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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge
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young, non-porous asteroid (if such exist) suffers extensive impact
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implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
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and shape, and hence on how planetesimals evolve. Detailed
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Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge
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analogue of a phase transition44. He proposed a mean-field model of
nearly identical, weakly coupled limit-cycle oscillators and showed
that when the coupling is small compared to the spread of natural 
frequencies, the system behaves incoherently, with each oscillator
running at its natural frequency. As the coupling is increased, the

incoherence persists until a certain threshold is crossed — then a
small cluster of oscillators suddenly ‘freezes’ into synchrony. For still
greater coupling, all the oscillators become locked in phase and
amplitude (Fig. 2).

Kuramoto26 refined this connection between nonlinear dynamics
and statistical physics. He proposed an exactly solvable model of 
collective synchronization, given by 
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of width ' and mean #0. Using an ingenious self-consistency 
argument, Kuramoto solved for the order parameter 
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(a convenient measure of the extent of synchronization) in the limit
N � ( and t � (. He found that 

0, K < Kcr"#$1%(Kc%/K)%, K)Kc

where Kc"2'. In other words, the oscillators are desynchronized
completely until the coupling strength K exceeds a critical value Kc.
After that, the population splits into a partially synchronized state
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Figure 3 Schematic illustration of regular and random network architectures. a, Ring
of ten nodes connected to their nearest neighbours. b, Fully connected network of ten
nodes. c, Random graph constructed by placing n nodes on a plane, then joining pairs
of them together at random until m links are used. Nodes may be chosen more than
once, or not at all. The resulting wiring diagram (not shown) would be a snarl of criss-
crossed lines; to clarify it, I have segregated the different connected components,
coloured them, and eliminated as many spurious crossings as possible. The main
topological features are the presence of a single giant component, as expected51–53 for
a random graph with m > n/2 (here n"200, m"193), and the absence of any
dominant hubs. The degree, or number of neighbours, is Poisson distributed across
the nodes; most nodes have between one and four neighbours, and all have between
zero and six. d, Scale-free graph, grown by attaching new nodes at random to
previously existing nodes. The probability of attachment is proportional to the degree
of the target node; thus richly connected nodes tend to get richer, leading to the
formation of hubs and a skewed degree distribution with a heavy tail. Colours indicate
the three nodes with the most links (red, k"33 links; blue, k"12; green, k"11).
Here n"200 nodes, m"199 links. Figure provided by D. Callaway. Network
visualization was done using the Pajek program for large network analysis
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm).

Figure 4 Solvable model of a small-world network. The model starts with a ring lattice
of n nodes, each connected to its neighbours out to some range k (here n"24 and
k"3). Shortcut links are added between random pairs of nodes, with probability *
per link on the underlying lattice. In the limit n " 1, the average path length between
nodes can be approximated analytically. (Adapted from ref. 75.)
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level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.
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inant tunneling of s-character electrons (see ar-
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the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
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Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
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electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
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result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M

Received 4 February; accepted 18 March 1998.

1. Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164
(1993).

2. Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184
(1996).

3. Nolan, M. C., Asphaug, E., Melosh, H. J. & Greenberg, R. Impact craters on asteroids: Does strength or
gravity control their size? Icarus 124, 359–371 (1996).

4. Love, S. J. & Ahrens, T. J. Catastrophic impacts on gravity dominated asteroids. Icarus 124, 141–155
(1996).

5. Melosh, H. J. & Ryan, E. V. Asteroids: Shattered but not dispersed. Icarus 129, 562–564 (1997).
6. Housen, K. R., Schmidt, R. M. & Holsapple, K. A. Crater ejecta scaling laws: Fundamental forms based

on dimensional analysis. J. Geophys. Res. 88, 2485–2499 (1983).
7. Holsapple, K. A. & Schmidt, R. M. Point source solutions and coupling parameters in cratering

mechanics. J. Geophys. Res. 92, 6350–6376 (1987).
8. Housen, K. R. & Holsapple, K. A. On the fragmentation of asteroids and planetary satellites. Icarus 84,

226–253 (1990).
9. Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput.

Phys. Commun. 87, 253–265 (1995).
10. Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184

(1996).
11. Hudson, R. S. & Ostro, S. J. Shape of asteroid 4769 Castalia (1989 PB) from inversion of radar images.

Science 263, 940–943 (1994).
12. Ostro, S. J. et al. Asteroid radar astrometry. Astron. J. 102, 1490–1502 (1991).
13. Ahrens, T. J. & O’Keefe, J. D. in Impact and Explosion Cratering (eds Roddy, D. J., Pepin, R. O. &

Merrill, R. B.) 639–656 (Pergamon, New York, 1977).
14. Tillotson, J. H. Metallic equations of state for hypervelocity impact. (General Atomic Report GA-3216,

San Diego, 1962).
15. Nakamura, A. & Fujiwara, A. Velocity distribution of fragments formed in a simulated collisional

disruption. Icarus 92, 132–146 (1991).
16. Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput.

Phys. Commun. 87, 253–265 (1995).
17. Bottke, W. F., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. Velocity distributions among colliding

asteroids. Icarus 107, 255–268 (1994).
18. Belton, M. J. S. et al. Galileo encounter with 951 Gaspra—First pictures of an asteroid. Science 257,

1647–1652 (1992).
19. Belton, M. J. S. et al. Galileo’s encounter with 243 Ida: An overview of the imaging experiment. Icarus

120, 1–19 (1996).
20. Asphaug, E. & Melosh, H. J. The Stickney impact of Phobos: A dynamical model. Icarus 101, 144–164

(1993).
21. Asphaug, E. et al. Mechanical and geological effects of impact cratering on Ida. Icarus 120, 158–184

(1996).
22. Housen, K. R., Schmidt, R. M. & Holsapple, K. A. Crater ejecta scaling laws: Fundamental forms based

on dimensional analysis. J. Geophys. Res. 88, 2485–2499 (1983).
23. Veverka, J. et al. NEAR’s flyby of 253 Mathilde: Images of a C asteroid. Science 278, 2109–2112 (1997).
24. Asphaug, E. et al. Impact evolution of icy regoliths. Lunar Planet. Sci. Conf. (Abstr.) XXVIII, 63–64

(1997).
25. Love, S. G., Hörz, F. & Brownlee, D. E. Target porosity effects in impact cratering and collisional

disruption. Icarus 105, 216–224 (1993).
26. Fujiwara, A., Cerroni, P., Davis, D. R., Ryan, E. V. & DiMartino, M. in Asteroids II (eds Binzel, R. P.,

Gehrels, T. & Matthews, A. S.) 240–265 (Univ. Arizona Press, Tucson, 1989).
27. Davis, D. R. & Farinella, P. Collisional evolution of Edgeworth-Kuiper Belt objects. Icarus 125, 50–60

(1997).
28. Ahrens, T. J. & Harris, A. W. Deflection and fragmentation of near-Earth asteroids. Nature 360, 429–

433 (1992).
29. Resources of Near-Earth Space (eds Lewis, J. S., Matthews, M. S. & Guerrieri, M. L.) (Univ. Arizona

Press, Tucson, 1993).

Acknowledgements. This work was supported by NASA’s Planetary Geology and Geophysics Program.

Correspondence and requests for materials should be addressed to E.A. (e-mail: asphaug@earthsci.ucsc.
edu).

letters to nature

440 NATURE | VOL 393 | 4 JUNE 1998

Collectivedynamicsof
‘small-world’ networks
Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,
Cornell University, Ithaca, New York 14853, USA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Networks of coupled dynamical systems have been used to model
biological oscillators1–4, Josephson junction arrays5,6, excitable
media7, neural networks8–10, spatial games11, genetic control
networks12 and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon13,14 (popularly known as six degrees of separation15).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with n vertices and k edges per vertex, we rewire
each edge at random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p ¼ 0) and disorder (p ¼ 1),
and thereby to probe the intermediate region 0 , p , 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path length L(p) and clustering coefficient C(p), as
defined in Fig. 2 legend. Here L(p) measures the typical separation
between two vertices in the graph (a global property), whereas C(p)
measures the cliquishness of a typical neighbourhood (a local
property). The networks of interest to us have many vertices
with sparse connections, but not so sparse that the graph is in
danger of becoming disconnected. Specifically, we require
n q k q lnðnÞ q 1, where k q lnðnÞ guarantees that a random
graph will be connected16. In this regime, we find that
L,n=2k q 1 and C,3=4 as p ! 0, while L < Lrandom,lnðnÞ=lnðkÞ
and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge

* Present address: Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA
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typically slower than ,1 km s−1) might differ significantly from
what is assumed by current modelling efforts27. The expected
equation-of-state differences among small bodies (ice versus rock,
for instance) presents another dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olson
and E.A, manuscript in preparation), we are now ready to perform a
more comprehensive analysis.

The exploratory simulations presented here suggest that when a
young, non-porous asteroid (if such exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the asteroid’s
response to future impacts. The stochastic nature of collisions
implies that small asteroid interiors may be as diverse as their
shapes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed light on
how asteroid collisional response depends on internal configuration
and shape, and hence on how planetesimals evolve. Detailed
simulations are also required before one can predict the quantitative
effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazard mitigation28 through disruption and
deflection, or for resource exploitation29. Such predictions would
require detailed reconnaissance concerning the composition and
internal structure of the targeted object. M
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and C < Crandom,k=n p 1 as p ! 1. Thus the regular lattice at p ¼ 0
is a highly clustered, large world where L grows linearly with n,
whereas the random network at p ¼ 1 is a poorly clustered, small
world where L grows only logarithmically with n. These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reveals that there is a broad interval of p
over which L(p) is almost as small as Lrandom yet CðpÞ q Crandom.
These small-world networks result from the immediate drop in L(p)
caused by the introduction of a few long-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than Lrandom. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it connects, but between their immediate neighbourhoods,
neighbourhoods of neighbourhoods and so on. By contrast, an edge

* Present address: Paul F. Lazarsfeld Center for the Social Sciences, Columbia University, 812 SIPA
Building, 420 W118 St, New York, New York 10027, USA.

analogue of a phase transition44. He proposed a mean-field model of
nearly identical, weakly coupled limit-cycle oscillators and showed
that when the coupling is small compared to the spread of natural 
frequencies, the system behaves incoherently, with each oscillator
running at its natural frequency. As the coupling is increased, the

incoherence persists until a certain threshold is crossed — then a
small cluster of oscillators suddenly ‘freezes’ into synchrony. For still
greater coupling, all the oscillators become locked in phase and
amplitude (Fig. 2).

Kuramoto26 refined this connection between nonlinear dynamics
and statistical physics. He proposed an exactly solvable model of 
collective synchronization, given by 
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argument, Kuramoto solved for the order parameter 
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(a convenient measure of the extent of synchronization) in the limit
N � ( and t � (. He found that 

0, K < Kcr"#$1%(Kc%/K)%, K)Kc

where Kc"2'. In other words, the oscillators are desynchronized
completely until the coupling strength K exceeds a critical value Kc.
After that, the population splits into a partially synchronized state
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Figure 3 Schematic illustration of regular and random network architectures. a, Ring
of ten nodes connected to their nearest neighbours. b, Fully connected network of ten
nodes. c, Random graph constructed by placing n nodes on a plane, then joining pairs
of them together at random until m links are used. Nodes may be chosen more than
once, or not at all. The resulting wiring diagram (not shown) would be a snarl of criss-
crossed lines; to clarify it, I have segregated the different connected components,
coloured them, and eliminated as many spurious crossings as possible. The main
topological features are the presence of a single giant component, as expected51–53 for
a random graph with m > n/2 (here n"200, m"193), and the absence of any
dominant hubs. The degree, or number of neighbours, is Poisson distributed across
the nodes; most nodes have between one and four neighbours, and all have between
zero and six. d, Scale-free graph, grown by attaching new nodes at random to
previously existing nodes. The probability of attachment is proportional to the degree
of the target node; thus richly connected nodes tend to get richer, leading to the
formation of hubs and a skewed degree distribution with a heavy tail. Colours indicate
the three nodes with the most links (red, k"33 links; blue, k"12; green, k"11).
Here n"200 nodes, m"199 links. Figure provided by D. Callaway. Network
visualization was done using the Pajek program for large network analysis
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm).

Figure 4 Solvable model of a small-world network. The model starts with a ring lattice
of n nodes, each connected to its neighbours out to some range k (here n"24 and
k"3). Shortcut links are added between random pairs of nodes, with probability *
per link on the underlying lattice. In the limit n " 1, the average path length between
nodes can be approximated analytically. (Adapted from ref. 75.)
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level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Emergence of Scaling in
Random Networks

Albert-László Barabási* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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ultra-small worlds

P(z) ∼ z−α

l ∝ ln ln N
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Watts-Strogatz 

model
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‣ M. E. J. Newman & D. J. Watts, Phys. Lett. A (1999) (branching probability p)
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Classical magnetism on SW networks

‣ A.Barrat & M. Weigt EPJB (2000) 
‣ M. Gitterman J. Phys. A (2000)
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Simple mean-field (MF) argument

we expect a 
transition when 
ξ(T) ≈ ζp ⇒ Tc ∝

2J

ln ( 1
p )

  = mean distance between shortcutsζp ∼ 1/p

  = 1D correlation lengthξ(T ) ∼ exp ( 2J
T )
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Beyond 1D

  = mean distance between shortcutsζp ∼ p−1/d

  = bare correlation lengthξ(T ) ∼ T − Tc(0)
−ν

ξ(T ) ≈ ζp ⇒ Tc(p) − Tc(0) ∝ Jp
1
νd
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Beyond 1D

  = mean distance between shortcutsζp ∼ p−1/d

  = bare correlation lengthξ(T ) ∼ T − Tc(0)
−ν

ξ(T ) ≈ ζp ⇒ Tc(p) − Tc(0) ∝ Jp
1
νd

a behavior different than that found in the 1D case, where
Tc!!log p!!1. In the limit p"1, one finds an increase in Tc
as z rises from four "in 2D# to six "in 3D#, as expected for
random lattices, for which one has kBTc /zJ→1 as z→$ .
To analyze the change in critical temperature with p, we

call %Tc"Tc!Tc
0 , being Tc

0 the transition temperature for
the corresponding 2D or 3D regular lattice. In Fig. 3, we
show the dependence of %Tc upon p for the 2D and 3D cases
in a log-log plot. In both cases we find that %Tc can be fitted
by a power-law %Tc!ps for p#0.01. The exponent s is
0.52$0.03 for 2D and 0.96$0.04 for 3D. Our result for 2D
networks is compatible with a !p dependence for %Tc near
p"0, which means that the derivative dTc /dp diverges as
!1/!p for p→0. In the 3D case, our results seem to indi-
cate a dependence %Tc!p for small p. However, in this case
the lowest p values studied here may still be too high to
attain the small-p regime "see below#.
Associated with the increase in Tc as the rewiring prob-

ability p rises, one expects an increase in the critical energy
E(Tc). We call ec"E(Tc)/N the critical energy per site, and
%ec"ec!ec

0 its change with respect to the regular lattice
(p"0). This difference %ec is shown in Fig. 4 as a function
of p for 2D "squares# and 3D "circles# networks, in a log-log
plot. For p#0.01, %ec can be well fitted in both cases by a
power law of the form %ec!pu. For the exponent u, we find
u"0.43$0.03 and 0.56$0.04 in 2D and 3D, respectively.
A characterization of the ferromagnetic phase transition in

these networks requires the determination of the universality
class to which it corresponds. In the limit p"0 "regular lat-
tices#, one has transitions of the 2D and 3D Ising type. In
order to determine the type of the phase transition at p%0,
we have studied the critical exponent & , which gives the
temperature dependence of the order parameter close to the
transition temperature: 'M (!(Tc!T)& for T&Tc . For the
different values of the rewiring probability p studied here, we
have calculated numerically the logarithmic derivative

)" t #"
d log'M (
d log t "6#

for t"Tc!T%0, which is related to the exponent & through
the limit &"limt→0)(t).
In Fig. 5, we present results for the derivative ) as a

function of temperature for several values of p and for a 2D
network of size 200'200. For reference, we also present
results of MC simulations for p"0 "Ising model on a regular
2D lattice# for the same system size, which converge to &
"0.125, the critical exponent for the 2D Ising model. In all
cases p%0, the extrapolation T→Tc gives an exponent &
close to 0.5, the value corresponding to a mean-field-type

FIG. 3. Dependence upon the rewiring probability p of the shift
in transition temperature %Tc with respect to the regular lattices, for
2D and 3D networks. Lines are guides to the eye.

FIG. 4. Dependence on the probability p of the shift in critical
energy per site %ec with respect to the regular lattices, for 2D and
3D networks. Lines are guides to the eye.

FIG. 5. Logarithmic derivative ) versus the temperature differ-
ence t"Tc!T for small-world networks generated by rewiring a
2D lattice of size 200'200. Different symbols represent results
obtained for several values of the rewiring probability p. From top
to bottom: p"1, 0.1, 0.01, 0.001, and 0.
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‣ Herrero PRB (2002)

Classical Monte Carlo Ising model

1D
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show the dependence of %Tc upon p for the 2D and 3D cases
in a log-log plot. In both cases we find that %Tc can be fitted
by a power-law %Tc!ps for p#0.01. The exponent s is
0.52$0.03 for 2D and 0.96$0.04 for 3D. Our result for 2D
networks is compatible with a !p dependence for %Tc near
p"0, which means that the derivative dTc /dp diverges as
!1/!p for p→0. In the 3D case, our results seem to indi-
cate a dependence %Tc!p for small p. However, in this case
the lowest p values studied here may still be too high to
attain the small-p regime "see below#.
Associated with the increase in Tc as the rewiring prob-

ability p rises, one expects an increase in the critical energy
E(Tc). We call ec"E(Tc)/N the critical energy per site, and
%ec"ec!ec

0 its change with respect to the regular lattice
(p"0). This difference %ec is shown in Fig. 4 as a function
of p for 2D "squares# and 3D "circles# networks, in a log-log
plot. For p#0.01, %ec can be well fitted in both cases by a
power law of the form %ec!pu. For the exponent u, we find
u"0.43$0.03 and 0.56$0.04 in 2D and 3D, respectively.
A characterization of the ferromagnetic phase transition in

these networks requires the determination of the universality
class to which it corresponds. In the limit p"0 "regular lat-
tices#, one has transitions of the 2D and 3D Ising type. In
order to determine the type of the phase transition at p%0,
we have studied the critical exponent & , which gives the
temperature dependence of the order parameter close to the
transition temperature: 'M (!(Tc!T)& for T&Tc . For the
different values of the rewiring probability p studied here, we
have calculated numerically the logarithmic derivative

)" t #"
d log'M (
d log t "6#

for t"Tc!T%0, which is related to the exponent & through
the limit &"limt→0)(t).
In Fig. 5, we present results for the derivative ) as a

function of temperature for several values of p and for a 2D
network of size 200'200. For reference, we also present
results of MC simulations for p"0 "Ising model on a regular
2D lattice# for the same system size, which converge to &
"0.125, the critical exponent for the 2D Ising model. In all
cases p%0, the extrapolation T→Tc gives an exponent &
close to 0.5, the value corresponding to a mean-field-type

FIG. 3. Dependence upon the rewiring probability p of the shift
in transition temperature %Tc with respect to the regular lattices, for
2D and 3D networks. Lines are guides to the eye.

FIG. 4. Dependence on the probability p of the shift in critical
energy per site %ec with respect to the regular lattices, for 2D and
3D networks. Lines are guides to the eye.

FIG. 5. Logarithmic derivative ) versus the temperature differ-
ence t"Tc!T for small-world networks generated by rewiring a
2D lattice of size 200'200. Different symbols represent results
obtained for several values of the rewiring probability p. From top
to bottom: p"1, 0.1, 0.01, 0.001, and 0.
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Beyond 1D

  = mean distance between shortcutsζp ∼ p−1/d

  = bare correlation lengthξ(T ) ∼ T − Tc(0)
−ν

ξ(T ) ≈ ζp ⇒ Tc(p) − Tc(0) ∝ Jp
1
νd

a behavior different than that found in the 1D case, where
Tc!!log p!!1. In the limit p"1, one finds an increase in Tc
as z rises from four "in 2D# to six "in 3D#, as expected for
random lattices, for which one has kBTc /zJ→1 as z→$ .
To analyze the change in critical temperature with p, we

call %Tc"Tc!Tc
0 , being Tc

0 the transition temperature for
the corresponding 2D or 3D regular lattice. In Fig. 3, we
show the dependence of %Tc upon p for the 2D and 3D cases
in a log-log plot. In both cases we find that %Tc can be fitted
by a power-law %Tc!ps for p#0.01. The exponent s is
0.52$0.03 for 2D and 0.96$0.04 for 3D. Our result for 2D
networks is compatible with a !p dependence for %Tc near
p"0, which means that the derivative dTc /dp diverges as
!1/!p for p→0. In the 3D case, our results seem to indi-
cate a dependence %Tc!p for small p. However, in this case
the lowest p values studied here may still be too high to
attain the small-p regime "see below#.
Associated with the increase in Tc as the rewiring prob-

ability p rises, one expects an increase in the critical energy
E(Tc). We call ec"E(Tc)/N the critical energy per site, and
%ec"ec!ec

0 its change with respect to the regular lattice
(p"0). This difference %ec is shown in Fig. 4 as a function
of p for 2D "squares# and 3D "circles# networks, in a log-log
plot. For p#0.01, %ec can be well fitted in both cases by a
power law of the form %ec!pu. For the exponent u, we find
u"0.43$0.03 and 0.56$0.04 in 2D and 3D, respectively.
A characterization of the ferromagnetic phase transition in

these networks requires the determination of the universality
class to which it corresponds. In the limit p"0 "regular lat-
tices#, one has transitions of the 2D and 3D Ising type. In
order to determine the type of the phase transition at p%0,
we have studied the critical exponent & , which gives the
temperature dependence of the order parameter close to the
transition temperature: 'M (!(Tc!T)& for T&Tc . For the
different values of the rewiring probability p studied here, we
have calculated numerically the logarithmic derivative

)" t #"
d log'M (
d log t "6#

for t"Tc!T%0, which is related to the exponent & through
the limit &"limt→0)(t).
In Fig. 5, we present results for the derivative ) as a

function of temperature for several values of p and for a 2D
network of size 200'200. For reference, we also present
results of MC simulations for p"0 "Ising model on a regular
2D lattice# for the same system size, which converge to &
"0.125, the critical exponent for the 2D Ising model. In all
cases p%0, the extrapolation T→Tc gives an exponent &
close to 0.5, the value corresponding to a mean-field-type

FIG. 3. Dependence upon the rewiring probability p of the shift
in transition temperature %Tc with respect to the regular lattices, for
2D and 3D networks. Lines are guides to the eye.

FIG. 4. Dependence on the probability p of the shift in critical
energy per site %ec with respect to the regular lattices, for 2D and
3D networks. Lines are guides to the eye.

FIG. 5. Logarithmic derivative ) versus the temperature differ-
ence t"Tc!T for small-world networks generated by rewiring a
2D lattice of size 200'200. Different symbols represent results
obtained for several values of the rewiring probability p. From top
to bottom: p"1, 0.1, 0.01, 0.001, and 0.
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While classical spin systems in random networks have been intensively studied, much less is known about
quantum magnets in random graphs. Here, we investigate interacting quantum spins on small-world networks,
building on mean-field theory and extensive quantum Monte Carlo simulations. Starting from one-dimensional
(1D) rings, we consider two situations: all-to-all interacting and long-range interactions randomly added. The
e�ective infinite dimension of the lattice leads to a magnetic ordering at finite temperature )c with mean-field
criticality. In contrast to the classical case, we find two distinct power-law behaviors for )c versus the average
strength of the extra couplings. This is controlled by a competition between a characteristic length scale of
the random graph and the thermal correlation length of the underlying 1D system, thus challenging mean-field
theories. We also investigate the fate of a gapped 1D spin chain against the small-world e�ect.

I. INTRODUCTION

A. Complex networks and the small-world e�ect

Understanding complex networks is at the heart of many
scientific fields [1–11], such as computer science, mathemat-
ics, physics, biology, sociology, epidemiology, etc. During the
past two decades, critical phenomena arising in such random
topologies have emerged as a key subject of intense research
in statistical physics.

A complex network is a graph with non-trivial and random
properties, as opposed to periodic (or quasi-periodic) lattices
of finite dimension. There are two main features which contrast
with regular graphs: (i) a fluctuating connectivity (a certain
proportion of the links are randomly placed) and (ii) the so-
called small-world (SW) e�ect [12], which can dramatically
shorten the distances across the network. More precisely, for
a finite graph of # sites, the average distance ✓ between two
arbitrary points, also called the graph diameter, grows slower
than any power-law with #: ✓ ⇠ ln # , resulting in an infinite
e�ective dimension.

The SW e�ect occurs in a large class of complex networks,
such as Erdös-Rényi random graphs [13], scale-free [3] and
SW networks [2]. For the later case, the most popular SW
system is the Watts-Strogatz model [2] in which one ran-
domly rewire with a probability ? each edge of an initial
one-dimensional (1D) ring, as depicted in Fig. 1 (a). Shortly
after, a variant was proposed in Refs. [14, 15] by simply adding
long-range bonds with probability ?, without diluting the un-
derlying 1D structure, see Fig. 1 (b). This undiluted version
of the SW network, more amenable to analytical treatments,
was argued [4] to bring similar physics as compared to the
original SW proposal of Watts and Strogatz. Another sim-
plification was later proposed by Hastings in Ref. [16] with
a mean-field (MF) version, see Fig. 1 (c), where all possible
long-range links are added, but with a reduced strength / 1/#
vanishing at large sizes. This MF variant was introduced to
avoid randomness and thus facilitate analytical calculations.

(a) Watts − Strogatz small − world (b) Undiluted small − world (c) Hastings model
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FIG. 1. Three types of small-world networks with # = 12 sites.
(a) The Watts-Strogatz model in which one randomly rewire with a
probability ? each edge of an initial 1D ring. (b) Long-range bonds
are added with probability ?, without diluting the underlying 1D
structure. (c) All possible long-range links are added, but with a
reduced strength / 1/# vanishing at large sizes.

B. Classical magnetism and small-world e�ect

A strong consequence of the SW e�ect is that for any finite
concentration ? > 0 of extra long-range links added across a
lattice of finite dimension 3 (exemplified in Fig. 1 for 3 = 1),
the system will behave as infinite-dimensional 3 = 1, provided
the number of sites # is large enough, typically exceeding a
crossover size #¢

⇠ 1/? [4, 17, 18]. This drastic change in the
e�ective dimension of the problem has attracted a lot attention
in the context of interacting classical spin systems [4, 19–28],
while much less is know for the quantum case [29–32].

Classical O(=) models on SW networks have been heavily
investigated for = = 1 (Ising) [4, 19, 21, 22, 27], and to a
lesser extent for = = 2 (XY) [20, 33]. In both cases, MF the-
ory (expected above 3u = 4) was found to describe the critical
properties. Note however that scale-free networks with power-
law distributed connectivities [3] do not necessarily display
MF behavior, depending on the power-law exponent of the
connectivity distribution [23, 25, 26, 34]. Non-universal and
non-MF behaviors have also been reported in SW networks
where the long-range interactions [35] or the branching prob-
ability [36] decay as a power-law with the distance. To some
extent, this reminds early renormalization-group results for =-
vector models with power-law decaying interactions [37, 38].
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We consider various equilibrium statistical mechanics models with combined short- and long-range
interactions and identify the crossover to mean-field behavior, finding anomalous scaling in the width of
the mean-field region, as well as in the mean-field amplitudes. We then show that this model enables us,
in many cases, to determine the universal critical properties of systems on a small-world network.
Finally, we consider nonequilibrium processes.
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The appropriate description for many complex real-
world systems is as a network [1], a general connection
of nodes and vertices which need not have the structure of
a regular lattice. The small-world network model com-
bines both long-range and short-range aspects, and inter-
polates between regular lattices and random graphs. This
model [2], in which a regular lattice is modified by either
randomly ‘‘re-wiring’’ links or else by simply randomly
adding long-range links, has become a standard model of
real-world networks. It incorporates some notion of local-
ity, as most of the links remain the same as that of the
original underlying lattice. Yet it also includes the ‘‘small-
world effect’’ that the average path length between sites
on the network scales only as the logarithm of the net-
work size.

Studies of equilibrium statistical on small-world sys-
tems have shown rich behavior [3–6], with mean-field
critical exponents, contrasting with the behavior on scale-
free networks [7,8]. We seek to explain the mean-field
behavior in the small-world systems. However, the pres-
ence of quenched randomness makes the small-world
model difficult to treat analytically. We thus consider a
different model which is easier to handle, lacking
quenched randomness. In many cases, depending on in-
equality (11) below, this model gives the same universal
behavior as the small-world model, thus explaining the
critical phenomena in the small-world system. We show
the existence of mean-field behavior, albeit with anoma-
lous exponents describing the width of the critical region
and various mean-field amplitudes. These anomalous ex-
ponents can complicate the interpretation of numerical
data. Finally, we will consider a nonequilibrium case,
describing the relaxation to a stationary state via a
branching process.

To define our model, we again start with a regular
lattice of V sites in d dimensions. Rather than adding
long-range links with probability p, we give each site of
the lattice a weak coupling, of order p=V, to every other
site in the lattice [9]. We will refer to this as the long-
range model. We will find that many results can be ob-
tained on this system by combining mean-field with
standard renormalization group techniques. It is interest-

ing to compare this model to a related mean-field solution
of path lengths on a small-world network [10].

In some cases, the long-range model may also be more
appropriate than the usual small-world model. In the
spread of a disease, for example, people tend to spread
the disease to those geographically nearby (the regular
lattice). There is a chance of a long-range spread of the
disease. However, this is not necessarily due to fixed long-
range links. Rather, it is due to the random probability
that a given person travels a long distance, typically by
air. Thus, a slight probability of long-range contact be-
tween any two people may be a better description than a
set of fixed long-range links.

Equilibrium statistics.—We consider equilibrium sta-
tistical mechanics models with uniform, ferromagnetic
couplings, such as Ising models, XY models, etc. . . .These
models can be represented by introducing a field ~!!!x",
where x labels lattice sites and where ~!! has n # 1; 2; . . .
components, with a partition function

Z #
X

f ~!!g
exp$%S$ ~!!&&; (1)

where S # E=kT is a statistical weight for a configuration
of energy E at temperature T.

For a model on a regular d-dimensional lattice, S$ ~!!& #
Slocal$ ~!!&, where Slocal$ ~!!& includes only short-range inter-
actions. We refer to this as the local system. We choose
instead for the long-range model a statistical weight with
additional long-range couplings of strength p=V:

S$ ~!!& # Slocal$ ~!!& % p
2V

X

x1;x2

~!!!x1" ' ~!!!x2": (2)

We neglect the temperature dependence of the second
term on the right-hand side of Eq. (2) in what follows,
as it leads to corrections to physical quantities which are
higher order in p.

Now, decouple the long-range interaction to find

Z #
Z

Rn
dn ~hh exp

!

%Vh2

2p

"

Z! ~hh"; (3)

where ~hh has n components and where
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Beyond 1D

  = mean distance between shortcutsζp ∼ p−1/d

  = bare correlation lengthξ(T ) ∼ T − Tc(0)
−ν

ξ(T ) ≈ ζp ⇒ Tc(p) − Tc(0) ∝ Jp
1
νd

a behavior different than that found in the 1D case, where
Tc!!log p!!1. In the limit p"1, one finds an increase in Tc
as z rises from four "in 2D# to six "in 3D#, as expected for
random lattices, for which one has kBTc /zJ→1 as z→$ .
To analyze the change in critical temperature with p, we

call %Tc"Tc!Tc
0 , being Tc

0 the transition temperature for
the corresponding 2D or 3D regular lattice. In Fig. 3, we
show the dependence of %Tc upon p for the 2D and 3D cases
in a log-log plot. In both cases we find that %Tc can be fitted
by a power-law %Tc!ps for p#0.01. The exponent s is
0.52$0.03 for 2D and 0.96$0.04 for 3D. Our result for 2D
networks is compatible with a !p dependence for %Tc near
p"0, which means that the derivative dTc /dp diverges as
!1/!p for p→0. In the 3D case, our results seem to indi-
cate a dependence %Tc!p for small p. However, in this case
the lowest p values studied here may still be too high to
attain the small-p regime "see below#.
Associated with the increase in Tc as the rewiring prob-

ability p rises, one expects an increase in the critical energy
E(Tc). We call ec"E(Tc)/N the critical energy per site, and
%ec"ec!ec

0 its change with respect to the regular lattice
(p"0). This difference %ec is shown in Fig. 4 as a function
of p for 2D "squares# and 3D "circles# networks, in a log-log
plot. For p#0.01, %ec can be well fitted in both cases by a
power law of the form %ec!pu. For the exponent u, we find
u"0.43$0.03 and 0.56$0.04 in 2D and 3D, respectively.
A characterization of the ferromagnetic phase transition in

these networks requires the determination of the universality
class to which it corresponds. In the limit p"0 "regular lat-
tices#, one has transitions of the 2D and 3D Ising type. In
order to determine the type of the phase transition at p%0,
we have studied the critical exponent & , which gives the
temperature dependence of the order parameter close to the
transition temperature: 'M (!(Tc!T)& for T&Tc . For the
different values of the rewiring probability p studied here, we
have calculated numerically the logarithmic derivative

)" t #"
d log'M (
d log t "6#

for t"Tc!T%0, which is related to the exponent & through
the limit &"limt→0)(t).
In Fig. 5, we present results for the derivative ) as a

function of temperature for several values of p and for a 2D
network of size 200'200. For reference, we also present
results of MC simulations for p"0 "Ising model on a regular
2D lattice# for the same system size, which converge to &
"0.125, the critical exponent for the 2D Ising model. In all
cases p%0, the extrapolation T→Tc gives an exponent &
close to 0.5, the value corresponding to a mean-field-type

FIG. 3. Dependence upon the rewiring probability p of the shift
in transition temperature %Tc with respect to the regular lattices, for
2D and 3D networks. Lines are guides to the eye.

FIG. 4. Dependence on the probability p of the shift in critical
energy per site %ec with respect to the regular lattices, for 2D and
3D networks. Lines are guides to the eye.

FIG. 5. Logarithmic derivative ) versus the temperature differ-
ence t"Tc!T for small-world networks generated by rewiring a
2D lattice of size 200'200. Different symbols represent results
obtained for several values of the rewiring probability p. From top
to bottom: p"1, 0.1, 0.01, 0.001, and 0.
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While classical spin systems in random networks have been intensively studied, much less is known about
quantum magnets in random graphs. Here, we investigate interacting quantum spins on small-world networks,
building on mean-field theory and extensive quantum Monte Carlo simulations. Starting from one-dimensional
(1D) rings, we consider two situations: all-to-all interacting and long-range interactions randomly added. The
e�ective infinite dimension of the lattice leads to a magnetic ordering at finite temperature )c with mean-field
criticality. In contrast to the classical case, we find two distinct power-law behaviors for )c versus the average
strength of the extra couplings. This is controlled by a competition between a characteristic length scale of
the random graph and the thermal correlation length of the underlying 1D system, thus challenging mean-field
theories. We also investigate the fate of a gapped 1D spin chain against the small-world e�ect.

I. INTRODUCTION

A. Complex networks and the small-world e�ect

Understanding complex networks is at the heart of many
scientific fields [1–11], such as computer science, mathemat-
ics, physics, biology, sociology, epidemiology, etc. During the
past two decades, critical phenomena arising in such random
topologies have emerged as a key subject of intense research
in statistical physics.

A complex network is a graph with non-trivial and random
properties, as opposed to periodic (or quasi-periodic) lattices
of finite dimension. There are two main features which contrast
with regular graphs: (i) a fluctuating connectivity (a certain
proportion of the links are randomly placed) and (ii) the so-
called small-world (SW) e�ect [12], which can dramatically
shorten the distances across the network. More precisely, for
a finite graph of # sites, the average distance ✓ between two
arbitrary points, also called the graph diameter, grows slower
than any power-law with #: ✓ ⇠ ln # , resulting in an infinite
e�ective dimension.

The SW e�ect occurs in a large class of complex networks,
such as Erdös-Rényi random graphs [13], scale-free [3] and
SW networks [2]. For the later case, the most popular SW
system is the Watts-Strogatz model [2] in which one ran-
domly rewire with a probability ? each edge of an initial
one-dimensional (1D) ring, as depicted in Fig. 1 (a). Shortly
after, a variant was proposed in Refs. [14, 15] by simply adding
long-range bonds with probability ?, without diluting the un-
derlying 1D structure, see Fig. 1 (b). This undiluted version
of the SW network, more amenable to analytical treatments,
was argued [4] to bring similar physics as compared to the
original SW proposal of Watts and Strogatz. Another sim-
plification was later proposed by Hastings in Ref. [16] with
a mean-field (MF) version, see Fig. 1 (c), where all possible
long-range links are added, but with a reduced strength / 1/#
vanishing at large sizes. This MF variant was introduced to
avoid randomness and thus facilitate analytical calculations.

(a) Watts − Strogatz small − world (b) Undiluted small − world (c) Hastings model
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FIG. 1. Three types of small-world networks with # = 12 sites.
(a) The Watts-Strogatz model in which one randomly rewire with a
probability ? each edge of an initial 1D ring. (b) Long-range bonds
are added with probability ?, without diluting the underlying 1D
structure. (c) All possible long-range links are added, but with a
reduced strength / 1/# vanishing at large sizes.

B. Classical magnetism and small-world e�ect

A strong consequence of the SW e�ect is that for any finite
concentration ? > 0 of extra long-range links added across a
lattice of finite dimension 3 (exemplified in Fig. 1 for 3 = 1),
the system will behave as infinite-dimensional 3 = 1, provided
the number of sites # is large enough, typically exceeding a
crossover size #¢

⇠ 1/? [4, 17, 18]. This drastic change in the
e�ective dimension of the problem has attracted a lot attention
in the context of interacting classical spin systems [4, 19–28],
while much less is know for the quantum case [29–32].

Classical O(=) models on SW networks have been heavily
investigated for = = 1 (Ising) [4, 19, 21, 22, 27], and to a
lesser extent for = = 2 (XY) [20, 33]. In both cases, MF the-
ory (expected above 3u = 4) was found to describe the critical
properties. Note however that scale-free networks with power-
law distributed connectivities [3] do not necessarily display
MF behavior, depending on the power-law exponent of the
connectivity distribution [23, 25, 26, 34]. Non-universal and
non-MF behaviors have also been reported in SW networks
where the long-range interactions [35] or the branching prob-
ability [36] decay as a power-law with the distance. To some
extent, this reminds early renormalization-group results for =-
vector models with power-law decaying interactions [37, 38].
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The appropriate description for many complex real-
world systems is as a network [1], a general connection
of nodes and vertices which need not have the structure of
a regular lattice. The small-world network model com-
bines both long-range and short-range aspects, and inter-
polates between regular lattices and random graphs. This
model [2], in which a regular lattice is modified by either
randomly ‘‘re-wiring’’ links or else by simply randomly
adding long-range links, has become a standard model of
real-world networks. It incorporates some notion of local-
ity, as most of the links remain the same as that of the
original underlying lattice. Yet it also includes the ‘‘small-
world effect’’ that the average path length between sites
on the network scales only as the logarithm of the net-
work size.

Studies of equilibrium statistical on small-world sys-
tems have shown rich behavior [3–6], with mean-field
critical exponents, contrasting with the behavior on scale-
free networks [7,8]. We seek to explain the mean-field
behavior in the small-world systems. However, the pres-
ence of quenched randomness makes the small-world
model difficult to treat analytically. We thus consider a
different model which is easier to handle, lacking
quenched randomness. In many cases, depending on in-
equality (11) below, this model gives the same universal
behavior as the small-world model, thus explaining the
critical phenomena in the small-world system. We show
the existence of mean-field behavior, albeit with anoma-
lous exponents describing the width of the critical region
and various mean-field amplitudes. These anomalous ex-
ponents can complicate the interpretation of numerical
data. Finally, we will consider a nonequilibrium case,
describing the relaxation to a stationary state via a
branching process.

To define our model, we again start with a regular
lattice of V sites in d dimensions. Rather than adding
long-range links with probability p, we give each site of
the lattice a weak coupling, of order p=V, to every other
site in the lattice [9]. We will refer to this as the long-
range model. We will find that many results can be ob-
tained on this system by combining mean-field with
standard renormalization group techniques. It is interest-

ing to compare this model to a related mean-field solution
of path lengths on a small-world network [10].

In some cases, the long-range model may also be more
appropriate than the usual small-world model. In the
spread of a disease, for example, people tend to spread
the disease to those geographically nearby (the regular
lattice). There is a chance of a long-range spread of the
disease. However, this is not necessarily due to fixed long-
range links. Rather, it is due to the random probability
that a given person travels a long distance, typically by
air. Thus, a slight probability of long-range contact be-
tween any two people may be a better description than a
set of fixed long-range links.

Equilibrium statistics.—We consider equilibrium sta-
tistical mechanics models with uniform, ferromagnetic
couplings, such as Ising models, XY models, etc. . . .These
models can be represented by introducing a field ~!!!x",
where x labels lattice sites and where ~!! has n # 1; 2; . . .
components, with a partition function

Z #
X

f ~!!g
exp$%S$ ~!!&&; (1)

where S # E=kT is a statistical weight for a configuration
of energy E at temperature T.

For a model on a regular d-dimensional lattice, S$ ~!!& #
Slocal$ ~!!&, where Slocal$ ~!!& includes only short-range inter-
actions. We refer to this as the local system. We choose
instead for the long-range model a statistical weight with
additional long-range couplings of strength p=V:

S$ ~!!& # Slocal$ ~!!& % p
2V

X

x1;x2

~!!!x1" ' ~!!!x2": (2)

We neglect the temperature dependence of the second
term on the right-hand side of Eq. (2) in what follows,
as it leads to corrections to physical quantities which are
higher order in p.

Now, decouple the long-range interaction to find

Z #
Z

Rn
dn ~hh exp

!

%Vh2

2p

"
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where ~hh has n components and where
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Beyond 1D

  = mean distance between shortcutsζp ∼ p−1/d

  = bare correlation lengthξ(T ) ∼ T − Tc(0)
−ν

ξ(T ) ≈ ζp ⇒ Tc(p) − Tc(0) ∝ Jp
1
νd

a behavior different than that found in the 1D case, where
Tc!!log p!!1. In the limit p"1, one finds an increase in Tc
as z rises from four "in 2D# to six "in 3D#, as expected for
random lattices, for which one has kBTc /zJ→1 as z→$ .
To analyze the change in critical temperature with p, we

call %Tc"Tc!Tc
0 , being Tc

0 the transition temperature for
the corresponding 2D or 3D regular lattice. In Fig. 3, we
show the dependence of %Tc upon p for the 2D and 3D cases
in a log-log plot. In both cases we find that %Tc can be fitted
by a power-law %Tc!ps for p#0.01. The exponent s is
0.52$0.03 for 2D and 0.96$0.04 for 3D. Our result for 2D
networks is compatible with a !p dependence for %Tc near
p"0, which means that the derivative dTc /dp diverges as
!1/!p for p→0. In the 3D case, our results seem to indi-
cate a dependence %Tc!p for small p. However, in this case
the lowest p values studied here may still be too high to
attain the small-p regime "see below#.
Associated with the increase in Tc as the rewiring prob-

ability p rises, one expects an increase in the critical energy
E(Tc). We call ec"E(Tc)/N the critical energy per site, and
%ec"ec!ec

0 its change with respect to the regular lattice
(p"0). This difference %ec is shown in Fig. 4 as a function
of p for 2D "squares# and 3D "circles# networks, in a log-log
plot. For p#0.01, %ec can be well fitted in both cases by a
power law of the form %ec!pu. For the exponent u, we find
u"0.43$0.03 and 0.56$0.04 in 2D and 3D, respectively.
A characterization of the ferromagnetic phase transition in

these networks requires the determination of the universality
class to which it corresponds. In the limit p"0 "regular lat-
tices#, one has transitions of the 2D and 3D Ising type. In
order to determine the type of the phase transition at p%0,
we have studied the critical exponent & , which gives the
temperature dependence of the order parameter close to the
transition temperature: 'M (!(Tc!T)& for T&Tc . For the
different values of the rewiring probability p studied here, we
have calculated numerically the logarithmic derivative

)" t #"
d log'M (
d log t "6#

for t"Tc!T%0, which is related to the exponent & through
the limit &"limt→0)(t).
In Fig. 5, we present results for the derivative ) as a

function of temperature for several values of p and for a 2D
network of size 200'200. For reference, we also present
results of MC simulations for p"0 "Ising model on a regular
2D lattice# for the same system size, which converge to &
"0.125, the critical exponent for the 2D Ising model. In all
cases p%0, the extrapolation T→Tc gives an exponent &
close to 0.5, the value corresponding to a mean-field-type

FIG. 3. Dependence upon the rewiring probability p of the shift
in transition temperature %Tc with respect to the regular lattices, for
2D and 3D networks. Lines are guides to the eye.

FIG. 4. Dependence on the probability p of the shift in critical
energy per site %ec with respect to the regular lattices, for 2D and
3D networks. Lines are guides to the eye.

FIG. 5. Logarithmic derivative ) versus the temperature differ-
ence t"Tc!T for small-world networks generated by rewiring a
2D lattice of size 200'200. Different symbols represent results
obtained for several values of the rewiring probability p. From top
to bottom: p"1, 0.1, 0.01, 0.001, and 0.

ISING MODEL IN SMALL-WORLD NETWORKS PHYSICAL REVIEW E 65 066110

066110-3

‣ Herrero PRB (2002)

Classical Monte Carlo Ising modelQuantum magnetism on small-world networks

Maxime Dupont1, 2 and Nicolas Laflorencie3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
(Dated: February 7, 2021)

While classical spin systems in random networks have been intensively studied, much less is known about
quantum magnets in random graphs. Here, we investigate interacting quantum spins on small-world networks,
building on mean-field theory and extensive quantum Monte Carlo simulations. Starting from one-dimensional
(1D) rings, we consider two situations: all-to-all interacting and long-range interactions randomly added. The
e�ective infinite dimension of the lattice leads to a magnetic ordering at finite temperature )c with mean-field
criticality. In contrast to the classical case, we find two distinct power-law behaviors for )c versus the average
strength of the extra couplings. This is controlled by a competition between a characteristic length scale of
the random graph and the thermal correlation length of the underlying 1D system, thus challenging mean-field
theories. We also investigate the fate of a gapped 1D spin chain against the small-world e�ect.

I. INTRODUCTION

A. Complex networks and the small-world e�ect

Understanding complex networks is at the heart of many
scientific fields [1–11], such as computer science, mathemat-
ics, physics, biology, sociology, epidemiology, etc. During the
past two decades, critical phenomena arising in such random
topologies have emerged as a key subject of intense research
in statistical physics.

A complex network is a graph with non-trivial and random
properties, as opposed to periodic (or quasi-periodic) lattices
of finite dimension. There are two main features which contrast
with regular graphs: (i) a fluctuating connectivity (a certain
proportion of the links are randomly placed) and (ii) the so-
called small-world (SW) e�ect [12], which can dramatically
shorten the distances across the network. More precisely, for
a finite graph of # sites, the average distance ✓ between two
arbitrary points, also called the graph diameter, grows slower
than any power-law with #: ✓ ⇠ ln # , resulting in an infinite
e�ective dimension.

The SW e�ect occurs in a large class of complex networks,
such as Erdös-Rényi random graphs [13], scale-free [3] and
SW networks [2]. For the later case, the most popular SW
system is the Watts-Strogatz model [2] in which one ran-
domly rewire with a probability ? each edge of an initial
one-dimensional (1D) ring, as depicted in Fig. 1 (a). Shortly
after, a variant was proposed in Refs. [14, 15] by simply adding
long-range bonds with probability ?, without diluting the un-
derlying 1D structure, see Fig. 1 (b). This undiluted version
of the SW network, more amenable to analytical treatments,
was argued [4] to bring similar physics as compared to the
original SW proposal of Watts and Strogatz. Another sim-
plification was later proposed by Hastings in Ref. [16] with
a mean-field (MF) version, see Fig. 1 (c), where all possible
long-range links are added, but with a reduced strength / 1/#
vanishing at large sizes. This MF variant was introduced to
avoid randomness and thus facilitate analytical calculations.

(a) Watts − Strogatz small − world (b) Undiluted small − world (c) Hastings model
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(b) Regular small-world p = 0.5
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FIG. 1. Three types of small-world networks with # = 12 sites.
(a) The Watts-Strogatz model in which one randomly rewire with a
probability ? each edge of an initial 1D ring. (b) Long-range bonds
are added with probability ?, without diluting the underlying 1D
structure. (c) All possible long-range links are added, but with a
reduced strength / 1/# vanishing at large sizes.

B. Classical magnetism and small-world e�ect

A strong consequence of the SW e�ect is that for any finite
concentration ? > 0 of extra long-range links added across a
lattice of finite dimension 3 (exemplified in Fig. 1 for 3 = 1),
the system will behave as infinite-dimensional 3 = 1, provided
the number of sites # is large enough, typically exceeding a
crossover size #¢

⇠ 1/? [4, 17, 18]. This drastic change in the
e�ective dimension of the problem has attracted a lot attention
in the context of interacting classical spin systems [4, 19–28],
while much less is know for the quantum case [29–32].

Classical O(=) models on SW networks have been heavily
investigated for = = 1 (Ising) [4, 19, 21, 22, 27], and to a
lesser extent for = = 2 (XY) [20, 33]. In both cases, MF the-
ory (expected above 3u = 4) was found to describe the critical
properties. Note however that scale-free networks with power-
law distributed connectivities [3] do not necessarily display
MF behavior, depending on the power-law exponent of the
connectivity distribution [23, 25, 26, 34]. Non-universal and
non-MF behaviors have also been reported in SW networks
where the long-range interactions [35] or the branching prob-
ability [36] decay as a power-law with the distance. To some
extent, this reminds early renormalization-group results for =-
vector models with power-law decaying interactions [37, 38].
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The appropriate description for many complex real-
world systems is as a network [1], a general connection
of nodes and vertices which need not have the structure of
a regular lattice. The small-world network model com-
bines both long-range and short-range aspects, and inter-
polates between regular lattices and random graphs. This
model [2], in which a regular lattice is modified by either
randomly ‘‘re-wiring’’ links or else by simply randomly
adding long-range links, has become a standard model of
real-world networks. It incorporates some notion of local-
ity, as most of the links remain the same as that of the
original underlying lattice. Yet it also includes the ‘‘small-
world effect’’ that the average path length between sites
on the network scales only as the logarithm of the net-
work size.

Studies of equilibrium statistical on small-world sys-
tems have shown rich behavior [3–6], with mean-field
critical exponents, contrasting with the behavior on scale-
free networks [7,8]. We seek to explain the mean-field
behavior in the small-world systems. However, the pres-
ence of quenched randomness makes the small-world
model difficult to treat analytically. We thus consider a
different model which is easier to handle, lacking
quenched randomness. In many cases, depending on in-
equality (11) below, this model gives the same universal
behavior as the small-world model, thus explaining the
critical phenomena in the small-world system. We show
the existence of mean-field behavior, albeit with anoma-
lous exponents describing the width of the critical region
and various mean-field amplitudes. These anomalous ex-
ponents can complicate the interpretation of numerical
data. Finally, we will consider a nonequilibrium case,
describing the relaxation to a stationary state via a
branching process.

To define our model, we again start with a regular
lattice of V sites in d dimensions. Rather than adding
long-range links with probability p, we give each site of
the lattice a weak coupling, of order p=V, to every other
site in the lattice [9]. We will refer to this as the long-
range model. We will find that many results can be ob-
tained on this system by combining mean-field with
standard renormalization group techniques. It is interest-

ing to compare this model to a related mean-field solution
of path lengths on a small-world network [10].

In some cases, the long-range model may also be more
appropriate than the usual small-world model. In the
spread of a disease, for example, people tend to spread
the disease to those geographically nearby (the regular
lattice). There is a chance of a long-range spread of the
disease. However, this is not necessarily due to fixed long-
range links. Rather, it is due to the random probability
that a given person travels a long distance, typically by
air. Thus, a slight probability of long-range contact be-
tween any two people may be a better description than a
set of fixed long-range links.

Equilibrium statistics.—We consider equilibrium sta-
tistical mechanics models with uniform, ferromagnetic
couplings, such as Ising models, XY models, etc. . . .These
models can be represented by introducing a field ~!!!x",
where x labels lattice sites and where ~!! has n # 1; 2; . . .
components, with a partition function

Z #
X

f ~!!g
exp$%S$ ~!!&&; (1)

where S # E=kT is a statistical weight for a configuration
of energy E at temperature T.

For a model on a regular d-dimensional lattice, S$ ~!!& #
Slocal$ ~!!&, where Slocal$ ~!!& includes only short-range inter-
actions. We refer to this as the local system. We choose
instead for the long-range model a statistical weight with
additional long-range couplings of strength p=V:

S$ ~!!& # Slocal$ ~!!& % p
2V

X

x1;x2

~!!!x1" ' ~!!!x2": (2)

We neglect the temperature dependence of the second
term on the right-hand side of Eq. (2) in what follows,
as it leads to corrections to physical quantities which are
higher order in p.

Now, decouple the long-range interaction to find

Z #
Z

Rn
dn ~hh exp

!

%Vh2

2p

"

Z! ~hh"; (3)

where ~hh has n components and where
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⟨Sα(0)Sα(r)⟩
GS

∼
1

rη+d+z−2

η + d + z − 2 > 0

⇒

η + d − 2 > 0

Tomonaga − Luttinger liquids ! (d = z = 1)
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ℋXXZ = J∑
i

(Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1)

-1 -0.5 0 0.5 1
Δ

0.1

1

10

Ex
po
ne
nt

⟨Sα(0)Sα(r)⟩
GS

∼
1

rηα

ηx = arccos(−Δ)/π

ηz = π/arccos(−Δ)

ηx ≤ 1 !
07/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

08/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

(i) Ferromagnetic XY model with    and  Δ = 0, J < 0 JLR
ij = − JLR

ij

08/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

(i) Ferromagnetic XY model with    and  Δ = 0, J < 0 JLR
ij = − JLR

ij

(ii) Staggered Heisenberg antiferromagnet    and  Δ = 1, J > 0 JLR
ij = − (−1)|i−j| JLR

ij

08/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

(i) Ferromagnetic XY model with    and  Δ = 0, J < 0 JLR
ij = − JLR

ij

(ii) Staggered Heisenberg antiferromagnet    and  Δ = 1, J > 0 JLR
ij = − (−1)|i−j| JLR

ij

both models are unfrustrated   quantum Monte Carlo (QMC) simulations are possible ⇒

08/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

(i) Ferromagnetic XY model with    and  Δ = 0, J < 0 JLR
ij = − JLR

ij

(ii) Staggered Heisenberg antiferromagnet    and  Δ = 1, J > 0 JLR
ij = − (−1)|i−j| JLR

ij

both models are unfrustrated   quantum Monte Carlo (QMC) simulations are possible ⇒
Undiluted SW 

(branching probability p)

08/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

(i) Ferromagnetic XY model with    and  Δ = 0, J < 0 JLR
ij = − JLR

ij

(ii) Staggered Heisenberg antiferromagnet    and  Δ = 1, J > 0 JLR
ij = − (−1)|i−j| JLR

ij

both models are unfrustrated   quantum Monte Carlo (QMC) simulations are possible ⇒
Undiluted SW 

(branching probability p) Hastings model ‣ Hastings, PRL 2003

JLR ∝ J
p
N

08/14



ℋXXZ
1D = J

N

∑
i=1

hΔ
i,i+1, with hΔ

i,i+1 = Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i Sz

i+1

ℋLR = ∑
i, j

JLR
ij hΔ

i,i+1, if | i − j | > 1

1D small-world with quantum spin-1/2
ℋSW = ℋXXZ

1D + ℋLR

(i) Ferromagnetic XY model with    and  Δ = 0, J < 0 JLR
ij = − JLR

ij

(ii) Staggered Heisenberg antiferromagnet    and  Δ = 1, J > 0 JLR
ij = − (−1)|i−j| JLR

ij

both models are unfrustrated   quantum Monte Carlo (QMC) simulations are possible ⇒
Undiluted SW 

(branching probability p) Hastings model ‣ Hastings, PRL 2003

JLR ∝ J
p
N

08/14



Mean-Field Theories
1d Small-World p ≪ 1 1d Hastings Small-World 

09/14



Mean-Field Theories
1d Small-World p ≪ 1 1d Hastings Small-World 

We repeat the simple MF argument

we expect a 
transition when 
ξ(T) ≈ ζp ⇒ TMF

c ∝ uJp

  = mean distance between shortcutsζp ∼ 1/p

   Luttinger liquid correlation lengthξ(T ) ∼
uJ
T

Tc(p) − Tc(0) ∝ Jp
1
νd with ν = d = 1
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in the staggered antiferromagnetic Heisenberg case (� = 1),
where magnetic order, induced by long-range couplings, has
been assumed along the I spin component. For the ferromag-
netic XY model (� = 0), the ordering is expected in the GH

plane. We suppose it is along the G spin component and obtain
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⌦
(
G,I

9

↵
by

the corresponding order parameter h<i. In the staggered anti-
ferromagnetic Heisenberg case,

H
XXX
e� = �

’
8

Y8 · Y8+1 + h<i

’
8, 9

�
LR
8 9

(�1) 9(I
8
, (A4)

where the factor (�1) 9 comes from the fact that h<i =
(�1) 9

⌦
(
I

9

↵
. In the XY case, the order is ferromagnetic,

H
XY
e� = �

’
8

⇣
(
G

8
(
G

8+1 + (
H

8
(
H

8+1

⌘
+ h<i

’
8, 9

�
LR
8 9

(
G

8
. (A5)

2. Random phase approxmation

The linear response to a tiny symmetry-breaking field ⌘sb
coupled to the order parameter operator < takes the form,
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where j
1D
()) is the susceptibility. Neglecting possible inho-

mogeneities in the SW branching by using the fact that the aver-
age strength of extra-couplings across the ring is � 0(?) = 2?� 0

and including explicitely the symmetry-breaking field for the
antiferromagnetic XXX model of Eq. (A4), one gets,
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Within the chain mean-field approach, the total e�ective sym-
metry breaking field is ⌘sb + �

0(?)h<i. Therefore,
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Isolating the order parameter from Eq. (A9), one gets,

h<i =
j

1D
())

1 � �
0(?)j1D ())

⌘sb = j
RPA

())⌘sb. (A10)

Because magnetic ordering occurs at ) = )
RPA
c with a diver-

gence of the susceptibility, one finds the condition,
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By inverting it, one can get the RPA estimate of the critical
temperature )RPA
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Appendix B: Fitting parameters for the scaling functions

Following the scaling analysis including corrections to the
sccaling (see Sec. IV B 2), the fitting parameters for the data
collapse of Figs. 5 and 7 are reported in Tab. I.
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2. Random phase approxmation

The linear response to a tiny symmetry-breaking field ⌘sb
coupled to the order parameter operator < takes the form,

h<i = j
1D �

)

�
⌘sb, (A6)

where j
1D
()) is the susceptibility. Neglecting possible inho-

mogeneities in the SW branching by using the fact that the aver-
age strength of extra-couplings across the ring is � 0(?) = 2?� 0

and including explicitely the symmetry-breaking field for the
antiferromagnetic XXX model of Eq. (A4), one gets,

H
XXX
e� = �

’
8

Y8 · Y8+1 + h<i� 0(?)

’
8

(�1)8(I
8

+ ⌘sb

’
8

(�1)8(I
8
, (A7)

and similarly for the XY case of Eq. (A5),

H
XY
e� = �

’
8

Y8 · Y8+1 + h<i� 0(?)

’
8

(
G

8

+ ⌘sb

’
8

(
G

8
. (A8)

Within the chain mean-field approach, the total e�ective sym-
metry breaking field is ⌘sb + �

0(?)h<i. Therefore,

h<i = j
1D
())

⇣
⌘sb + �

0(?)h<i

⌘
. (A9)

Isolating the order parameter from Eq. (A9), one gets,

h<i =
j

1D
())

1 � �
0(?)j1D ())

⌘sb = j
RPA

())⌘sb. (A10)

Because magnetic ordering occurs at ) = )
RPA
c with a diver-

gence of the susceptibility, one finds the condition,

j
1D

⇣
)

RPA
c

⌘
= 1

.
�
0(?). (A11)

By inverting it, one can get the RPA estimate of the critical
temperature )RPA

c .

Appendix B: Fitting parameters for the scaling functions

Following the scaling analysis including corrections to the
sccaling (see Sec. IV B 2), the fitting parameters for the data
collapse of Figs. 5 and 7 are reported in Tab. I.

Quantity )c l q 1 2

Staggered AF Heisenberg (Hastings, � 0/� = 0.125)
& (Binder) 0.154(5) 1.49(2) 3.72(1) �41(1) 4613(10)
h<

2
icorr 0.156(4) 4.89(7) 0.66(2) �1.60(3) 9.24(5)

h<
2
isum 0.165(7) 0.37(6) 0.7(1) 667(9) 37(1)

XY Ferromagnet (Small-world, ? = 0.03125)
h<

2
icorr 0.064(3) 1.67(3) 2.74(8) 81(2) �30(1)

h<
2
isum 0.061(6) 1.20(8) 2.08(12) 290(4) 1036(12)

TABLE I. Fitting parameters for the data collapse of Figs. 5 and 7.
See Sec. IV B 2 for a definition of the di�erent parameters.

[1] J. Scott, Sociology 22, 109 (1988).
[2] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[3] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[4] A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 (2000).
[5] S. H. Strogatz, Nature 410, 268 (2001).
[6] M. Girvan and M. E. J. Newman, PNAS 99, 7821 (2002).
[7] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[8] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespig-

nani, PNAS 101, 3747 (2004).
[9] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.

Mod. Phys. 80, 1275 (2008).

[10] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,
Physics Reports 469, 93 (2008).

[11] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[12] M. A. Porter, Scholarpedia 7, 1739 (2012).
[13] P. Erdös and A. Rényi, Publicationes Mathematicae (Debrecen)

6, 290 (1959).
[14] R. Monasson, Eur. Phys. J. B 12, 555 (1999).
[15] M. E. J. Newman and D. J. Watts, Physics Letters A 263, 341

(1999).
[16] M. B. Hastings, Phys. Rev. Lett. 91, 098701 (2003).

10

Neglecting quadratic terms and up to an irrelevant constant,
one gets the following e�ective 1D Hamiltonian,

H
XXX
e� = �

’
8

Y8 · Y8+1 +
’

8, 9

�
LR
8 9

⌦
(
I

9

↵
(
I

8
, (A2)

in the staggered antiferromagnetic Heisenberg case (� = 1),
where magnetic order, induced by long-range couplings, has
been assumed along the I spin component. For the ferromag-
netic XY model (� = 0), the ordering is expected in the GH

plane. We suppose it is along the G spin component and obtain
the e�ective 1D model as follows,

H
XY
e� = �

’
8

⇣
(
G

8
(
G

8+1 + (
H

8
(
H

8+1

⌘
+

’
8, 9

�
LR
8 9

⌦
(
G

9

↵
(
G

8
. (A3)

In both cases, the idea is to assume symmetry breaking. Con-
sidering an homogeneous system, one can replace

⌦
(
G,I

9

↵
by

the corresponding order parameter h<i. In the staggered anti-
ferromagnetic Heisenberg case,

H
XXX
e� = �

’
8

Y8 · Y8+1 + h<i

’
8, 9

�
LR
8 9

(�1) 9(I
8
, (A4)

where the factor (�1) 9 comes from the fact that h<i =
(�1) 9

⌦
(
I

9

↵
. In the XY case, the order is ferromagnetic,

H
XY
e� = �

’
8

⇣
(
G

8
(
G

8+1 + (
H

8
(
H

8+1

⌘
+ h<i

’
8, 9

�
LR
8 9

(
G

8
. (A5)

2. Random phase approxmation

The linear response to a tiny symmetry-breaking field ⌘sb
coupled to the order parameter operator < takes the form,

h<i = j
1D �

)

�
⌘sb, (A6)

where j
1D
()) is the susceptibility. Neglecting possible inho-

mogeneities in the SW branching by using the fact that the aver-
age strength of extra-couplings across the ring is � 0(?) = 2?� 0

and including explicitely the symmetry-breaking field for the
antiferromagnetic XXX model of Eq. (A4), one gets,

H
XXX
e� = �

’
8

Y8 · Y8+1 + h<i� 0(?)

’
8

(�1)8(I
8

+ ⌘sb

’
8

(�1)8(I
8
, (A7)

and similarly for the XY case of Eq. (A5),

H
XY
e� = �

’
8

Y8 · Y8+1 + h<i� 0(?)

’
8

(
G

8

+ ⌘sb

’
8

(
G

8
. (A8)

Within the chain mean-field approach, the total e�ective sym-
metry breaking field is ⌘sb + �

0(?)h<i. Therefore,

h<i = j
1D
())

⇣
⌘sb + �

0(?)h<i

⌘
. (A9)

Isolating the order parameter from Eq. (A9), one gets,

h<i =
j

1D
())

1 � �
0(?)j1D ())

⌘sb = j
RPA

())⌘sb. (A10)

Because magnetic ordering occurs at ) = )
RPA
c with a diver-

gence of the susceptibility, one finds the condition,

j
1D

⇣
)

RPA
c

⌘
= 1

.
�
0(?). (A11)

By inverting it, one can get the RPA estimate of the critical
temperature )RPA

c .

Appendix B: Fitting parameters for the scaling functions

Following the scaling analysis including corrections to the
sccaling (see Sec. IV B 2), the fitting parameters for the data
collapse of Figs. 5 and 7 are reported in Tab. I.

Quantity )c l q 1 2

Staggered AF Heisenberg (Hastings, � 0/� = 0.125)
& (Binder) 0.154(5) 1.49(2) 3.72(1) �41(1) 4613(10)
h<

2
icorr 0.156(4) 4.89(7) 0.66(2) �1.60(3) 9.24(5)

h<
2
isum 0.165(7) 0.37(6) 0.7(1) 667(9) 37(1)

XY Ferromagnet (Small-world, ? = 0.03125)
h<

2
icorr 0.064(3) 1.67(3) 2.74(8) 81(2) �30(1)

h<
2
isum 0.061(6) 1.20(8) 2.08(12) 290(4) 1036(12)

TABLE I. Fitting parameters for the data collapse of Figs. 5 and 7.
See Sec. IV B 2 for a definition of the di�erent parameters.

[1] J. Scott, Sociology 22, 109 (1988).
[2] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[3] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[4] A. Barrat and M. Weigt, Eur. Phys. J. B 13, 547 (2000).
[5] S. H. Strogatz, Nature 410, 268 (2001).
[6] M. Girvan and M. E. J. Newman, PNAS 99, 7821 (2002).
[7] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[8] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespig-

nani, PNAS 101, 3747 (2004).
[9] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.

Mod. Phys. 80, 1275 (2008).

[10] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,
Physics Reports 469, 93 (2008).

[11] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[12] M. A. Porter, Scholarpedia 7, 1739 (2012).
[13] P. Erdös and A. Rényi, Publicationes Mathematicae (Debrecen)

6, 290 (1959).
[14] R. Monasson, Eur. Phys. J. B 12, 555 (1999).
[15] M. E. J. Newman and D. J. Watts, Physics Letters A 263, 341

(1999).
[16] M. B. Hastings, Phys. Rev. Lett. 91, 098701 (2003).

treat the 
LR part 
in MF

⟨m⟩ = χ1D (hsb
ext + JLR⟨m⟩)=

χ1D

1 − JLRχ1D
hsb

ext = χRPAhsb
ext

order 
parameter

ordering transition when  
χRPA(TRPA

c ) → ∞ TRPA
c = [χ1D]−1 ( 1

JLR )
agree with

09/14



Mean-Field Theories
1d Small-World p ≪ 1 1d Hastings Small-World 

We repeat the simple MF argument

we expect a 
transition when 
ξ(T) ≈ ζp ⇒ TMF

c ∝ uJp

  = mean distance between shortcutsζp ∼ 1/p

   Luttinger liquid correlation lengthξ(T ) ∼
uJ
T

Tc(p) − Tc(0) ∝ Jp
1
νd with ν = d = 1

‣ D. J. Scalapino, Y. Imry, and P. Pincus, PRB (1975).  
‣ H. J. Schulz, PRL (1996). 

Random Phase 
approximation

10

Neglecting quadratic terms and up to an irrelevant constant,
one gets the following e�ective 1D Hamiltonian,

H
XXX
e� = �

’
8

Y8 · Y8+1 +
’

8, 9

�
LR
8 9

⌦
(
I

9

↵
(
I

8
, (A2)

in the staggered antiferromagnetic Heisenberg case (� = 1),
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2. Random phase approxmation

The linear response to a tiny symmetry-breaking field ⌘sb
coupled to the order parameter operator < takes the form,
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where j
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()) is the susceptibility. Neglecting possible inho-

mogeneities in the SW branching by using the fact that the aver-
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and including explicitely the symmetry-breaking field for the
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By inverting it, one can get the RPA estimate of the critical
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Within the chain mean-field approach, the total e�ective sym-
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Isolating the order parameter from Eq. (A9), one gets,
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Because magnetic ordering occurs at ) = )
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c with a diver-

gence of the susceptibility, one finds the condition,
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By inverting it, one can get the RPA estimate of the critical
temperature )RPA

c .

Appendix B: Fitting parameters for the scaling functions

Following the scaling analysis including corrections to the
sccaling (see Sec. IV B 2), the fitting parameters for the data
collapse of Figs. 5 and 7 are reported in Tab. I.

Quantity )c l q 1 2

Staggered AF Heisenberg (Hastings, � 0/� = 0.125)
& (Binder) 0.154(5) 1.49(2) 3.72(1) �41(1) 4613(10)
h<

2
icorr 0.156(4) 4.89(7) 0.66(2) �1.60(3) 9.24(5)

h<
2
isum 0.165(7) 0.37(6) 0.7(1) 667(9) 37(1)

XY Ferromagnet (Small-world, ? = 0.03125)
h<

2
icorr 0.064(3) 1.67(3) 2.74(8) 81(2) �30(1)

h<
2
isum 0.061(6) 1.20(8) 2.08(12) 290(4) 1036(12)

TABLE I. Fitting parameters for the data collapse of Figs. 5 and 7.
See Sec. IV B 2 for a definition of the di�erent parameters.
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description becomes valid.
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Eq. (3.7) provides a parameter-free expression which gives
for � = 0 in the low-temperature limit,
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✓
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. (3.13)

This expression is plotted in Fig. 3, together with QMC results
where one sees a very good agreement at low temperature.

2. The spin-1/2 antiferromagnetic Heisenberg chain

The Heisenberg spin-1/2 chain model is known to have loga-
rithmic corrections in most observables [60–67]. In particular,
the staggered susceptibility [73] is expected to follow [74],
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In order to apply the RPA analysis, it appears very impor-
tant to have a correct description for j
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()). In Fig. 4 we
show our QMC results for large spin chains, up to ! = 4096
sites. Our data are very well described by Eq. (3.14), with
j0 = 0.2823(16) and ⇤ = 22.7(20), in the temperature range
0.002�  )  0.1�, These parameters di�er from the ones re-
ported in Refs. [75–77] where QMC was performed at higher
temperature.
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IV. QUANTUM MONTE CARLO RESULTS FOR THE
SMALL-WORLD

We now turn to SW networks. In the undiluted case shown
in Fig. 1 (b), we average the QMC results over di�erent lattices
with ? > 0 (typically a few hundreds), since the long-ranged
links are randomly drawn, while only one sample is enough
for the disorder-free Hastings model of Fig. 1 (c).

A. Observables

To characterize the finite-temperature transition, we con-
sider the square of the order parameter

⌦
<

2
↵
, directly accessi-

ble from the normalized structure factor for both the staggered
antiferromagnetic Heisenberg and ferromagnetic XY models
(see also Sec. III C). It can also be evaluated by looking at the
spin-spin correlation at long distance,
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On a finite-size system, the longest distance is taken along the
1D ring with |< � =| = #/2. One can average over the #/2
pairs of such lattice sites.

Another quantity of interest is the fourth-order Binder ra-
tio [78],

& =
⌦
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4↵.⌦
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2↵2
, (4.2)

which takes a system-size independent value at the transition
and is therefore useful to detect it.
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This expression is plotted in Fig. 3, together with QMC results
where one sees a very good agreement at low temperature.
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The Heisenberg spin-1/2 chain model is known to have loga-
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IV. QUANTUM MONTE CARLO RESULTS FOR THE
SMALL-WORLD

We now turn to SW networks. In the undiluted case shown
in Fig. 1 (b), we average the QMC results over di�erent lattices
with ? > 0 (typically a few hundreds), since the long-ranged
links are randomly drawn, while only one sample is enough
for the disorder-free Hastings model of Fig. 1 (c).

A. Observables

To characterize the finite-temperature transition, we con-
sider the square of the order parameter
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, directly accessi-

ble from the normalized structure factor for both the staggered
antiferromagnetic Heisenberg and ferromagnetic XY models
(see also Sec. III C). It can also be evaluated by looking at the
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On a finite-size system, the longest distance is taken along the
1D ring with |< � =| = #/2. One can average over the #/2
pairs of such lattice sites.

Another quantity of interest is the fourth-order Binder ra-
tio [78],
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which takes a system-size independent value at the transition
and is therefore useful to detect it.
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FIG. 7. Data collapse for the XY ferromagnet on the SW network
with ? = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
long distance. Setting ã = 2 and VMF = 1/2, we find that )c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �

0(?)/� ⇠ 0.1.
The dashed line is a linear fit / �

0(?)/�.

condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �

’
#

8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
�1
c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �

0
/� > 1. The ) = 0 critical coupling �

0
c ⇡ 0.53 is also

perfectly captured by the RPA treatment.
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Interestingly, the result mentioned above seems to hold
for quantum models with other values of S. As also shown
in Fig. 2, within our numerical accuracy, this is well
confirmed for the S ! 3=2 model with J0=J " 0:02. For
the S ! 1 case we find agreement in the range J0=J "
0:05, where TN is larger than the Haldane gap [18] of the
isolated chain. Below this temperature the finite-size scal-
ing of the QMC data becomes less reliable and we cannot
draw definitive conclusions. Even if the result for the S ! 1
model is restricted to this temperature range, the present
result is surprising, given the different behavior of !s#T$ in
the classical and quantum 1D models.

Q2D systems.—In both classical and quantum 2D mod-
els, AF-LRO appears at T ! 0, together with an exponen-
tial divergence of !s#T$ at T ! 0. In the classical 2D
system, !s is proportional to T3 exp#4"J=T$ at low tem-
peratures [19,20]. For the quantum 2D models, there is a
similar exponential divergence at T ! 0. In the renormal-
ized classical regime of the nonlinear # model [21], for
example, !s#T$ is written as

!s#T$J ! c2T=J exp#4"$s=T$; (6)

where $s is the spin stiffness and c2 a constant.
The J0 dependence of TN for the Q2D models is shown in

Fig. 3. We see that TN#J0$ / %1= ln#J0=J$ at small J0=J in
the S ! 1=2, 1, and 1 models due to the similar exponen-
tial forms of !s at T ! 0 of the classical and quantum
models. Figure 4 shows that again for J0=J & 0:05 the
values of %#J0$ are universal for the quantum and the
classical models: k2 ! 0:65 in Eq. (2) independent of the
spin size S. This confirms the validity of our modified RPA
scenario represented by Eqs. (1) and (2) also for the Q2D
systems.

If we insert Eq. (6) into Eq. (1) with %#J0$ ! %2, we
obtain the following expression of TN for J0=J & 1:

TN ! 4"$s='b% ln#J0=J$ % ln#TN=J$(; (7)

with b ! % ln#%2c2$. This result is compatible with that of

the 1=N-expansion theory by Irkhin et al. [5] for the S !
1=2 model in the same limit. Various estimations of b and
$s can be obtained analytically [5] according to the differ-
ent approximation schemes used. Unfortunately, we cannot
judge which approximation is most relevant in general
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0(?)/�.

condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �

’
#

8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
�1
c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �

0
/� > 1. The ) = 0 critical coupling �

0
c ⇡ 0.53 is also

perfectly captured by the RPA treatment.
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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governed by the following Heisenberg Hamiltonian,
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⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
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, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �
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/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA
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when �
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(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �
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The dashed line is a linear fit / �
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �
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#

8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
�1
c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �
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/� > 1. The ) = 0 critical coupling �
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c ⇡ 0.53 is also
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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⇥
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⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
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, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
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c =
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of varying strength �
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/# for a dimerization parameter X =
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as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �
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8=1

⇥
1 + X(�1)8

⇤
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stead of a divergent staggered susceptibility, now jc saturates
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, as visible in Fig. 8
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Consequently, according to RPA, Eq. (2.5), the absence of
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c =
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ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j
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, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
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? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
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out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j
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, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of
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of varying strength �
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exists, and )c = 0 otherwise. The agreement is excellent, even
when �

0
/� > 1. The ) = 0 critical coupling �

0
c ⇡ 0.53 is also

perfectly captured by the RPA treatment.

RPA (QMC)
Hastings (QMC)

0.0 0.5 1.0 1.5 2.0
! ′(")/!

0.0

0.2

0.4

0.6

0.8

# c
/!

0.01 0.1 1 10
!/"

0

1

2

#
!

" = 32
" = 64
" = 128
" = 256
" = 512

FIG. 8. Critical temperature of the dimerized antiferromagnetic
model Eq. (4.11) with X = 0.25 and additional long-range couplings
of the Hastings form of strength �

0(?). The RPA estimate compares
perfectly to the QMC results. Inset: Temperature dependence of the
staggered susceptibility of the 1D dimerized system.

8

�20 �10 0 10

0.2

0.4

0.6

0.8

1.0

⌦ <
2
↵ co

rr
� #

�
2V

M
F
/
ã
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long distance. Setting ã = 2 and VMF = 1/2, we find that )c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �

0(?)/� ⇠ 0.1.
The dashed line is a linear fit / �

0(?)/�.

condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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⇤
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In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j
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, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of
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c =
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
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, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =
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, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �
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/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA
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exists, and )c = 0 otherwise. The agreement is excellent, even
when �
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for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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and the so-called Luttinger exponent  . Their dependence on
the Ising anistropy � are well-known [58],

D = c

p
1 � �2

2 arccos�
,  =

c

2 arccos (��)
. (3.4)

In the easy-plane regime |�| < 1, the dominant correlations are
transverse with respect to the Ising anistropy and power-law
decaying at ) = 0 [57],
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+ · · · , (3.5)

with @ = 0 (@ = c) for ferrromagnetic (antiferromagnetic)
interactions. The amplitude �GG in Eq. (3.5) is also known
exactly [59]. This quasi-long range (algebraic) order does
not survive at finite temperature where all correlations decay
exponentially with a finite correlation length, diverging at low
temperature,

b ()) / D�
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a with a = 1. (3.6)

In the regime |�| < 1, the transverse susceptibility, associated
to the dominant correlation of Eq. (3.5), has the following
low-) behavior [46, 57],
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with ⌫(G, H) = �(G)�(H)/�(G + H), making Eq. (3.7) a
parameter-free expression.

2. Consequences for the critical temperature

From the above expression of the transverse susceptibility
Eq. (3.7), one can identify the susceptibility exponent to be
W = 2� 1

2 . Quite interestingly, we see that the above condition
Eq. (2.4) is not fulfilled for TLL with = (2[)�1

> 1/2, which
applies to the entire easy-axis regime (�1  � < 1), except
at isotropic point. Inverting Eq. (3.7) yields a parameter-free
expression for the RPA estimate of the critical temperature,

)
RPA
c (?) = D� 5

�
 , �GG

� ✓2?� 0

D�

◆ 2 
4 �1

, (3.8)

with the dimensionless prefactor,

5

�
 , �GG

�
=

1
2c


�GG sin

⇣
c

4 

⌘
⌫

2
✓

1
8 

, 1 �
1

4 

◆� 2 
4 �1

.

(3.9)
When comparing the RPA prediction with the simple MF ex-
pression of Eq. (2.1) using the temperature dependence of the
correlation length of Eq. (3.6),

)
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we anticipate a crossover at low branching probability ?
¢
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where ?0 (�) = D
�`� [ 5 ( , �GG)]

1+`� is plotted in
Fig. 2 (inset) as a function of the Ising anisotropy, and the
exponent `� = c/arccos(�) varies between 1 for � = �1 and
+1 when � ! 1. Eq. (3.11) is plotted against � 0/� in Fig. 2
for various anisotropies �. This defines the range of validity
of the RPA expression for the critical temperature Eq. (3.8) for
? > ?

¢. Below ?
¢, the simpler linear MF argument Eq. (3.10)

is expected.
The antiferromagnetic Heisenberg case (� = 1) is more

subtle since the TLL parameter  = 1/2 and logarithmic cor-
rections [60–67] are expected in the temperature dependence
of both the correlation length and the staggered susceptibil-
ity. This will be discussed in more details in the following
(Sec. III C 2).

C. Quantum Monte Carlo results for the 3 = 1 susceptibilities

We simulate the ( = 1/2 XXZ chain model Eq. (1.1) at
finite temperature ) with QMC, using the stochastic series
expansion with directed loop updates [68–70].

Noting ⌘sb a symmetry-breaking field coupled to the order
parameter h<i, the linear response function (susceptibility j)
takes the form,
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with <(g) = e�gH<egH in the Heisenberg picture where g
is the imaginary time. The right-hand side of Eq. (3.12) is
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FIG. 7. Data collapse for the XY ferromagnet on the SW network
with ? = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
long distance. Setting ã = 2 and VMF = 1/2, we find that )c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �
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The dashed line is a linear fit / �

0(?)/�.

condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �

’
#

8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
�1
c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �

0
/� > 1. The ) = 0 critical coupling �

0
c ⇡ 0.53 is also

perfectly captured by the RPA treatment.
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FIG. 8. Critical temperature of the dimerized antiferromagnetic
model Eq. (4.11) with X = 0.25 and additional long-range couplings
of the Hastings form of strength �

0(?). The RPA estimate compares
perfectly to the QMC results. Inset: Temperature dependence of the
staggered susceptibility of the 1D dimerized system.
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with ? = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
long distance. Setting ã = 2 and VMF = 1/2, we find that )c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �
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The dashed line is a linear fit / �
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �
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#

8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
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c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �
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/� > 1. The ) = 0 critical coupling �
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c ⇡ 0.53 is also

perfectly captured by the RPA treatment.
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FIG. 7. Data collapse for the XY ferromagnet on the SW network
with ? = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
long distance. Setting ã = 2 and VMF = 1/2, we find that )c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �

0(?)/� ⇠ 0.1.
The dashed line is a linear fit / �

0(?)/�.

condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �
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8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
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c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �
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/� > 1. The ) = 0 critical coupling �
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perfectly captured by the RPA treatment.
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model Eq. (4.11) with X = 0.25 and additional long-range couplings
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with ? = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
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In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �
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condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.
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1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
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, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �
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/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA
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when �
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of the Hastings form of strength �
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perfectly to the QMC results. Inset: Temperature dependence of the
staggered susceptibility of the 1D dimerized system.
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FIG. 7. Data collapse for the XY ferromagnet on the SW network
with ? = 0.03125: the square of the order parameter evaluated from
(a) the normalized structure factor and (b) the spin-spin correlation at
long distance. Setting ã = 2 and VMF = 1/2, we find that )c ' 0.065.
The other fitting parameters are reported in App. B. The insets show
the data crossing without any correction to the scaling. (c) Critical
temperature of the ferromagnetic XY and staggered antiferromagnetic
Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �
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The dashed line is a linear fit / �

0(?)/�.

condition of Eq. (2.4): here [ > 1, with [ = arccos(��)/c  1
for the 3 = 1 XXZ model.

Note that for the XXX case, the RPA estimate Eq. (4.9) has
multiplicative logarithmic corrections, slowly growing when
? ! 0. Therefore one should expect, in principle, to observe a
similar crossover towards the MF expression Eq. (3.10) for the
staggered XXX antiferromagnet. However, this e�ect is clearly
out of reach since it would theoretically occur for ?¢ ⇡ 10�9.

D. Influence of a spin gap

We finally investigate a dimerized antiferromagnetic chain,
governed by the following Heisenberg Hamiltonian,

H1D = �

’
#

8=1

⇥
1 + X(�1)8

⇤
Y8 · Y8+1. (4.11)

In contrast with the previous study, here the ring has a gapped
ground-state, with a finite ) = 0 correlation length [85]. In-
stead of a divergent staggered susceptibility, now jc saturates
at low temperature to a finite value, j

0
c
, as visible in Fig. 8

(inset) for a dimerization parameter X = 0.25.
Consequently, according to RPA, Eq. (2.5), the absence of

low-) divergence for jc should imply a critical coupling �
0
c =

1/j0
c
, below which )c = 0. This is well known for instance in

the case of coupled Haldane chains [86, 87]. Here we performe
QMC simulations of the Hastings model with extra couplings
of varying strength �

0
/# for a dimerization parameter X =

0.25. )c estimates are reported in Fig. 8, together with the
RPA result, obtained using )RPA

c = j
�1
c
(1/� 0) when a solution

exists, and )c = 0 otherwise. The agreement is excellent, even
when �

0
/� > 1. The ) = 0 critical coupling �

0
c ⇡ 0.53 is also

perfectly captured by the RPA treatment.
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0(?). The RPA estimate compares
perfectly to the QMC results. Inset: Temperature dependence of the
staggered susceptibility of the 1D dimerized system.
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Heisenberg models versus the average strength of the extra couplings.
In each case, the analytical RPA estimate is also displayed. In the stag-
gered antiferromagnetic Heisenberg model, the two estimates agree
as � 0(?) ! 0. We plot in the inset the renormalization parameter U
(see text). As � 0(?) ! 0, one sees that U ! 1. In the ferromagnetic
XY case, the RPA and QMC estimates deviate below �
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The dashed line is a linear fit / �
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