Entanglement in Strongly Correlated Systems 09-22 February 2020, Benasque, Spain

Spin-½ Kagome Heisenberg Antiferromagnet with Strong Breathing Anisotropy

arXiv:1912.10756

Saeed Jahromi

Donostia International Physics Center

R. Orus

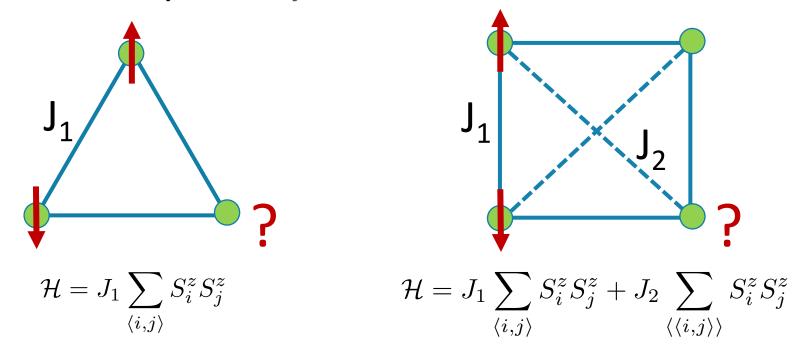
F. Mila

D. Poilblanc

Outline

- Frustrated Spin Systems
- Breathing Kagome Heisenberg Antiferromagnets
- Infinite Projected Entangled Pair (Simplex) States
- Small Breathing Anisotropy Limit
- Large Breathing Anisotropy Limit
- Quantum Phase Transition
- Conclusion and Outlook

Frustrated Spin Systems



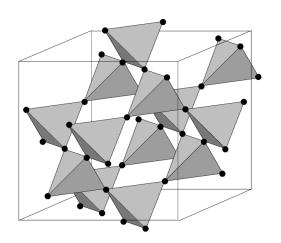
Frustration: Antiferromagnetic Couplings + Odd Loops

- Geometric: 2D lattice of corner-sharing triangles (Triangular, Kagome)
- Competition between different exchange paths: J₁-J₂ Mode
- Total energy of the system does not correspond to minimum of each interaction term in the Hamiltonian

Frustrated Spin Systems

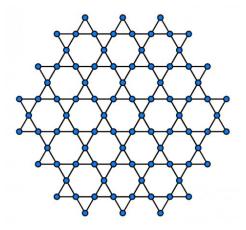
Why study frustrated systems?

- Frustration is typically present in real material in nature
- Exciting and challenging playground for both theorists and experimentalists
- Host exotic phases of matter such as: Spin Liquids, RVB, VBC, Plaquette States



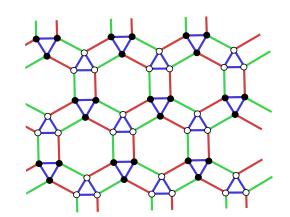
Pyrochlore Lattice

Y. Iqbal et al, PRX (2019)
Bergman et al, PRB, (2006)
Harris et al, Mod. Phys. Lett. B (1996)



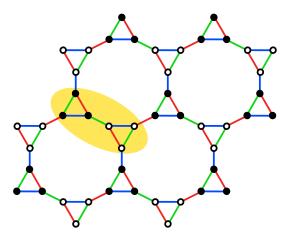
Kagome Lattice

Ran et al, PRL, (2007) Y. Iqbal et al, PRB (2013) Liao et al, PRL, (2017)



Ruby Lattice

Kargarian et al, NJP, (2010) Farnell et al, PRB, (2014) Jahromi et al, PRB (2018)



Star Lattice

Yao et al, PRL, (2007) Dusuel et al, PRB, (2008) Jahromi et al, PRB (2018)

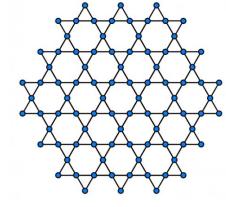
Frustrated Spin Systems

Spin-1/2 Kagome Heisenberg Antiferromagnet

- Presence of corner sharing triangles induce high quantum fluctuation
- Ground-state of the Kagome Heisenberg antiferromagnets has been one of the most hotly debated topics in condensed matter physics
- The ground state is believed to be a Quantum Spin Liquid (QSL)
- The gapped or gapless nature is under debate

Y.C.He et al, PRX (2017) Picot et al, PRb (2016) Liao et al, PRL (2017) Ran et al, PRL (2007)
Y. Iqbal et al, PRB (2014)
Y. Iqbal et al, PRB (2015)

Poilblanc et al, PRB (2012) Schuch et al, PRB (2012) Poilblanc et al, PRB (2013) Jiang et al, Science (2008) Yan et al, Science (2011) Depenbrock et al, PRL (2012)



Kagome Lattice

Candidate Materials:

Volborthite Cu₃V₂O₇(OH)₂·2H₂O

Yoshida et al, JPSJ, (2001), (2009)

Vesignieite BaCu₃V₂O₈(OH)₂

Okomato et al, JPSJ, (2009)

Herbertsmithite ZnCu3(OH)₆Cl₂

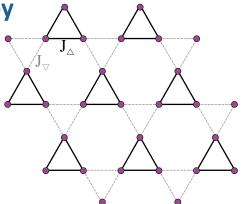
Helton et al, PRL, (2007)

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Breathing Kagome Heisenberg Antiferromagnets

Spin-½ Kagome Heisenberg Antiferromagnetic model with Breathing Anisotropy

$$H = J_{\triangle} \sum_{\langle ij \rangle \in \triangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_{\nabla} \sum_{\langle ij \rangle \in \nabla} \mathbf{S}_i \cdot \mathbf{S}_j$$



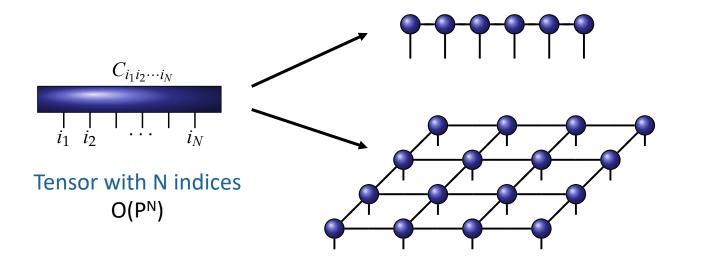
- Naturally, Kagome compound tend to be anisotropic in nature due to impurities or effective perturbations which influence the strength of coupling on different Kagome triangles to Be different
- Can Heisenberg antiferromagnets with Breathing anisotropy host QSL?
- Candidate Material: Vanadium Oxyfluoride compound [NH₄]₂[C7H₁₄N][V₇O₆F₁₈]
- Experimental Signatures of a QSL at $J_{\nabla}/J_{\Delta} \approx 0.55$ Orian et al, PRL, (2017)

Clark et al, PRL, (2013) Aidoudi et al, Nat. Chem. (2011) Orian et al, PRL, (2017)

Phase Diagram?

Infinite Projected Entangled-Pair State

$$|\psi\rangle = \sum_{i_1,i_2,\dots,i_N}^p c_{i_1,i_2,\dots,i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$$



Matrix Product States

Projected Entangled-Pair State (PEPS)

O(poly(P,N,D))

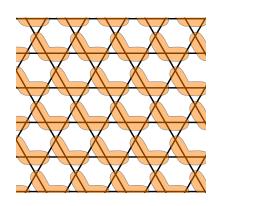
Some of the advantages of Tensor Network Methods:

- ❖ TNs are build on genuine quantum correlations → Beyond Mean-Field calculations
- ❖ No Fermionic sign problem → Beyond QMC calculations
- ❖ Simulate systems in the thermodynamic limit → Beyond finite size Exact Diagonalization

Infinite Projected Entangled-Pair State

Tensor Network for the Kagome lattice

iPEPS with coerce-graining three spin-½ into a block site with d=2³ to form a square TN of block-sites

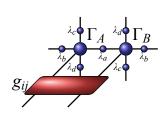


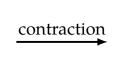


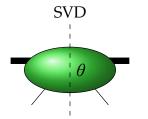
Corboz et al, PRB, (2012) Corboz et al, PRL (2014) Jahromi et al, PRB, (2018), (2019)

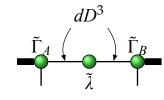
Simple Update:

Jiang et al, PRL, (2008) Corboz et al, PRB (2010)

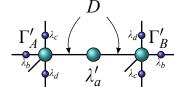






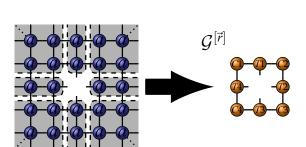


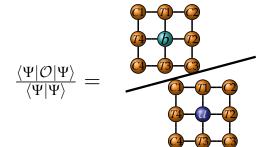


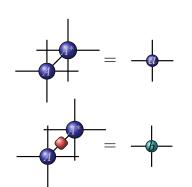


CTMRG:

Nishino et al, JPSJ, (1996) Orus et al, PRB (2009) Corboz et al, PRB (2010) Corboz et al, PRB (2014)

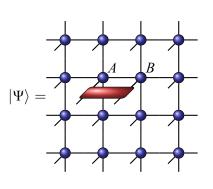


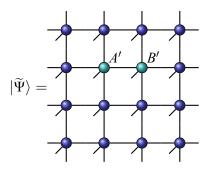




Infinite Projected Entangled-Pair State

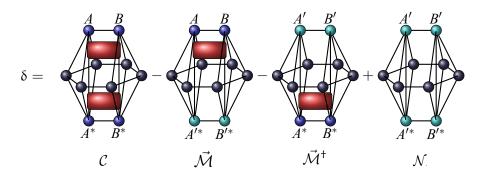
Full Update:





Corboz, Mila, PRL (2014) Phien et al, PRB, (2015) Corboz, Rice et al, PRL (2014)

$$\delta = \left|\left||\Psi\rangle - |\widetilde{\Psi}\rangle\right|\right|^2 = \langle\Psi|\Psi\rangle - \langle\Psi|\widetilde{\Psi}\rangle - \langle\widetilde{\Psi}|\Psi\rangle + \langle\widetilde{\Psi}|\widetilde{\Psi}\rangle$$



$$\min_{A'}\left|\left|\left|\Psi
ight
angle-\left|\widetilde{\Psi}
ight
angle
ight|^{2}=\min_{A'}\left(ec{A'}^{\dagger}\mathcal{N}ec{A'}-ec{A'}^{\dagger}ec{\mathcal{M}}-ec{\mathcal{M}}^{\dagger}ec{A'}+\mathcal{C}
ight)$$

$$\frac{\partial}{\partial \vec{A'}^{\dagger}} \left(\vec{A'}^{\dagger} \mathcal{N} \vec{A'} - \vec{A'}^{\dagger} \vec{\mathcal{M}} - \vec{\mathcal{M}}^{\dagger} \vec{A'} + \mathcal{C} \right) = 0 \qquad \longrightarrow \qquad \mathcal{N} \vec{A'} = \vec{\mathcal{M}}$$

Projected Entangled-Simplex State

Tensor Network for the Kagome lattice

Entangled-Pairs (two-partite entangled states) on the bonds

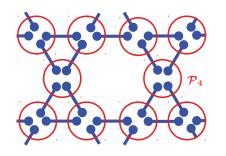
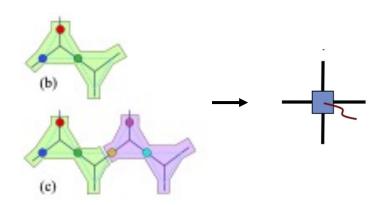


Figure taken from Schuch et al PRB (2012)

Simplex states (three-partite entangled states) on triangles



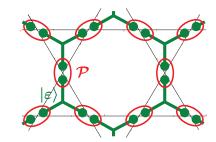
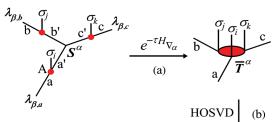
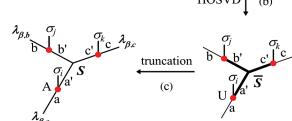


Figure taken from Schuch et al PRB (2012)



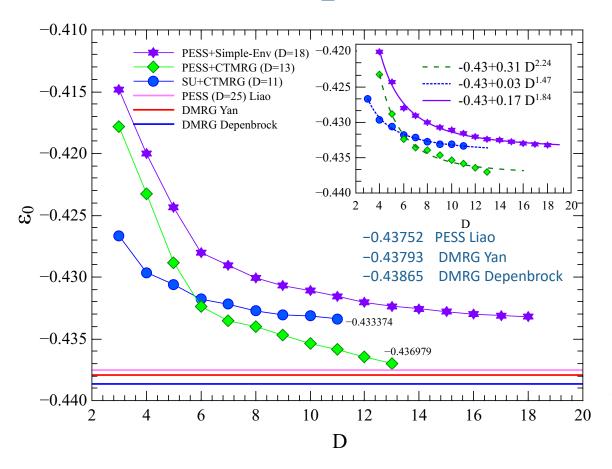


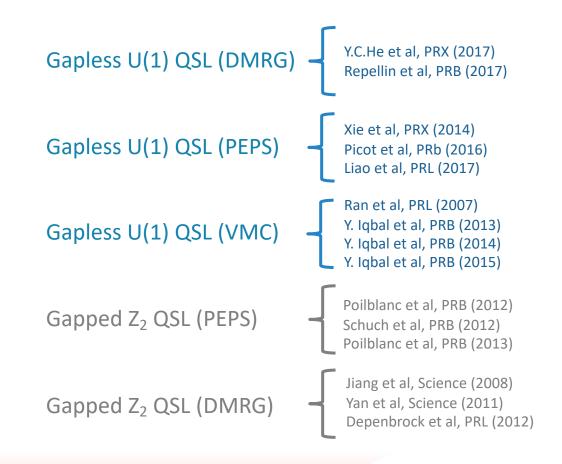
Triangle PESS Update

Xie et al, PRX (2014) Liao et al, PRL (2017)

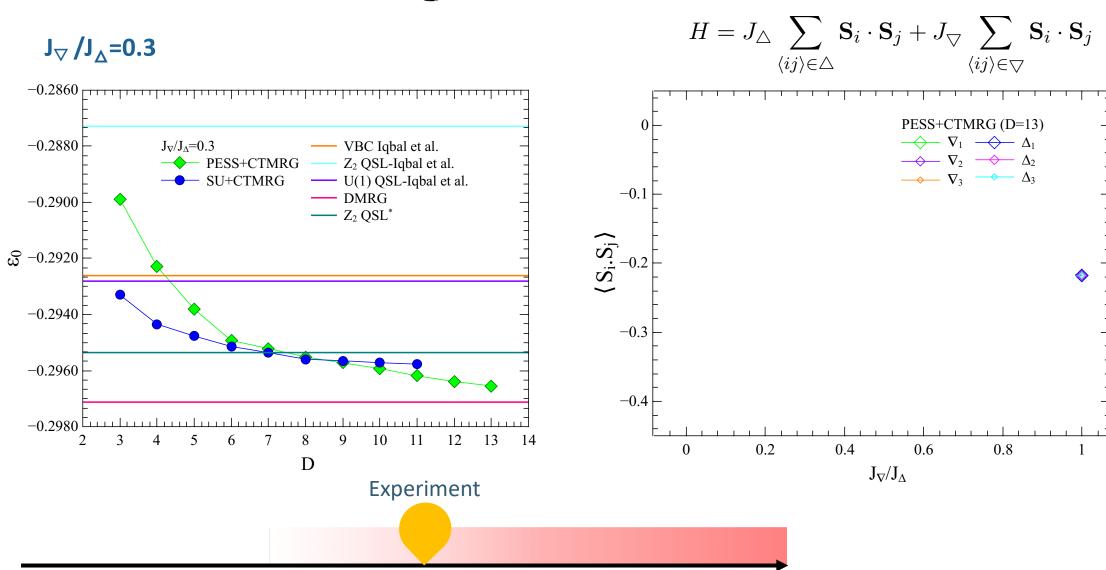
Small Breathing Limit

Isotropic Point: $J_{\nabla}/J_{\triangle}=1$





Small Breathing Limit



 $J_{\nabla}/J_{\wedge}=1$

 $J_{\nabla}/J_{\wedge}\approx 0.55$

Orian et al, PRL, (2017)

 $J_{\nabla}/J_{\Lambda}\ll 1$

Large Breathing Limit

 $J_{\nabla}/J_{\Delta}=0.01$

VBC (VMC+PEPS)

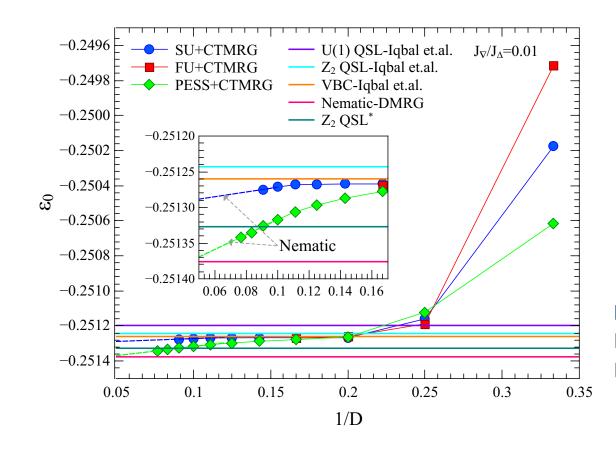
Y. Iqbal et al, PRB (2018)

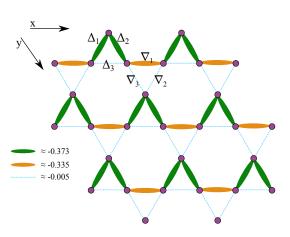
Gapped Z₂ QSL (PEPS)

M. Iqbal et al, arXiv:1912.08284 (2019)

Nematic (DMRG)

Repellin et al, PRB (2017)

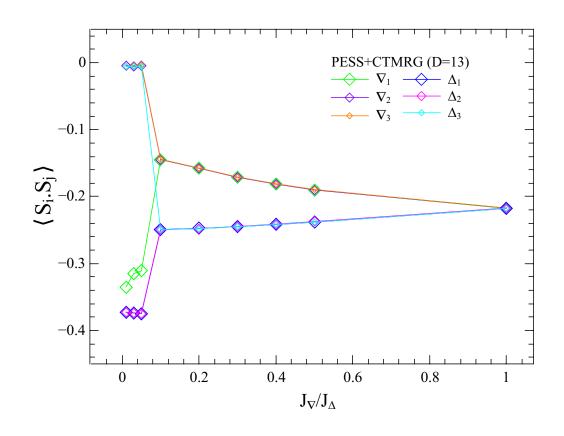


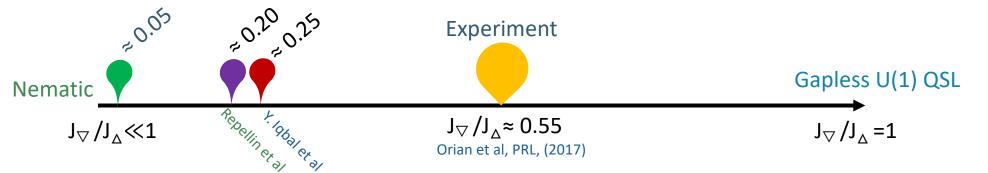


Lattice Nematic state:

Preserves Translational Symmetry Breaks Rotational Symmetry

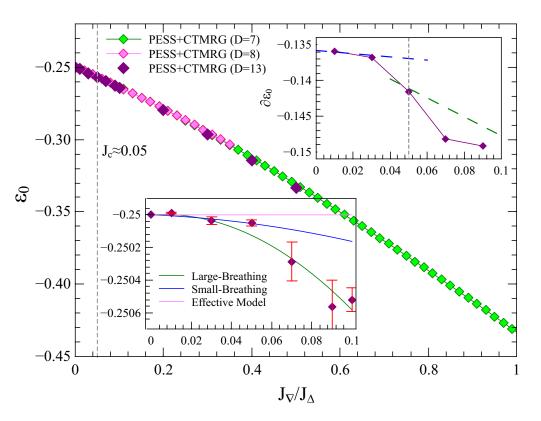
Quantum Phase Transition





Quantum Phase Transition

The QPT is First-Order



$$\frac{\varepsilon_0}{J_{\triangle}} = -0.25 + c_1 \frac{J_{\nabla}}{J_{\triangle}} + c_2 \left(\frac{J_{\nabla}}{J_{\triangle}}\right)^2 + \dots$$

Wave Function	c_1	c_2
nematic (PESS)	-0.1358	-0.0113
U(1) QSL (PESS)	-0.1345	-0.0663
U(1) QSL (Iqbal et al.)	-0.1190	-0.079
\mathbb{Z}_2 QSL (Iqbal et al.)	-0.1245	0
VBC (Iqbal et al.)	-0.1255	-0.055
$\mathbb{Z}_2 \ \mathrm{QSL}^*$	-0.1323	-0.0628
Effective Model	-0.1353	0

Y. Igbal et al, PRB (2018)

M. Iqbal et al, arXiv:1912.08284 (2019)

Repellin et al, PRB (2017)

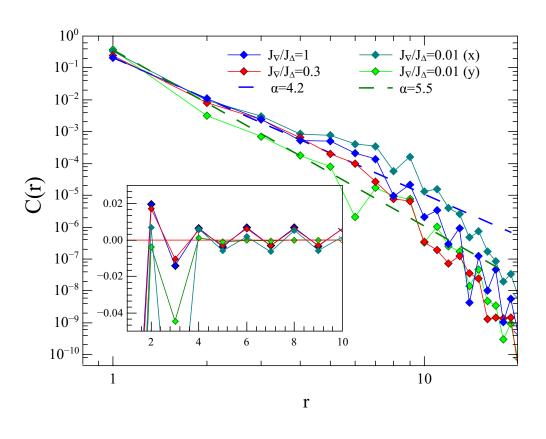
F Mila, PRL (1998)

Nematic

Gapless U(1) QSL

Quantum Phase Transition

The Lattice Nematic Phase is also a Critical Gapless phase



$$C(r) = \langle \mathbf{S}_{(x,y)} \cdot \mathbf{S}_{(x+r,y)} \rangle - \langle \mathbf{S}_{(x,y)} \rangle \cdot \langle \mathbf{S}_{(x+r,y)} \rangle$$

Log-log plot of the long range spin-spin correlations show an approximate power-law decay given by:

$$C(r) \sim C_0 r^{-lpha}$$
 $X o \Delta_1 o \Delta_2$
 $\Delta_3 o \nabla_1$
 $\Delta_3 o \nabla_3 o \nabla_2$
 $X o \Delta_3 o \nabla_3 o \nabla_2$
 $X o \Delta_3 o \nabla_3 o \nabla_2$

Nematic

Gapless U(1) QSL

Conclusion and Outlook

- * Breathing anisotropy arises naturally in materials with impurity or under perturbation
- ❖ The spin-½ Breathing Kagome antiferromagnetic model is a suitable play ground to understand the effects of breathing anisotropy
- * Tensor Network methods are powerful techniques for studying frustrated systems
- ❖ Gapless U(1) Spin Liquid of the BKH model persists to very large breathing anisotropies
- Lattice Nematic phase at very large breathing limit
- * First-order QPT between the U(1) QSL and the Nematic phase at $J_{\nabla}/J_{\Delta} \approx 0.05$
- The Nematic phase is a critical gapless phase
- ❖ Our results is also in agreement with current experiment on Vanadium Oxyfluoride compound