Detecting fractional Chern insulators

in few-boson systems

Cécile Repellin, LPMMC

Entanglement in strongly correlated systems

Benasque online workshop

February 23 2021

Acknowledgements

Nathan Goldman ULB

Julian Léonard Harvard

CR, J. Léonard, N. Goldman, Phys. Rev. A 102 (6), 063316 (2020)

Fractional Chern Insulators

- Fractional Quantum Hall effect
 - · Large magnetic field + strong interactions in 2D
 - · Emergent collective excitations : anyons

Fractional Chern Insulators

- Fractional Quantum Hall effect
 - · Large magnetic field + strong interactions in 2D
 - · Emergent collective excitations : anyons

- Fractional Chern insulators
 - FQHE on a lattice with no magnetic field
 - More than FQHE

٠

٠

Engineering Fractional Chern Insulators

- Good understanding of emergence conditions of FCIs
- Design platforms where we can control the microscopic parameters

such as cold atom in optical lattices

Detection methods in engineered quantum matter ?

Engineering Fractional Chern Insulators

- Good understanding of emergence conditions of FCIs
- Design platforms where we can control the microscopic parameters

such as cold atom in optical lattices

Detection methods in engineered quantum matter ?

 $\sigma_H = \frac{1}{2} \frac{e^2}{h} \rightarrow$ How to measure the Hall conductivity of fractional Chern insulators ?

The challenge of preparing a state with topological order

No direct cooling down to the topological ground state

The challenge of preparing a state with topological order

No direct cooling down to the topological ground state

The challenge of preparing a state with topological order

No direct cooling down to the topological ground state

Strategy : adiabatic preparation of few-boson systems

N = 2, 3, 4...

[Tai et al (Greiner lab) Nature '17]

The challenge of preparing a state with topological order

No direct cooling down to the topological ground state

Strategy : adiabatic preparation of few-boson systems

N = 2, 3, 4...

[Tai et al (Greiner lab) Nature '17]

 σ_H not quantized for small systems...

 σ_H robust over a range of parameters ?

Outline

- Emergence of Fractional Chern Insulators in systems with edges
- Detecting FCIs from a local density measurement : application of Streda's formula
- Detecting FCIs from their Hall drift

Emergence of Fractional Chern Insulators in systems with edges

Hall effect on a lattice : the Hofstadter model

 $\alpha\,$: Magnetic flux density

H=-J $\left(\sum_{m,n} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + e^{i2\pi\alpha n} \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + h.c.\right)$ Commensurate flux $\Phi = 2\pi\alpha = 2\pi \frac{p}{q}$ Magnetic unit cell : q lattice sites \rightarrow flux $2\pi p$ Realised in cold atoms [Aidelsburger et al PRL '13]

Hall effect on a lattice : the Hofstadter model

 $\alpha\,$: Magnetic flux density

H=-J $\left(\sum_{m,n} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + e^{i2\pi\alpha n} \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + h.c.\right)$ Commensurate flux $\Phi = 2\pi\alpha = 2\pi \frac{p}{q}$ Magnetic unit cell : q lattice sites \rightarrow flux $2\pi p$ Pealised in cold atoms taideburger at a DDL 112 Mixely at al DDL 112

Realised in cold atoms [Aidelsburger et al PRL '13, Miyake et al PRL '13]

Example :
$$\alpha = 1/4$$
 $\Phi = \frac{\pi}{2}$
4 lattice sites per magnetic unit cell
4 bands

Hall effect on a lattice : the Hofstadter model

 $\alpha\,$: Magnetic flux density

$$\begin{array}{l} H=-J\left(\sum_{m,n}\hat{a}_{m,n+1}^{\dagger}\hat{a}_{m,n}+e^{i2\pi\alpha n}\hat{a}_{m+1,n}^{\dagger}\hat{a}_{m,n}+\mathrm{h.c.}\right)\\ \text{Commensurate flux} \quad \Phi=2\pi\alpha=2\pi\frac{p}{q}\\ \text{Magnetic unit cell : q lattice sites }\rightarrow \text{flux }2\pi p\\ \text{Realised in cold atoms [Aidelsburger et al PRL '13, Miyake et al PRL '13]} \end{array}$$

Example : $\alpha = 1/4$ $\Phi = \frac{\pi}{2}$

4 lattice sites per magnetic unit cell 4 bands

Generically

1 filled band
$$\rightarrow \nu = 1 \rightarrow \sigma_H = e^2/h$$

Nbr states in lowest band $\propto \alpha$

$$\hat{H}_{0} = -J\left(\sum_{m,n} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + e^{i2\pi\alpha n} \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + \text{h.c.}\right) + (U/2)\sum_{m} \hat{a}_{m,n}^{\dagger} \hat{a}_{m,n} (\hat{a}_{m,n}^{\dagger} \hat{a}_{m,n} - 1)$$

Single-particle spectrum

 $\nu = 1/2$

Emergence of FCI

Filling fraction of lowest band $\nu = \frac{N}{\alpha N_s}$ [Sorensen, Demler, Lukin PRL '05]

Geometry with edges Confinement : box potential

Single-particle spectrum

 k_x k_y

 $\nu = 1/2$

Emergence of FCI

Filling fraction of lowest band $\nu = \frac{N}{\alpha N_s}$ [Sorensen, Demler, Lukin PRL '05]

?

$$\hat{H}_{0} = -J\left(\sum_{m,n} \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + e^{i2\pi\alpha n} \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + \text{h.c.}\right)$$
$$+ (U/2)\sum_{m} \hat{a}_{m,n}^{\dagger} \hat{a}_{m,n} (\hat{a}_{m,n}^{\dagger} \hat{a}_{m,n} - 1)$$
$$\text{Torus geometry}$$

Geometry with edges Confinement : box potential

Single-particle spectrum

x

?

 $\nu = 1/2$

Emergence of FCI

Filling fraction of lowest band \mathcal{N}

$$\nu = \frac{N}{\alpha N_s}$$

[Sorensen, Demler, Lukin PRL '05]

 \rightarrow Preliminary study : FCI in the geometry with edges

4 hardcore bosons 60 lattice sites

Energy spectrum

No chiral edge modes (hard wall) [Macaluso, Carusotto PRA '17]

Energy spectrum

No chiral edge modes (hard wall) [Macaluso, Carusotto PRA '17]

[Sterdyniak et al PRL '11] Spectrum of $\rho_A = Tr_B |\Psi_{\rm GS}\rangle \langle \Psi_{\rm GS}|$ (trace over a subset of particles)

Reveals the degeneracy of quasiholes

[CR, J. Leonard, N. Goldman, PRA 2020]

Detecting FCIs from a local density measurement : application of Streda's formula

Bulk density of a fractional Chern insulator

Streda's formula for gapped GS:

$$\sigma_{\perp} = \frac{\partial \rho_{\text{bulk}}}{\partial \alpha}$$

What is the bulk density ho_{bulk} for a system with few bosons?

Bulk density of a fractional Chern insulator

Streda's formula for gapped GS:

$$\sigma_{\perp} = \frac{\partial \rho_{\text{bulk}}}{\partial \alpha}$$

 $\langle \rho \rangle = \frac{N}{N_s}$

What is the bulk density ho_{bulk} for a system with few bosons?

N=10 bosons, 120 sites

Verifying Streda's formula numerically

N=10 hardcore bosons, 120 sites

[CR, J. Leonard, N. Goldman, PRA 2020]

Detecting fractional Chern insulators using the Hall drift

Hall drift protocol

Prepared FCI released into larger trap

[CR, J. Leonard, N. Goldman, PRA 2020]

Hall drift protocol

 \rightarrow monitor transverse center-of-mass velocity

Prepared FCI released into larger trap

[CR, J. Leonard, N. Goldman, PRA 2020]

Numerical time-evolution : Hall drift

[CR, J. Leonard, N. Goldman, PRA 2020]

[Zaletel, Mong, Karrasch, Moore, Pollmann PRB '15]

N=4 (ED)

Quasi-quantized Hall conductivity for N ~ 10

Robust plateau

Hall plateau coincides with boundaries of FCI phase

Conclusion

- FCIs can be detected from a bulk density measurement
 → Streda's formula (from ~ 10 bosons)
- The Hall drift provides a clear signature of FCIs for even fewer particles

Hall conductivity : what do we expect ?

Thermodynamic limit :

Incompressible phase \rightarrow quantized $\sigma_{\perp} \rightarrow$ plateaus

Small system :

 σ_{\perp} not perfectly quantized

Near-constant far from the phase transitions ?

Variation of $\nu~$ with α

Fixed number of particles N and number of sites But the number of states in the lowest band increases with $~\alpha$

	4 hardcore bosons 60 lattice sites

Energy spectrum : finite-size phase transitions

Orbital occupation : Similarity with continuum Laughlin

First hint of a FCI phase !

4 hardcore bosons 60 lattice sites

Energy spectrum : finite-size phase transitions

Orbital occupation : Similarity with continuum Laughlin

First hint of a FCI phase !

[CR, J. Leonard, N. Goldman, PRA 2020]

Emergence of a fractional quantum Hall state on the lattice

Topological fingerprint of the FCI phase in open geometry ?

- Chiral edge modes ? → not with our hard wall confinement
- Bulk quasihole excitations \rightarrow revealed by the particle entanglement spectrum [Sterdyniak et al PRL '11] Spectrum of $\rho_A = Tr_B |\Psi_{GS}\rangle \langle \Psi_{GS}|$ Trace over the coordinates of a subset of N_B particles

Number of states below the entanglement gap = Degeneracy of quasiholes in the system with N_A particles

[Macaluso, Carusotto PRA '17]

[[]CR, J. Leonard, N. Goldman, PRA 2020]