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Bulk gap <«——» locality of boundary Hamiltonian



Bulk-Boundary correspondence in PEPS
Cirac et al 2011.
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Boundary state

It is @ mixed 1D state living on the virtual d.o.f.
Mediates the correlations in the system
Defines the parent Hamiltonian of the state




Spectral gap via boundary state

M. Kastoryano, A. Lucia, DPG, Commun. Math. Phys. (2019) 366: 895



Spectral gap in PEPS

Conjecture Cirac et al. 2011 (numerical evidence): the parent Hamiltonian of the PEPS has
gap if and only if the boundary state is the Gibbs state of a short-range Hamiltonian.

Intuition. Araki’s theorem: Gibbs state of finite range 1D Hamiltonians have exponentially
decaying correlations

Remember that boundary states mediate the correlations in a PEPS.
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Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian
is gapped.

A 1D state is approximately factorizable if p,pc = Asp Q2pc

ﬁhe case of exact factorization implies that the Hamiltonian terms (1-P,) commute with \

each other and hence the system is gapped. (Remember boundary states define the
Hamiltonian terms)

The approximate case reduces to the martingale condition of Nachtergaele.

Wartingale condition is equivalent to gap (Lucia, Kastoryano) /
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{Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian }
is gapped.

[ Theorem 2: Gibbs states of finite range Hamiltonians are approximately factorizable. }

* Kuwahara, Alhambra, Anshu, arXiv:2007.11174
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Theorem 1: If the boundary state is approximately factorizable, then the bulk Hamiltonian
is gapped.

[ Theorem 2: Gibbs states of finite range Hamiltonians are approximately factorizable.

Question: Is Theorem 2 true for exponentially-decaying interactions? 1
\

/

Question: Is Araki’s theorem true for exponentially-decaying interactions?

l.e, does there exist thermal phase transitions in 1D with exponentially decaying
\_interactions? Y,
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Theorem 3 (DPG, A. Pérez-Hernandez, arXiv:2004.10516): A
Let H be a 1D translational invariant Hamiltonian and assume that the interaction strength
decays as exp(—a?’), then both Araki’s theorem and Theorem 2 are true forall0 < f < 4

— W,

Still possible to have thermal phase transitions in 1D systems with short range
interactions.

How sharp / useful is our gap criterion?
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Quantum memories

Take a 2D topological model with finite range commuting Hamiltonian HtOp

E.g Kitaev’s quantum double of a group G (Toric code for G = Z, ).

Assume thermal noise (weak coupling limit). Evolution given by Linbladian:

Pt = e' (Po)

How long does it take to reach p_, = e PHhop 7

\

Information is lost
Short memory time < Gap(Zy) > ¢z > 0, for all j
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Quantum memories

Previous results for 2D quantum memories:

Alicki, Fannes, Horodecki 2007. For the Toric code: Gap(gﬁ) > cp> 0, for all §
Landon-Cardinal, Poulin 2013. Constant energy barrier

Brown, Al-Shimary, Pachos 2014. Constant energy barrier could still allow for
long memory times (entropy protection).

Komar, Landon-Cardinal, Temme 2016.
For abelian models constant energy barrier implies Gap(ffﬂ) > Ccp > 0, forall

What about the non-abelian case?
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Theorem 4 (A. Lucia, DPG, A. Pérez-Hernandez, in preparation):
For all (even non abelian) quantum double models Gap(fZﬂ) > cp > 0, forall #

~

),

Proof:

Consider e PHiop

Since H.__ is made of commuting terms, e PP is a PEPO.

top
At each site we do a partial transposition: | - Y{ - | = |- )| )

We obtain a PEPS, called the thermofield double | TMD )

Gap <HTMDﬁ> = Gap (ffﬂ)

Apply our condition (“easy” to check it in this case).
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