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Introduction

Projected entangled-pair states (PEPS) are 
variational wavefunctions for 2-D lattice systems

ground-state wavefunctions for 2-D quantum lattice systems
(spins, bosons, electrons)

formulated directly in the 
thermodynamic limit

transfer-matrix fixed points for 3-D stat-mech systems

parametrized by a single 
local tensor
(larger unit cells possible)
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Example: dimer-covering problem

Tensor network that sums all allowed configurations

with

dimer rule on 
the vertices

how does this number scale with system size?



 

Introduction

Example: dimer-covering problem

with

boundary MPS 
(D=250, laptop) 

exact 

Baxter’s CTMRG
(D=6, IBM-360)

Baxter 1968

Contraction of infinite network gives extremely precise results
(this is a critical model)

variational results!



 

Introduction

Example: dimer-covering problem

with the tensor

plane-to-plane transfer matrix



 

Introduction

Example: dimer-covering problem

approximate the fixed point of the transfer matrix as a PEPS

eigenvalue scales as

such that entropy density is given byhow do we optimize PEPS fixed 
points, and how do extrapolate data?
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Variational optimization

An optimal PEPS approximation is characterized by the variational principle

for quantum Hamiltonians

gradient-based methods were developed that optimize 
the variational cost function directly

for transfer matrices

similar gradient-based method for optimization

Corboz, PRB 94, 035133 (2016)
LV,  Haegeman, Corboz, Verstraete, PRB 94, 155123 (2016)

Nishino et al, Nucl. Phys. B 575, 504 (2000)
LV, Vanhecke, Verstraete, PRE 98, 042145 (2018)
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Direct variational optimization of the free energy 

top view

evaluation of the variational cost function 
requires the contraction of an infinite three-
layer tensor network
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Variational optimization

Evaluation of the variational cost function requires the contraction of an infinite three-
layer tensor network

approximate the boundary of the 1-D transfer matrix as an MPS

apply the variational principle for the boundary contraction

1-D transfer matrix



 

Variational optimization

Apply the variational principle for the boundary contraction

with

the transfer matrix has to be hermitian!

Impose symmetry constraints on the PEPS tensors

implies that transfer matrix is hermitian, 
and we can use variational algorithms



 

Variational optimization

Hierarchy of variational principles

boundary PEPS 

boundary MPS

control parameter: PEPS bond dimension D 

control parameter: MPS bond dimension χ

We can characterize a variational optimum for given values of (D,χ)

independent of contraction or optimization algorithm!



 

Variational optimization

In practice, optimizing both variational principles can be done

boundary PEPS: gradient optimization (e.g., BLGS)

boundary MPS: vumps algorithm finds variational optimum

“Hellmann-Feynman theorem”: thanks to variational principle for the 
environment, the differentials of the environment tensors vanish



 

Overview

Introduction: PEPS for 2-D quantum systems and 3-D stat-mech

Variational optimization of PEPS fixed points

PEPS for critical systems: a scaling hypothesis

Outlook

Bram Vanhecke, Juraj Hasik, Frank Verstraete, LV
arXiv:2102.03143

Laurens Vanderstraeten A scaling hypothesis for PEPS



 

PEPS for critical systems

Finite-entanglement scaling in MPS

for certain bond dimension, use effective 
correlation length as characteristic length scale

Nishino, Okunishi, Kikuchi, Phys. Lett. A 213, 69 (1996)

Tagliacozzo, de Oliveira, Iblisdir, Latorre, 
Phys. Rev. B 78, 024410 (2008)

Pollmann, Mukerjee, Turner, Moore,
PRL 102, 25570 (2009)For PEPS, situation is more complicated

two control parameters: two-step extrapolation?

algorithms give different results

- contraction: CTMRG, boundary-MPS, TRG and variations
- PEPS optimization: simple update, full update, variational optimization

high computational cost to get data points

Finite-size scaling in Monte-Carlo or exact diagonalization



 

PEPS for critical systems

Recently, a two-step procedure was proposed for extrapolating data

use variational optimization of PEPS tensors, 
with χ large enough to get convergence

find PEPS correlation length by extrapolating 
environment bond dimension 

Corboz, Czarnik, Kapteijns, Tagliacozzo, 
PRX 8, 6031031 (2018)

Rader, Läuchli, PRX 8, 031030 (2018)

(taken from Rader & Läuchli)

needs very large χ to get a single data point 
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A scaling hypothesis for PEPS

place finite-D and finite-χ on an equal footing



 

PEPS for critical systems

A scaling hypothesis for PEPS

characterize optimum by variational principles
for boundary PEPS and boundary MPS

extract correlation length from boundary MPS, 
and formulate scaling hypothesis

This approach is a lot more efficient

- one can get meaningful data for small χ

- a lot more data points for extrapolations

single effective length scale that models both finite-D and finite-χ effects

place finite-D and finite-χ on an equal footing

Procedure
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Application: classical 3-D Ising model



 

PEPS for critical systems

Application: classical 3-D Ising model

generate a lot of data points for different (D,χ)

apply scaling hypothesis to get data collapse

optimize data collapse 
for critical temperature

current world record for TN, 
dixit Nishino
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PEPS for critical systems

Application: 3-D dimer covering problem

generate a lot of data points for different (D,χ)
and plot entropy vs inverse correlation length

We get unpredecented precision on the dimer entropy

compare to best MC result

Beichl, Sullivan, J. Comp. Phys. 149, 128 (1999)



 

PEPS for critical systems

Application: 3-D dimer covering problem

generate a lot of data points for different (D,χ)
and plot entropy vs inverse correlation length

We get unpredecented precision on the dimer entropy

compare to best MC result

Beichl, Sullivan, J. Comp. Phys. 149, 128 (1999)

D=2
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PEPS for critical systems

We can do the same procedure for 2-D quantum systems

optimize PEPS tensor for variational energy, 
evaluated with fixed environment bond dimension 

use backwards differentiation for the cost function

open-source software package for backwards 
differentiation of CTMRG contraction

J. Hasik and G. B. Mbeng, “peps-torch” (2020)

Liao, Liu, Wang, Xiang, PRX 9, 031041 (2019)
Hasik, Poilblanc, Becca, SciPost Phys. 10, 012 (2021)



 

PEPS for critical systems

Application: 2-D quantum Heisenberg model

optimize PEPS for different (D,χ)

energy/magnetisation vs inverse correlation 
length nicely collapses on a single curve

get extrapolated values 

compare to MC values

Sandvik, PRB 56, 11678 (1997)
Sandvik, Evertz, PRB 82, 024407 (2010)
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Outlook

Accurate PEPS simulations of (3+0)-D or (2+1)-D critical theories are possible

optimize at finite (D,χ) through variational principles

extract a single effective length scale from 
optimized PEPS and environment

scaling hypothesis



 

Outlook

Accurate PEPS simulations of (3+0)-D critical theories are possible

What about (3+1)-D systems?

3 control parameters, 3-step hierarchy of variational 
principles, single effective length scale?

More exotic critical points

what ground states do not permit such 
a parametrization?

Symmetry constraints on PEPS tensor

optimize at finite (D,χ) through variational principles

extract a single effective length scale from 
optimized PEPS and environment

scaling hypothesis



 

Thank you!
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