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FIG. 1: We consider a PEPS state on a square lattice. a) Section of the PEPS on region A ✓ ⇤,
b) Graphical representation of the tensors T k

j1,j2,j3,j4 , c) representation of the operator VA on a one
dimensional lattice. The operator is to be read as mapping virtual indices (from the right) to physical
indices (to the left).

If instead there are edges connecting ⇤ with its complement in (G, V ), then we obtain a
state in H⇤ for each choice of “boundary condition”, in the following sense: denote with
E⇤̄ the edges which are incident to ⇤, with E⇤ the edges with are contained in ⇤, and with
@⇤ = E⇤̄ \E⇤ the edges that connect ⇤ with its complement. Let H@⇤ =

N
e2@⇤ HD (note

that while at each edge we associated |!ei 2 HD ⌦HD, we are only including one copy of
HD in H@⇤). Then for each vector |Xi 2 H@⇤ we can define a state

|PEPS⇤,Xi = hX|

O

v2⇤

Tv

O

e2E⇤̄

|!ei . (4)

This defines a linear map from H@⇤ to H⇤, which we will denote with V⇤. It is a mapping
from the virtual indices at the boundary of ⇤ to the physical indices in the bulk of ⇤ (see
Fig. 1 for an illustration):

V⇤ :H@⇤ ! H⇤

|Xi 7! |PEPS⇤,Xi .

A PEPS is said to be injective on ⇤ [52] if V⇤ is an injective map. As shown in Ref. [52], if a
PEPS is injective on disjoint regions A and B, it is also injective on A[B, so we will simply
assume, up to coarse graining of the lattice, that V⇤ is injective for every finite ⇤.

Again following Ref. [52], for any injective PEPS, we can define a local Hamiltonian,
called the parent Hamiltonian, for which the PEPS is the unique groundstate. This is done
by considering, for each edge e = (a, b), the orthogonal projector he on the orthogonal
complement of ImV{a,b}. Then H⇤ =

P
(a,b)2E⇤

he is a local Hamiltonian, and clearly
H⇤ |PEPS⇤,Xi = 0. H⇤ is frustration-free: i.e. he |PEPS⇤,Xi = 0 for all e 2 E⇤.

It will be very important for us to talk about sub-regions of the lattice A ✓ ⇤, and to
consider the associated local ground subspace GA = {|'i 2 H⇤ |HA |�i = 0} = ImVA,
for HA =

P
e2EA

he. We will denote with PA the orthogonal projector on GA. Because
of frustration freeness, for any A ✓ B ✓ ⇤, we have G⇤ ✓ GB ✓ GA, and therefore
PAPB = PB = PBPA.

At times, we will need to refer to Hamiltonians both in the bulk (2D) and at the boundary
(1D). In order to avoid confusion, we will always denote one dimensional boundary Hamil-
tonians by the letters Q,R, S, T , while the parent Hamiltonian of the PEPS will always be
referred to as H .
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Again following Ref. [52], for any injective PEPS, we can define a local Hamiltonian,
called the parent Hamiltonian, for which the PEPS is the unique groundstate. This is done
by considering, for each edge e = (a, b), the orthogonal projector he on the orthogonal
complement of ImV{a,b}. Then H⇤ =

P
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he is a local Hamiltonian, and clearly
H⇤ |PEPS⇤,Xi = 0. H⇤ is frustration-free: i.e. he |PEPS⇤,Xi = 0 for all e 2 E⇤.

It will be very important for us to talk about sub-regions of the lattice A ✓ ⇤, and to
consider the associated local ground subspace GA = {|'i 2 H⇤ |HA |�i = 0} = ImVA,
for HA =

P
e2EA

he. We will denote with PA the orthogonal projector on GA. Because
of frustration freeness, for any A ✓ B ✓ ⇤, we have G⇤ ✓ GB ✓ GA, and therefore
PAPB = PB = PBPA.

At times, we will need to refer to Hamiltonians both in the bulk (2D) and at the boundary
(1D). In order to avoid confusion, we will always denote one dimensional boundary Hamil-
tonians by the letters Q,R, S, T , while the parent Hamiltonian of the PEPS will always be
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Bulk gap                      locality of boundary Hamiltonian



Bulk-Boundary correspondence in PEPS 
Cirac et al 2011.
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Boundary state

PA = ρ
∂A
−1ρ

∂A

PA ψ =

=

… = ψ

Orthogonal projector

H = (1− Pi )
i
∑



Boundary state

It is a mixed 1D state living on the virtual d.o.f. 
Mediates the correlations in the system 
Defines the parent Hamiltonian of the state
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B. Boundary states of PEPS

FIG. 2: Setup of the boundary state in one and two dimensions. The arrows indicate the input and
output directions for the (unnormalized) boundary density matrix ⇢@A.

The main conceptual contribution of this paper is that ‘boundary states’ play a very impor-
tant role in the analysis of ground state projectors for PEPS. These will be (unnormalized)
positive operators acting on the virtual space associated with the edges connecting a region
A and its complement. They are obtained by contracting the physical indices inside A, and
leaving the virtual indices at the boundary open, as depicted in Fig. 2.

Definition 2. For a finite region A ✓ ⇤, the boundary state of A is

⇢@A := V †
AVA 2 B(H@A). (5)

Moreover, we define the following linear operator WA : H@A ! HA

WA = VA⇢
�1/2
@A , (6)

where the inverse is taken on the support of ⇢@A if it is not full rank.

Remark 3. Some properties of ⇢@A and WA follow immediately from the definition

1. ⇢@A is positive semi-definite;

2. ker ⇢@A = kerVA, and in particular ⇢@A > 0 if the PEPS is injective;

3. WAW
†
A = VA⇢

�1
@AV

†
A = PA;

4. W †
AWA = (kerVA)? , and therefore WA is a unitary from (kerVA)? to ImVA, and a

partial isometry from H@A to HA (an isometry if the PEPS is injective).

The only point which might not be immediately clear from the definition is the fact that
PA = WAW

†
A: this can be shown by observing that WAW

†
A is a projector, which commutes

with PA since PAVA = VA, and has exactly the same image space as VA (and thus PA).
Remark 4. The entanglement spectrum is the spectrum of the reduced density matrix of a
pure state [25]. In the case where ⇤ has no outgoing edges, the entanglement spectrum is
related to the boundary state in the following way: call Ac = ⇤ \A and note that

trAc [|PEPS⇤i hPEPS⇤|] = VA⇢@AcV †
A

= WA⇢
1/2
@A ⇢@Ac⇢1/2@AW †

A. (7)



Spectral gap via boundary state
M. Kastoryano, A. Lucia, DPG, Commun. Math. Phys. (2019) 366: 895 



Spectral gap in PEPS

Conjecture Cirac et al. 2011 (numerical evidence): the parent Hamiltonian of the PEPS has 
gap if and only if the boundary state is the Gibbs state of a short-range Hamiltonian. 

Intuition. Araki’s theorem: Gibbs state of finite range 1D Hamiltonians have exponentially 
decaying correlations

Remember that boundary states mediate the correlations in a PEPS.
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Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

A B C

The case of exact factorization implies that the Hamiltonian terms (1-Pi) commute with 
each other and hence the system is gapped. (Remember boundary states define the 
Hamiltonian terms)  

The approximate case reduces to the martingale condition of Nachtergaele. 

Martingale condition is equivalent to gap (Lucia, Kastoryano)

A 1D state is approximately factorizable if    ρABC ≈ ΛAB ΩBC
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Spectral gap in PEPS

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

Theorem 2: Gibbs states of finite range Hamiltonians are approximately factorizable.  

e−βH ≈

=

Kuwahara, Alhambra, Anshu, arXiv:2007.11174
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Spectral gap in PEPS

Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian 
is gapped.

Question: Is Theorem 2 true for exponentially-decaying interactions? 

Question: Is Araki’s theorem true for exponentially-decaying interactions? 

I.e, does there exist thermal phase transitions in 1D with exponentially decaying 
interactions? 

Theorem 2: Gibbs states of finite range Hamiltonians are approximately factorizable.  
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Let H be a 1D translational invariant Hamiltonian and assume that the interaction strength 
decays as , then both Araki’s theorem and Theorem 2 are true for all exp(−αℓ) 0 < β < λ
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Spectral gap in PEPS

Still possible to have thermal phase transitions in 1D systems with short range 
interactions.  

How sharp / useful is our gap criterion?

Theorem 3 (DPG, A. Pérez-Hernández, arXiv:2004.10516):  
Let H be a 1D translational invariant Hamiltonian and assume that the interaction strength 
decays as , then both Araki’s theorem and Theorem 2 are true for all exp(−αℓ) 0 < β < λ



Lifetime of topological quantum memories
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Quantum memories

Take a 2D topological model with finite range commuting Hamiltonian  

E.g Kitaev’s quantum double of a group G (Toric code for  ). 

Assume thermal noise (weak coupling limit). Evolution given by Linbladian:  

Htop

G = ℤ2

ρt = et ℒβ (ρ0)

How long does it take to reach  ?ρ∞ = e−βHtop

Information is lost
Short memory time ⇔ Gap(ℒβ) ≥ cβ > 0, for all β
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Quantum memories

Previous results for 2D quantum memories:

Alicki, Fannes, Horodecki 2007. For the Toric code: Gap(ℒβ) ≥ cβ > 0, for all β

Landon-Cardinal, Poulin 2013. Constant energy barrier

Brown, Al-Shimary, Pachos 2014. Constant energy barrier could still allow for  
long memory times (entropy protection).

Komar, Landon-Cardinal, Temme 2016.  
For abelian models constant energy barrier implies   Gap(ℒβ) ≥ cβ > 0, for all β

What about the non-abelian case?
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Apply our condition (“easy” to check it in this case).
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