recombination.
- 2. Temperature from frequency:

Temperature fluctuations

Redshift in perturbed FRW (as we saw in tutorial):

$$\frac{\nu}{\nu_0} = 1 + z = \frac{1}{a} \left[1 - \psi + \psi_0 + \hat{\mathbf{n}} \cdot (\mathbf{v} - \mathbf{v}_0) + \int_{\eta_0}^{\eta} d\eta' \left(\phi' + \psi'\right) \right]$$

Temperature fluctuations

Redshift in perturbed FRW (as we saw in tutorial):

$$\frac{\nu}{\nu_0} = 1 + z = \frac{1}{a} \left[1 - \psi + \psi_0 + \hat{\mathbf{n}} \cdot (\mathbf{v} - \mathbf{v}_0) + \int_{\eta_0}^{\eta} d\eta' \left(\phi' + \psi'\right) \right]$$

Therefore:

$$\left. \frac{\delta T}{T} \right|_{0} = \left(\frac{\delta T}{T} + \psi - \hat{\mathbf{n}} \cdot \mathbf{v} \right)_{\text{rec}} + \int_{\eta_{\text{rec}}}^{\eta_{0}} d\eta (\phi' + \psi').$$

Temperature fluctuations

Redshift in perturbed FRW (as we saw in tutorial):

$$\frac{\nu}{\nu_0} = 1 + z = \frac{1}{a} \left[1 - \psi + \psi_0 + \hat{\mathbf{n}} \cdot (\mathbf{v} - \mathbf{v}_0) + \int_{\eta_0}^{\eta} d\eta' \left(\phi' + \psi'\right) \right]$$

Therefore:

$$\left. \frac{\delta T}{T} \right|_{0} = \left(\frac{\delta T}{T} + \psi - \hat{\mathbf{n}} \cdot \mathbf{v} \right)_{\text{rec}} + \int_{\eta_{\text{rec}}}^{\eta_{0}} d\eta (\phi' + \psi').$$

Stefan-Boltzmann law: $\rho_{\gamma} \propto T^4 \rightarrow \frac{\delta T}{T} = \frac{1}{4} \delta_{\gamma}$

$$\frac{\delta T}{T}(\hat{\mathbf{n}}) = \left(\frac{\delta_{\gamma}}{4} + \psi - \hat{\mathbf{n}} \cdot \mathbf{v}\right) (\eta_{\rm rec}, \chi_{\rm rec} \hat{\mathbf{n}}) + \int_{\eta_{\rm rec}}^{\eta_0} d\eta \, (\phi' + \psi')(\eta, \chi \hat{\mathbf{n}})$$

Temperature fluctuations

ISW:

- Caused by time-varying potentials at early (R-dom) and late (Λ-dom) times.
- Effect on CMB C_{ℓ} from early ISW.
- Late ISW detectable in cross-correlation with low-z probes.

Peak structure (height, frequency, position) governed by r_s , d_A , relative baryon abundance f_b .

Peak structure (height, frequency, position) governed by r_s , d_A , relative baryon abundance f_b . - Ω_b : peak height (through f_b) and frequency (through r_s).

Peak structure (height, frequency, position) governed by r_s , d_A , relative baryon abundance f_h .

- $\Omega_{\rm b}$: peak height (through $f_{\rm b}$) and frequency (through $r_{\rm s}$). $\Omega_{\rm m}$: peak height (through $f_{\rm b}$), frequency (through $r_{\rm s}$), and positions (through $d_{\rm A}$).

Peak structure (height, frequency, position) governed by r_s , d_A , relative baryon abundance f_b .

- $\Omega_{\rm h}$: peak height (through $f_{\rm b}$) and frequency (through $r_{\rm s}$).
- Ω_{m}^{-} : peak height (through f_{b}), frequency (through r_{s}), and positions (through d_{A}).
- Ω_{k}^{m} or Ω_{A}^{-} : peak positions (through d_{A}).

Things I haven't discussed:

- **Finite duration** of recombination (additional damping).

Things I haven't discussed:

- Finite duration of recombination (additional damping).
- CMB polarization:

Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.

Things I haven't discussed:

- **Finite duration** of recombination (additional damping).
- CMB polarization:
 Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.
- B-mode polarization:

A probe of tensor perturbations (gravitational waves from inflation).

Things I haven't discussed:

- **Finite duration** of recombination (additional damping).
- **CMB polarization**: Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.

- B-mode polarization:

A probe of tensor perturbations (gravitational waves from inflation).

- Reionization:

More Thomson scattering at low redshift. Large-scale anisotropies, more polarisation.

Things I haven't discussed:

- **Finite duration** of recombination (additional damping).
- **CMB polarization**: Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.
- B-mode polarization:

A probe of tensor perturbations (gravitational waves from inflation).

- Reionization:

More Thomson scattering at low redshift. Large-scale anisotropies, more polarisation.

- Sunyaev-Zel'dovich:

Inverse Compton scattering by high-energy electrons in galaxy clusters. Spectral distortions.

Things I haven't discussed:

- **Finite duration** of recombination (additional damping).
- **CMB polarization**: Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.
- B-mode polarization:

A probe of tensor perturbations (gravitational waves from inflation).

- Reionization:

More Thomson scattering at low redshift. Large-scale anisotropies, more polarisation.

- Sunyaev-Zel'dovich:

Inverse Compton scattering by high-energy electrons in galaxy clusters. Spectral distortions.

- Primordial non-Gaussianity:

Inflation predicts mostly Gaussian perturbations.

Things I haven't discussed:

- **Finite duration** of recombination (additional damping).
- **CMB polarization**: Polarization-dependent Thomson scattering in unpolarised radiation with quadrupolar anisotropy.
- B-mode polarization:

A probe of tensor perturbations (gravitational waves from inflation).

- Reionization:

More Thomson scattering at low redshift. Large-scale anisotropies, more polarisation.

- Sunyaev-Zel'dovich:

Inverse Compton scattering by high-energy electrons in galaxy clusters. Spectral distortions.

- Primordial non-Gaussianity:

Inflation predicts mostly Gaussian perturbations.

Recommended references:

- Durrer: "The Cosmic Microwave Background"
- Mukhanov: "Physical foundations of cosmology"
- Dodelson: "Modern cosmology"
- Ma & Bertschinger: "Cosmological perturbations"

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) **Homogeneous cosmology.** The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) The CMB. Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

CMB ultimately limited by 2D nature:

$$N_{\rm modes}^{2D} \propto \ell_{\rm max}^2$$

Can we study 3D matter fluctuations after recombination?

$$N_{
m modes}^{3D} \propto V k_{
m max}^3$$

After recombination:

- Dark matter overdensity keeps growing
- Baryons and photons decouple
- Baryons fall into potential wells set by dark matter
- Dark matter + baryons = non-relativistic matter

What does the matter power spectrum look like?

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Key scale: horizon at equality k_{eq}

 $\mathcal{H}^{-1} \sim \eta$

 $\mathcal{H}^{-1} \sim \eta$

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Key scale: horizon at equality k_{eq}

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

$$\psi(k) \propto \begin{cases} \text{const.} & k < k_{\text{eq}} \\ k^{-2} & k > k_{\text{eq}} \end{cases}$$

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Key scale: horizon at equality k_{eq}

$$\psi(k) \propto \begin{cases} \text{const.} & k < k_{\text{eq}} \\ k^{-2} & k > k_{\text{eq}} \end{cases}$$

From Poisson's equation:

 $\delta(k) \propto -a \, k^2 \, \psi(k)$

Evolution of perturbations depends on:

- Horizon scale _
- Era (before or after R-M equality). -

Key scale: horizon at equality k_{eq}

From Poisson's equation:

$$\psi(k) \propto \begin{cases} \text{const.} & k < k_{\text{eq}} \\ k^{-2} & k > k_{\text{eq}} \end{cases}$$
$$\delta(k) \propto -a \, k^2 \, \psi(k)$$
$$\frac{k^3}{2\pi^2} |\psi(k)|^2 \propto k^{n_s - 1}$$

1

Primordial power spectrum:

Evolution of perturbations depends on:

- Horizon scale
- Era (before or after R-M equality).

Key scale: horizon at equality k_{eq}

 $\psi(k) \propto \begin{cases} \text{const.} & k < k_{\text{eq}} \\ k^{-2} & k > k_{\text{eq}} \end{cases}$ From Poisson's equation: $\delta(k) \propto -a k^2 \psi(k)$ Primordial power spectrum: $\frac{k^3}{2\pi^2} |\psi(k)|^2 \propto k^{n_s - 1}$ Therefore: $P_{\delta}(k) \propto |\delta(k)|^2 \propto \begin{cases} k^{n_s} & k \ll k_{\text{eq}} \\ k^{n_s - 4} & k \gg k_{\text{eq}} \end{cases}$

Baryon effects:

- Power decrement (baryons don't accrete before recombination).
- Baryon acoustic oscillations (standard ruler).

Non-linear evolution:

Eventually $\delta_{\mathbf{k}} \gtrsim 1$. PT may help a bit, but it fails fairly quickly.

Non-linear evolution:

Eventually $\delta_{\mathbf{k}} \gtrsim 1$. PT may help a bit, but it fails fairly quickly.

Consequences:

- <u>Non-gaussianity</u>: information leaks into higher-order correlators.
- <u>Coupled evolution</u> of Fourier modes.
- <u>Scale-dependent growth</u>.

Non-linear evolution:

Eventually $\delta_k \gtrsim 1$. PT may help a bit, but it fails fairly quickly. When does it fail? Useful quantity: overdensity variance

Non-linear evolution:

Eventually $\delta_k \gtrsim 1$. PT may help a bit, but it fails fairly quickly. When does it fail? Useful quantity: overdensity variance

 $\sigma(k_{\rm NL}, z) \equiv 1$

Avoiding non-linearities leads to severe limitations in constraining power, especially at z<1.

We must tackle non-linearities!

Tackling non-linearities:

1. <u>Perturbation theory:</u> helps, but doesn't get you very far at low z.

Tackling non-linearities:

- 1. <u>Perturbation theory:</u> helps, but doesn't get you very far at low z.
- 2. <u>Lagrangian PT:</u> study particle motion instead of overdensity. Gets you a bit further.

Tackling non-linearities:

- 1. <u>Perturbation theory:</u> helps, but doesn't get you very far at low z.
- 2. <u>Lagrangian PT:</u> study particle motion instead of overdensity. Gets you a bit further.
- 3. <u>Dimensionality reduction:</u> exact solutions in spherical collapse or 1D symmetry.

Tackling non-linearities:

- 1. <u>Perturbation theory:</u> helps, but doesn't get you very far at low z.
- 2. <u>Lagrangian PT:</u> study particle motion instead of overdensity. Gets you a bit further.
- 3. <u>Dimensionality reduction:</u> exact solutions in spherical collapse or 1D symmetry.
- 4. <u>Halo model</u>: simulation-inspired phenomenology. Non-linear by construction, but needs fudging.

Tackling non-linearities:

- 1. <u>Perturbation theory:</u> helps, but doesn't get you very far at low z.
- 2. <u>Lagrangian PT:</u> study particle motion instead of overdensity. Gets you a bit further.
- 3. <u>Dimensionality reduction:</u> exact solutions in spherical collapse or 1D symmetry.
- 4. <u>Halo model</u>: simulation-inspired phenomenology. Non-linear by construction, but needs fudging.
- 5. <u>Simulation-based emulators:</u> requires expensive suits of sims for different models.

CosmicEmu: https://github.com/lanl/CosmicEmu

Tackling non-linearities:

- 1. <u>Perturbation theory:</u> helps, but doesn't get you very far at low z.
- 2. <u>Lagrangian PT:</u> study particle motion instead of overdensity. Gets you a bit further.
- 3. <u>Dimensionality reduction:</u> exact solutions in spherical collapse or 1D symmetry.
- 4. <u>Halo model</u>: simulation-inspired phenomenology. Non-linear by construction, but needs fudging.
- 5. <u>Simulation-based emulators:</u> requires expensive suits of sims for different models. Potentially most robust way forward.

CosmicEmu: https://github.com/lanl/CosmicEmu

Outline

Lesson 1: background cosmology and Newtonian perturbations

- a) **Homogeneous cosmology.** The FRW metric. Distances and redshift. The Friedman Equation.
- b) **Newtonian perturbations.** The perturbation equations. Linear theory. Jeans equation and growth.
- c) **Relativistic perturbations.** Gauge-invariant PT. Hydrodynamic perturbations. Qualitative behavior.

Lesson 2: Inflation

- a) Inflation. The curvature and horizon problems. Scalar fields. Slow roll.
- b) **Perturbations from inflation.** Inflationary PT. Random fields. The primordial power spectrum.

Lesson 3: cosmological probes of structure

- a) **The CMB.** Recombination. Temperature anisotropies. Scattering and polarization.
- b) The matter power spectrum. The linear power spectrum. Non-linearities
- c) Gravitational lensing. Geodesics. Galaxy lensing. CMB lensing.

Probes of $\delta_{\rm M}$

There are many *indirect* probes of matter:

- Galaxy density
- Gas pressure/density (Sunyaev Zel'dovich, Lyman-α, 21cm)

Probes of $\delta_{\rm M}$

There are many *indirect* probes of matter:

- Galaxy density
- Gas pressure/density (Sunyaev Zel'dovich, Lyman- α , 21cm)

Main *direct* probe: gravitational lensing

Probes of $\delta_{\rm M}$

There are many *indirect* probes of matter:

- Galaxy density
- Gas pressure/density (Sunyaev Zel'dovich, Lyman- α , 21cm)

Main *direct* probe: gravitational lensing

Weak lensing: gravity causes only small variations to photon path.

Weak lensing

Starting point: geodesic equation

$$\mathbf{x}(\eta) = -\hat{\mathbf{e}}_0 \int_{\eta}^{\eta_0} d\eta' \left(1 + \phi + \psi\right) - \int_{\eta}^{\eta_0} d\eta' (\eta' - \eta) \nabla_{\perp} (\phi + \psi)$$

Weak lensing

Starting point: geodesic equation

$$\mathbf{x}(\eta) = -\hat{\mathbf{e}}_0 \int_{\eta}^{\eta_0} d\eta' \left(1 + \phi + \psi\right) - \int_{\eta}^{\eta_0} d\eta' (\eta' - \eta) \nabla_{\perp}(\phi + \psi)$$

1. Project onto transverse space and writing in terms of angular separation:

$$\delta \vec{\theta} = \int_0^{\chi_s} d\chi \left(1 - \frac{\chi}{\chi_s} \right) \, \nabla_\perp (\phi + \psi)$$

Weak lensing

Starting point: geodesic equation

$$\mathbf{x}(\eta) = -\hat{\mathbf{e}}_0 \int_{\eta}^{\eta_0} d\eta' \left(1 + \phi + \psi\right) - \int_{\eta}^{\eta_0} d\eta' (\eta' - \eta) \nabla_{\perp}(\phi + \psi)$$

1. Project onto transverse space and writing in terms of angular separation:

$$\delta \vec{\theta} = \int_0^{\chi_s} d\chi \left(1 - \frac{\chi}{\chi_s} \right) \, \nabla_\perp (\phi + \psi)$$

2. Pull out angular derivative

$$\delta \vec{\theta} = \nabla_{\theta} \Phi_L, \qquad \Phi_L(\hat{\mathbf{n}}, \chi_s) \equiv \int_0^{\chi_s} d\chi \frac{\chi_s - \chi}{\chi_s \chi} (\phi + \psi)$$

"Lensing potential"

Weak lensing

Starting point: geodesic equation

$$\mathbf{x}(\eta) = -\hat{\mathbf{e}}_0 \int_{\eta}^{\eta_0} d\eta' \left(1 + \phi + \psi\right) - \int_{\eta}^{\eta_0} d\eta' (\eta' - \eta) \nabla_{\perp}(\phi + \psi)$$

1. Project onto transverse space and writing in terms of angular separation:

$$\delta \vec{\theta} = \int_0^{\chi_s} d\chi \left(1 - \frac{\chi}{\chi_s} \right) \, \nabla_\perp (\phi + \psi)$$

2. Pull out angular derivative

$$\delta \vec{\theta} = \nabla_{\theta} \Phi_L, \qquad \Phi_L(\hat{\mathbf{n}}, \chi_s) \equiv \int_0^{\chi_s} d\chi \, \frac{\chi_s - \chi}{\chi_s \chi} (\phi + \psi)$$

3. Flat-sky approximation (for simplicity):

$$f(\vec{\theta}) = \int \frac{d\mathbf{l}^2}{(2\pi)^2} e^{i\mathbf{l}\cdot\vec{\theta}}, \quad f_{\mathbf{l}} \equiv \int d\vec{\theta}^2 f(\hat{\mathbf{n}}) e^{-i\mathbf{l}\cdot\vec{\theta}}$$

Convergence and shear

Shifts described by displacement $\delta \vec{\theta} = \nabla_{\theta} \Phi_L$,

Convergence and shear

Shifts described by displacement $\delta \vec{\theta} = \nabla_{\theta} \Phi_L$,

Changes to extended sources described by second derivatives: $H_{ij} \equiv \partial_{\theta_i} \partial_{\theta_j} \Phi_L$ Separate into:

- <u>Convergence</u> κ == trace == Laplacian: describes changes to source area.

Convergence and shear

Shifts described by displacement $\delta \vec{\theta} = \nabla_{\theta} \Phi_L$,

Changes to extended sources described by second derivatives: $H_{ij} \equiv \partial_{\theta_i} \partial_{\theta_j} \Phi_L$ Separate into:

- <u>Convergence</u> κ == trace == Laplacian: describes changes to source area.
- <u>Shear</u> (γ_1, γ_2) == traceless part: describes shape changes (with constant area)

Convergence and shear

Shifts described by displacement $\delta \vec{\theta} = \nabla_{\theta} \Phi_L$,

Changes to extended sources described by second derivatives: $H_{ij} \equiv \partial_{\theta_i} \partial_{\theta_j} \Phi_L$ Separate into:

- <u>Convergence</u> κ == trace == Laplacian: describes changes to source area.
- <u>Shear</u> (γ_1, γ_2) = traceless part: describes shape changes (with constant area)

$$\mathsf{H} = \begin{pmatrix} \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & \kappa - \gamma_1, \end{pmatrix}$$

Shear can be transformed into convergence: $\kappa_1 \equiv \gamma_{1,1} \frac{l_x^2 - l_y^2}{l_x^2 + l_y^2} + \gamma_{2,1} \frac{2l_x l_y}{l_x^2 + l_y^2}$

Convergence and shear

Shifts described by displacement $\delta \vec{\theta} = \nabla_{\theta} \Phi_L$,

Changes to extended sources described by second derivatives: $H_{ij} \equiv \partial_{\theta_i} \partial_{\theta_j} \Phi_L$ Separate into:

- <u>Convergence</u> κ == trace == Laplacian: describes changes to source area.
- <u>Shear</u> (γ_1, γ_2) = traceless part: describes shape changes (with constant area)

$$\mathsf{H} = \begin{pmatrix} \kappa + \gamma_1 & \gamma_2 \\ \gamma_2 & \kappa - \gamma_1, \end{pmatrix}$$

Shear can be transformed into convergence: $\kappa_1 \equiv \gamma_{1,1} \frac{l_x^2 - l_y^2}{l_x^2 + l_y^2} + \gamma_{2,1} \frac{2l_x l_y}{l_x^2 + l_y^2}$

Convergence can be related to matter overdensity:

$$\kappa(\hat{\mathbf{n}},\chi_s) = \frac{3}{2} H_0^2 \Omega_m \int_0^{\chi_s} d\chi \, \frac{\chi}{a(\chi)} \, \frac{\chi_s - \chi}{\chi_s} \, \delta(\chi \hat{\mathbf{n}},\eta)$$

Probes: 1. Galaxy lensing

Lensing modifies galaxy ellipticity in a correlated manner

 $(\varepsilon_1, \varepsilon_2) = 2(\gamma_1, \gamma_2)$

Map mean galaxy ellipticity == map shear.

Probes: 1. Galaxy lensing

Lensing modifies galaxy ellipticity in a correlated manner

 $(\varepsilon_1, \varepsilon_2) = 2(\gamma_1, \gamma_2)$

Map mean galaxy ellipticity == map shear.

Requirements:

- High number density
- Deep and wide surveys
- Excellent imaging resolution for shape measurement.

Probes: 1. Galaxy lensing

Lensing modifies galaxy ellipticity in a correlated manner

 $(\varepsilon_1, \varepsilon_2) = 2(\gamma_1, \gamma_2)$

Map mean galaxy ellipticity == map shear.

Requirements:

- High number density
- Deep and wide surveys
- Excellent imaging resolution for shape measurement.

Lensing also changes galaxy positions and fluxes. Modification to galaxy overdensity:

$$\delta_g^\mu = (5s - 2)\kappa$$

"Magnification bias" /

Probes: 2. CMB lensing

Lensing modifies the trajectories of CMB photons. The effect is second-order, but detectable at high significance.

$$\delta T(\vec{\theta}) = \delta T_u(\vec{\theta} - \delta \vec{\theta}) \simeq \delta T_u(\vec{\theta}) - \nabla_{\theta} \Phi_L(\vec{\theta}) \cdot \nabla_{\theta} \delta T_u(\vec{\theta})$$

Lesson 3 c) Gravitational lensing

Probes: 2. CMB lensing

Lensing modifies the trajectories of CMB photons. The effect is second-order, but detectable at high significance.

$$\delta T(\vec{\theta}) = \delta T_u(\vec{\theta} - \delta \vec{\theta}) \simeq \delta T_u(\vec{\theta}) - \nabla_{\theta} \Phi_L(\vec{\theta}) \cdot \nabla_{\theta} \delta T_u(\vec{\theta})$$

Lensing can be thought of as breaking statistical isotropy. Causes unequal-mode correlations:

$$\langle \delta T_{\mathbf{l}} \delta T_{\mathbf{l}'}^* \rangle_{\Phi_L} = \Phi_{L,\mathbf{l}-\mathbf{l}'} \left(\mathbf{l} - \mathbf{l}'\right) \cdot \left(\mathbf{l} C_{\ell}^T - \mathbf{l}' C_{\ell'}^T\right)$$

Lesson 3 c) Gravitational lensing

Probes: 2. CMB lensing

Lensing modifies the trajectories of CMB photons. The effect is second-order, but detectable at high significance.

$$\delta T(\vec{\theta}) = \delta T_u(\vec{\theta} - \delta \vec{\theta}) \simeq \delta T_u(\vec{\theta}) - \nabla_{\theta} \Phi_L(\vec{\theta}) \cdot \nabla_{\theta} \delta T_u(\vec{\theta})$$

Lensing can be thought of as breaking statistical isotropy. Causes unequal-mode correlations:

$$\langle \delta T_{\mathbf{l}} \delta T_{\mathbf{l}'}^* \rangle_{\Phi_L} = \Phi_{L,\mathbf{l}-\mathbf{l}'} \left(\mathbf{l} - \mathbf{l}'\right) \cdot \left(\mathbf{l} C_{\ell}^T - \mathbf{l}' C_{\ell'}^T\right)$$

Idea: reconstruct Φ_1 from pairs of Fourier modes (quadratic estimator):

$$\hat{\Phi}_{L,\mathbf{L}} = \int \frac{d^2 \mathbf{l}}{(2\pi)^2} \delta T_{\mathbf{l}} \, \delta T_{\mathbf{l}-\mathbf{L}} \, g(\mathbf{l},\mathbf{L})$$

Lesson 3 c) Gravitational lensing

Probes: 2. CMB lensing

Idea: reconstruct Φ_{I} from pairs of Fourier modes (quadratic estimator):

$$\hat{\Phi}_{L,\mathbf{L}} = \int \frac{d^2 \mathbf{l}}{(2\pi)^2} \delta T_{\mathbf{l}} \, \delta T_{\mathbf{l}-\mathbf{L}} \, g(\mathbf{l},\mathbf{L})$$

Resulting map contains information about structure growth since recombination!

Fundamental physics from cosmology

1. CMB: primordial gravitational waves from B-mode polarization.

2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity

Fundamental physics from cosmology

- CMB: primordial gravitational waves from B-mode polarization.
 <u>Problem:</u> Galactic foregrounds dominate the B-mode signal. How will we believe a detection? Precise understanding of dust/synchrotron emission in MW.
- 2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity

Fundamental physics from cosmology

- CMB: primordial gravitational waves from B-mode polarization.
 <u>Problem:</u> Galactic foregrounds dominate the B-mode signal. How will we believe a detection? Precise understanding of dust/synchrotron emission in MW.
- 2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity <u>Problems:</u>
 - Lensing: intrinsic galaxy alignments, AGN feedback
 - Galaxy clustering: how do galaxies relate to matter?
 - 21cm: Galactic foregrounds dominate by many orders of magnitude.

How will we believe a detection? Precise understanding of galaxy formation and evolution.

Fundamental physics from cosmology

- 1. CMB: primordial gravitational waves from B-mode polarization. How will we believe a detection? Precise understanding of dust/synchrotron emission in MW.
- 2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity How will we believe a detection? Precise understanding of galaxy formation and evolution.

Fundamental physics from cosmology

- 1. CMB: primordial gravitational waves from B-mode polarization. How will we believe a detection? Precise understanding of dust/synchrotron emission in MW.
- 2. Large-scale structure: dark energy, massive neutrinos, primordial non-Gaussianity How will we believe a detection? Precise understanding of galaxy formation and evolution.

