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FIG. 1. (color online) (a),(b) Néel and striped AFM phases
used as magnetically ordered backgrounds in LSWT. Pink and
blue bullets correspond to up and down arrangement of spins.
(c),(d),(e),(f) Canditates of non-magnetic cluster orderings as
a ground state background, used in COA. The case of (f)
corresponds to string-VBS of ! = 6. Solid and dashed lines
are J1 and J2 bonds, respectively.

J2/J1 = 0.5.
Moreover, the 2D TFI model is a prototype frustrated

magnetic model, which received much attention, to ex-
plore novel emergent phases [26–28]. The ground state of
2D TFI model at the highly-frustrated point, to the best
of our knowledge, is not known. It is challenging to find
a ground state, which is a result of quantum fluctuations
on an extensive degenerate ground space.
In this paper, we therefore examine the spin- 12 trans-

verse field Ising model on the J1 − J2 square lattice,
Hamiltonian 1, by resorting to different analytical and
numerical techniques such as linear spin-wave theory
(LSWT) [29], cluster operator approach (COA) [30, 31]
and tree tensor network (TTN) simulation [32]. We found
that harmonic quantum fluctuations in LSWT based on
single-spin flip excitations are incapable of lifting the ex-
tensive degeneracy of the classical system. However, con-
sidering anharmonic fluctuations with multi-spin flip ex-
citations via COA certifies the existence of global-loop-
type of quantum fluctuations, which are able to lift the
extensive degeneracy of the system at J2/J1 = 0.5 toward
a string-VBS phase with broken lattice rotational sym-
metry, leading to an order by disorder transition. The

string-VBS state is a manifestation of macroscopic quan-
tum superposition [33, 34]. These findings are further
confirmed by numerical (TTN) simulations.

The paper is organized as follows. In Sec. II, we intro-
duce the model and some of its classical features. Next,
in Sec. III we present LSWT and COA used for determin-
ing the true nature of quantum ground state by introduc-
ing different type of quantum fluctuations. We compare
the results obtained from two approaches with each other
and also with the TTN results. Details of our approaches
are presented in Appendices. We argue that string-type
quantum fluctuations can cast the ground state of highly
frustrated point J2/J1 = 0.5 to a string-VBS phase at
low fields with broken rotational symmetry. Sec. IV dis-
cusses the existence of a quantum phase transition from
string-VBS phase of low fields to a quantum paramagnet
phase of high fields at Γ/J1 ∼= 0.5, where the critical ex-
ponents are extracted. Finally, the paper is summarized
and concluded in Sec. V.

II. MODEL

In this section, we introduce the spin-1/2 transverse
field Ising model on the square lattice with J1−J2 inter-
actions. We consider a square lattice, where spin-1/2 par-
ticles are placed at the vertices of the lattice and the an-
tiferromagnetic exchange coupling J1 (J2) are tuned be-
tween the nearest neighbor (next-nearest neighbor) spins
(see Fig. 1). Hamiltonian of the model in the presence of
a transverse magnetic field Γ is given by
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∑

〈i,j〉

Sz
i S

z
j + J2

∑

〈〈i,j〉〉

Sz
i S

z
j − Γ

∑

i

Sx
i , (1)

where Si ≡ (Sx
i , S

y
i , S

z
i ) are the usual quantum spin-1/2

operators with Si
2 = S(S + 1).

In the extreme case, where J2 = 0 and Γ = 0, the clas-
sical ground state of the system is given by a Néel state
(Fig. 1-(a)), which persists as the frustration is increased
up to a critical point at J2/J1 = 0.5, where it breaks to a
collinear anti-ferromagnetic phase with striped AFM or-
der (Fig. 1-(b)) for J2/J1 > 0.5, through a first-order
quantum phase transition [27, 35, 36]. The classical
ground state of the system further displays an exponen-
tial degeneracy at the highly frustrated point J2/J1 = 0.5
in which the ground state is described by two-up-two-
down configurations for spins on every crossed square of
the lattice. Our aim in this paper is to study the effects
of quantum fluctuations to lift this extensive degeneracy
toward a unique quantum ground state. Hence, we con-
sider J2/J1 = 0.5 with Γ $= 0, which induces zero-point
quantum fluctuations to the system due to Sx that does
not commute with other terms in the Hamiltonian 1.
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Frustration: Antiferromagnetic Couplings + Odd Loops

§ Geometric: 2D lattice of corner-sharing triangles (Triangular, Kagome) 

§ Competition between different exchange paths: J1-J2 Mode

§ Total energy of the system does not correspond to minimum of each interaction term in the 
Hamiltonian
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Why study frustrated systems? 

§ Frustration is typically present in real material in nature

§ Exciting and challenging playground for both theorists and experimentalists

§ Host exotic phases of matter such as: Spin Liquids, RVB, VBC, Plaquette States 

Pyrochlore Lattice
Y. Iqbal et al, PRX (2019)
Bergman et al, PRB, (2006)
Harris et al, Mod. Phys. Lett. B (1996)

Kagome Lattice
Ran et al, PRL, (2007)
Y. Iqbal et al, PRB (2013)
Liao et al, PRL, (2017)

JAHROMI, ORÚS, KARGARIAN, AND LANGARI PHYSICAL REVIEW B 97, 115161 (2018)

FIG. 1. (a) The ruby and (b) star lattices. Spin- 1
2 particles are

placed at the vertices of the lattices and the two-body interactions
are characterized by different colors. (c) Ruby lattice reshaped into
a brick-wall structure. Yellow region denotes a ruby unit cell with
six spins, with sets of three spins placed at the vertices of a triangle
and distinguished in black and white. (d) Each triangle in the brick-
wall lattice (c) is replaced with a block site with local Hilbert space
dimension 23 = 8. The resulting structure is topologically equivalent
to a honeycomb lattice. The yellow dotted lines are auxiliary bonds
with trivial interactions, which are added to the brick-wall lattice to
form a square lattice.

the ground-state properties of the ruby model in the thermody-
namic limit. In particular, we explore the low-energy properties
and phase diagram of the system in different coupling regimes.
We capture the quantum phase transitions of the ruby model
by evaluating different quantities such as nearest-neighbor
two-point correlators, entanglement entropy (EE) on an infinite
cylinder [43,44], and ground-state fidelity per lattice site [45].
Moreover, we present the details for the calculation of the
ground-state fidelity and EE on infinite cylinders using CTMs.

This work is organized as follows: In Sec. II we briefly
review the iPEPS technique and explain how to apply the
method for the ruby lattice. In Sec. III we explain how to
calculate the ground-state fidelity per lattice site using CTMs.
Details of the calculation of the EE on infinite cylinders by
means of CTMs are given in Sec. IV. Then, we apply the
method to the ruby model introduced in Sec. V and discuss its
ground-state properties and zero-temperature phase diagram
in the thermodynamic limit in Sec. VI. Finally, we present our
conclusions in Sec. VII.

II. iPEPS BASICS

In this section we briefly review the basic ideas behind the
iPEPS technique and prescribe the details of the method for the
family of triangle-honeycomb lattices. We specifically present
the method for the ruby lattice. However, the extension to the
star lattice is straightforward.

A. Generalities

Consider a 2D quantum lattice model with N sites with local
Hilbert space at each site described by Cd . The full Hilbert
space of the system is therefore given by (Cd )⊗N , whose size
grows exponentially with the size of the system. Thus, the
problem of finding the relevant eigenstates of the system is
essentially intractable even for moderate system sizes. Luckily,
it is sometimes possible to use PEPS tensors to store and
represent some area-law states that approximate ground states
of 2D local Hamiltonians. As such, these states constitute a tiny,
exponentially small, but relevant corner of the Hilbert space,
which can be parametrized efficiently. Generically, a 2D PEPS
is given by

|!〉 =
d∑

{s#ri }
N
i=1

F
(
A[#r1]

s#r1
, . . . ,A[#rN ]

s#rN

)∣∣s#r1 , . . . ,s#rN

〉
, (1)

where |s#ri
〉 is the local basis of the site i at position #ri according

to the geometry of the 2D lattice and A[#ri ]
s#ri

are the local tensors.
For the case of the square lattice, one has tensors of rank five at
each site consisting of dD4 complex coefficients, where d is the
physical dimension and D is the bond dimension. Importantly,
the bond dimension D controls both the size of PEPS tensors
and the maximum amount of entanglement that can be handled
by PEPS. The operation F is a tensor trace that contracts the
bond indices of the tensors A[#ri ]

s#ri
.

In order to approximate the ground state of a given quantum
lattice Hamiltonian, one can evolve the system in imaginary
time β (similar to the time-evolving block decimation (TEBD)
method in 1D [46,47]), i.e.,

|!GS〉 = lim
β→∞

e−βH |!0〉
||e−βH |!0〉||

, (2)

with |!0〉 some appropriate initial state. Efficient numerical
algorithms have already been developed for both finite [8,9]
and infinite PEPS [10–12] based on imaginary-time evolution
of translationally invariant local Hamiltonians on the square
lattice. In particular, recent versions of the iPEPS method use
the so-called fast full update [12] for a stable and fast updating
procedure of the tensors. Moreover, it has become clear
that methods based on CTMs are particularly well suited to
approximate effective environments and estimate expectation
values of local observables for infinite 2D lattices [13].

In the next subsection, we show how to map the ruby lattice
to a brick-wall structure (the procedure for the star lattice and
other Archimedean lattices [48] is similar; see also Appendix B
for more details on the iPEPS implementation of the star
lattice), so that the iPEPS method for the square lattice [12,13]
is also applicable for the family of triangle-honeycomb lattices.

B. Ruby lattice and trotterization

Let us now consider how to adapt the iPEPS methodology to
the case of the ruby lattice. Figure 1(c) illustrates how the ruby
lattice can be shaped into a brick-wall structure, which in turn
is topologically equivalent to a honeycomb lattice of coarse-
grained sites. Each unit cell of the ruby lattice is composed of
six physical degrees of freedom [yellow region in Fig. 1(c)].
Replacing each triangle in the unit cell with an effective block
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Ruby Lattice
Kargarian et al, NJP, (2010)
Farnell et al, PRB, (2014)
Jahromi et al, PRB (2018)

JAHROMI, ORÚS, KARGARIAN, AND LANGARI PHYSICAL REVIEW B 97, 115161 (2018)

FIG. 1. (a) The ruby and (b) star lattices. Spin- 1
2 particles are

placed at the vertices of the lattices and the two-body interactions
are characterized by different colors. (c) Ruby lattice reshaped into
a brick-wall structure. Yellow region denotes a ruby unit cell with
six spins, with sets of three spins placed at the vertices of a triangle
and distinguished in black and white. (d) Each triangle in the brick-
wall lattice (c) is replaced with a block site with local Hilbert space
dimension 23 = 8. The resulting structure is topologically equivalent
to a honeycomb lattice. The yellow dotted lines are auxiliary bonds
with trivial interactions, which are added to the brick-wall lattice to
form a square lattice.

the ground-state properties of the ruby model in the thermody-
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Replacing each triangle in the unit cell with an effective block

115161-2

Star Lattice
Yao et al, PRL, (2007)
Dusuel et al, PRB, (2008)
Jahromi et al, PRB (2018)



Spin-½ Kagome Heisenberg Antiferromagnet

§ Presence of corner sharing triangles induce high quantum fluctuation

§ Ground-state of the Kagome Heisenberg antiferromagnets has been one of the most hotly 
debated topics in condensed matter physics

§ The ground state is believed to be a Quantum Spin Liquid (QSL)  

§ The gapped or gapless nature is under debate

Candidate Materials:

§ Volborthite Cu3V2O7(OH)2·2H2O

§ Vesignieite BaCu3V2O8(OH)2

§ Herbertsmithite ZnCu3(OH)6Cl2
4
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Figure 1: (Color online) Kagome lattice with anisotropic breathing interactions. The
AF Heisenberg exchange couplings are di↵erent on the edges of upward and downward
triangles.

to large-scale tensor network calculations based on infinite projected entangled-pair state
(iPEPS) [45–48] and infinite projected entangled-simplex state (PESS) [28, 32] methods
on the infinite 2D kagome lattice. In particular, we focus more on the large breathing
anisotropy limit and perform accurate energy analysis and finite-size entanglement scaling
of energies to try and reveal the true ground-state of the system out of the energeti-
cally competing VBC, Z2 QSL and nematic phases. Our results suggest that the U(1)
QSL phase of the isotropic kagome Heisenberg antiferromagnet is stable up to very large
breathing anisotropy J5/J4 ⇡ 0.05 and that, for larger anisotropy, it undergoes a first-
order quantum phase transition (QPT) to a critical lattice-nematic phase. We capture
the lattice-nematic ordering by accurate analysis of the energy density on every bond of
the up and down triangles of the kagome lattice in translationally invariant unit-cells with
di↵erent sizes and further reveal the critical nature of the lattice-nematic phase showing
in particular power-law spin-spin correlations along the emerging chains.

The paper is organized as follows. In Sec. 2 we introduce the BKH model on the
kagome lattice and briefly discuss the details of the iPEPS and PESS machinery we used
for evaluating the ground-state of the system. Next, in Sec. 3 we elaborate on the the U(1)
gapless QSL phase of BKH model at the isotropic point with no breathing anisotropy. We
further study the large breathing anisotropic limit of the BKH model and lattice-nematic
ground-state of the system in Sec. 4. In Sec. 5 we investigate the quantum phase transition
and full phase diagram of the BKH model. Finally Sec. 6 is devoted to a discussion and
to a conclusion.

2 Model and Method

The spin-12 breathing-kagome Heisenberg antiferromagnetic model [14, 40] is defined by

H = J4
X

hiji24

Si · Sj + J5
X

hiji25

Si · Sj , (1)

where the first (second) sum runs over edges of the upward, 4, (downward, 5,) triangles of
the kagome lattice (see Fig. 1). Here J4 and J5 are the antiferromagnetic (AF) Heisenberg
exchange couplings, respectively on the up and down triangles and Si is the spin operator
at lattice site i. As discussed above, we are interested in analyzing the ground-state
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Kagome Lattice

Yoshida et al, JPSJ, (2001), (2009)

Okomato et al, JPSJ, (2009)

Helton et al, PRL, (2007)

Y.C.He et al, PRX (2017)
Picot et al, PRb (2016)
Liao et al, PRL (2017)

Jiang et al, Science (2008)
Yan et al, Science (2011)
Depenbrock et al, PRL (2012)

Ran et al, PRL (2007)
Y. Iqbal et al, PRB (2014)
Y. Iqbal et al, PRB (2015)

Poilblanc et al, PRB (2012)
Schuch et al, PRB (2012)
Poilblanc et al, PRB (2013)



Spin-½ Kagome Heisenberg Antiferromagnetic model with Breathing Anisotropy

§ Naturally, Kagome compound tend to be anisotropic in nature due to impurities or effective 
perturbations which influence the strength of coupling on different Kagome triangles to Be different

§ Can Heisenberg antiferromagnets with Breathing anisotropy host QSL?

§ Candidate Material: Vanadium Oxyfluoride compound [NH4]2[C7H14N][V7O6F18]

§ Experimental Signatures of a QSL at  J▽ /J△≈ 0.55

Phase Diagram?
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Figure 1: (Color online) Kagome lattice with anisotropic breathing interactions. The
AF Heisenberg exchange couplings are di↵erent on the edges of upward and downward
triangles.

to large-scale tensor network calculations based on infinite projected entangled-pair state
(iPEPS) [45–48] and infinite projected entangled-simplex state (PESS) [28, 32] methods
on the infinite 2D kagome lattice. In particular, we focus more on the large breathing
anisotropy limit and perform accurate energy analysis and finite-size entanglement scaling
of energies to try and reveal the true ground-state of the system out of the energeti-
cally competing VBC, Z2 QSL and nematic phases. Our results suggest that the U(1)
QSL phase of the isotropic kagome Heisenberg antiferromagnet is stable up to very large
breathing anisotropy J5/J4 ⇡ 0.05 and that, for larger anisotropy, it undergoes a first-
order quantum phase transition (QPT) to a critical lattice-nematic phase. We capture
the lattice-nematic ordering by accurate analysis of the energy density on every bond of
the up and down triangles of the kagome lattice in translationally invariant unit-cells with
di↵erent sizes and further reveal the critical nature of the lattice-nematic phase showing
in particular power-law spin-spin correlations along the emerging chains.

The paper is organized as follows. In Sec. 2 we introduce the BKH model on the
kagome lattice and briefly discuss the details of the iPEPS and PESS machinery we used
for evaluating the ground-state of the system. Next, in Sec. 3 we elaborate on the the U(1)
gapless QSL phase of BKH model at the isotropic point with no breathing anisotropy. We
further study the large breathing anisotropic limit of the BKH model and lattice-nematic
ground-state of the system in Sec. 4. In Sec. 5 we investigate the quantum phase transition
and full phase diagram of the BKH model. Finally Sec. 6 is devoted to a discussion and
to a conclusion.

2 Model and Method

The spin-12 breathing-kagome Heisenberg antiferromagnetic model [14, 40] is defined by

H = J4
X

hiji24

Si · Sj + J5
X

hiji25

Si · Sj , (1)

where the first (second) sum runs over edges of the upward, 4, (downward, 5,) triangles of
the kagome lattice (see Fig. 1). Here J4 and J5 are the antiferromagnetic (AF) Heisenberg
exchange couplings, respectively on the up and down triangles and Si is the spin operator
at lattice site i. As discussed above, we are interested in analyzing the ground-state

3

SciPost Physics Submission

Figure 1: (Color online) Kagome lattice with anisotropic breathing interactions. The
AF Heisenberg exchange couplings are di↵erent on the edges of upward and downward
triangles.

to large-scale tensor network calculations based on infinite projected entangled-pair state
(iPEPS) [45–48] and infinite projected entangled-simplex state (PESS) [28, 32] methods
on the infinite 2D kagome lattice. In particular, we focus more on the large breathing
anisotropy limit and perform accurate energy analysis and finite-size entanglement scaling
of energies to try and reveal the true ground-state of the system out of the energeti-
cally competing VBC, Z2 QSL and nematic phases. Our results suggest that the U(1)
QSL phase of the isotropic kagome Heisenberg antiferromagnet is stable up to very large
breathing anisotropy J5/J4 ⇡ 0.05 and that, for larger anisotropy, it undergoes a first-
order quantum phase transition (QPT) to a critical lattice-nematic phase. We capture
the lattice-nematic ordering by accurate analysis of the energy density on every bond of
the up and down triangles of the kagome lattice in translationally invariant unit-cells with
di↵erent sizes and further reveal the critical nature of the lattice-nematic phase showing
in particular power-law spin-spin correlations along the emerging chains.

The paper is organized as follows. In Sec. 2 we introduce the BKH model on the
kagome lattice and briefly discuss the details of the iPEPS and PESS machinery we used
for evaluating the ground-state of the system. Next, in Sec. 3 we elaborate on the the U(1)
gapless QSL phase of BKH model at the isotropic point with no breathing anisotropy. We
further study the large breathing anisotropic limit of the BKH model and lattice-nematic
ground-state of the system in Sec. 4. In Sec. 5 we investigate the quantum phase transition
and full phase diagram of the BKH model. Finally Sec. 6 is devoted to a discussion and
to a conclusion.

2 Model and Method

The spin-12 breathing-kagome Heisenberg antiferromagnetic model [14, 40] is defined by

H = J4
X

hiji24

Si · Sj + J5
X

hiji25

Si · Sj , (1)

where the first (second) sum runs over edges of the upward, 4, (downward, 5,) triangles of
the kagome lattice (see Fig. 1). Here J4 and J5 are the antiferromagnetic (AF) Heisenberg
exchange couplings, respectively on the up and down triangles and Si is the spin operator
at lattice site i. As discussed above, we are interested in analyzing the ground-state

3

J▽ /J△ =1J▽ /J△≪1 QPT?

Clark et al, PRL, (2013)
Aidoudi et al, Nat. Chem. (2011)
Orian et al, PRL, (2017)

Orian et al, PRL, (2017)
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Ϻϊ АζϩЅϱЁ ϩζАЧϱЁϡЅ

ЕYЕ АζϩЅϱЁ ϩζАЧϱЁϡ βζЅΫЁϔϿАϔϱϩ ϱυ ЀЛΞϩАЛϨ ЅАΞАζЅ

MRs j@�j j@3 $�cC, C03�c R8 j3NcRa N3jsRaGc �a3 3uUI�CN30. I3j nc c33
@Rs j@3w ,�N $3 nc30 jR 03c,aC$3 \n�NjnL cj�j3c R8 L�NwA$R0w cwcA
j3LcY 7Ra j@�j s3 ,RNcC03a � cwcj3L s@C,@ ,RNj�CNc 1 U�ajC,I3c sCj@CN
� GAI3q3I cwcj3LY i@nc. j@3 s�q3 8nN,jCRN ,�N $3 saCjj3N CN j@3 CN0CqC0A
n�I $�cCc R8 j@3 cCN<I3 U�ajC,I3c |LU〉 (LU = 1, . . . , G) �N0 j�G3c j@3 <3N3a�I
8RaL

|ȥ〉 = ∑
L1

∑
L2
· · ·∑

L1
&L1L2···L1 |L1〉 |L2〉 · · · |L1〉 . VЕYЕW

i@3 ,R3|,C3Njc &L1L2···L1 ,�N $3 c33N �c 3NjaC3c CN � I�a<3 1AI3<<30 j3NcRa
&Y i@Cc Cc � q3aw $C< j3NcRa sCj@ O(G1) 3NjaC3c �N0 a�NG 1Y 7Ra ,RLUnA
j�jCRN�I UnaURc3c j@Cc Cc � q3aw CN3|,C3Nj 03c,aCUjCRN R8 j@3 \n�NjnL
cj�j3. $nj sCj@ j@3 @3IU R8 iM cj�j3c RN3 ,�N a30n,3 j@3 ,RLUI3uCjw $w
<CqCN< �N �,,na�j3 03c,aCUjCRN R8 j@3 3Nj�N<I3L3Nj UaRU3ajC3c R8 j@3
cj�j3Y i@3a38Ra3 RN3 03,RLURc3c j@Cc RN3 $C< j3NcRa CNjR � iM R8 L�Nw
cL�II3a j3NcRac sCj@ � cL�II3a a�NG Vc33 ~<Y ЕYЎWY

L1 L2 L1· · ·

&L1L2···L1 $1 $2 $1· · ·

L1 L2 L1· · ·

7C<na3 ЕYЎ- i@3 a3Ua3c3Nj�jCRN R8 j@3 ,R3|,C3Njc R8 � \n�NjnL cj�j3 j@aRn<@
� j3NcRa N3jsRaGY i@Cc U�ajC,nI�a 8RaL R8 � iM Cc � cRA,�II30 L�jaCu
UaR0n,j cj�j3 VKTbW

i@Cc N3s iM a3Ua3c3Nj�jCRN R8 j@3 \n�NjnL cj�j3 |ȥ〉 Cc � LRa3 3|A
,C3Nj 03c,aCUjCRN 8aRL � ,RLUnj�jCRN�I URCNj R8 qC3sY i@3 �LRnNj R8
U�a�L3j3ac 0R3c NR IRN<3a c,�I3 3uURN3NjC�IIw. $nj a�j@3a URIwNRLC�I
CN j@3 NnL$3a R8 U�ajC,I3cY
iR 03j3aLCN3 j@3 NnL$3a R8 U�a�L3j3ac QWRW. RN3 @�c jR ~acj j@CNG �$Rnj
j@3 NnL$3a R8 U�a�L3j3ac U3a j3NcRa 7Y i@Cc Cc <Cq3N $w

Q(W) = O
(

UDQN(7)

∏
Į7

'(Į7)

)
, VЕYϊW

s@3a3 j@3 UaR0n,j anNc Rq3a �II CN0C,3c Į7 = 1, . . . , UDQN(7) R8 7. �N0
'(Į7) Cc j@3 cCy3 R8 j@3 0CL3NcCRN s@C,@ Cc ,Raa3cURN0CN< jR Į7Y
B8 j@3 L�uCLnL R8 '(Į7) Cc <Cq3N $w '7 j@3N j@Cc Q(W) Cc <Cq3N $w

Q(W) = O
(
'UDQN(7)
7

)
. VЕYχW

i@Cc Cc j@3 �LRnNj R8 U�a�L3j3ac U3a j3NcRa CN j@3 iMY i@nc j@3 jRj�I
�LRnNj R8 U�a�L3j3ac Cc

QWRW =
171

∑
7=1

Q(7), VЕYЎW

ЕYϊ ΞЁζΞAϣΞЧ ϔϩ АζϩЅϱЁ ϩζАЧϱЁϡ ЅАΞАζЅ Ϻχ

V�W V$W

7C<na3 ЕYЋ- bCLUI3 3u�LUI3c 8Ra � iM 03c,aCUjCRN R8 � \n�NjnL cj�j3Y V�W L�A
jaCu UaR0n,j cj�j3 VKTbW sCj@ U3aCR0C, $RnN0�aw ,RN0CjCRNc V$W
UaRE3,j30 3Nj�N<I30 U�Ca cj�j3 VT2TbW sCj@ RU3N $RnN0�aw ,RN0CA
jCRNc

s@3a3 171 Cc j@3 �LRnNj R8 j3NcRac 7 CN j@3 iMY i@Cc �LRnNj N330c jR
$3 I3cc j@�N 3uURN3NjC�I CN 1 jR $3 nc38nI 8Ra ,RLUnj�jCRN�I UnaURc3cY
i@Cc L3�Nc j@�j 171 = O(URIw(1)) �N0 C8 s3 ,RL$CN3 �II j@Cc s3 <3j

QWRW = O(URIw(1)URIw(')), VЕYЋW

s@3a3 ' Cc j@3 L�uCLnL R8 �II '7 �N0 s3 �ccnL3 j@�j j@3 a�NG R8 3�,@
j3NcRa @�c �N nUU3a $RnN0Y
bCLUI3 3u�LUI3c 8Ra cn,@ � iM 03c,aCUjCRN R8 � \n�NjnL cj�j3 ,�N $3
c33N CN ~<Y ЕYЋY ?Rs3q3a j@Cc 3|,C3Nj a3Ua3c3Nj�jCRN R8 � \n�NjnL
cj�j3 0R3c NRj ,RL3 8Ra 8a33Y #w Ȓ<InCN<ȓ j@3 j3NcRac jR<3j@3a sCj@CN
j@3 j3NcRa N3jsRaG RN3 <3jc 3uja� 03<a33c R8 8a330RLY i@3c3 �a3 a3Ua3A
c3Nj30 $w j@3 ,RNN3,jCN< CN0C,3c �LRN< j@3 j3NcRac �N0 j@3w �a3 ,�II30
j@3 $RN0 CN0C,3c R8 j@3 j3NcRac s@C,@ @�q3 � cU3,C~, $RN0 0CL3NcCRNY
i@3c3 $RN0 CN0C,3c @�q3 �N CLURaj�Nj U@wcC,�I L3�NCN<- j@3w 03c,aC$3
j@3 3Nj�N<I3L3Nj UaRU3ajC3c R8 j@3 L�NwA$R0w cj�j3 �N0 �00CjCRN�IIw
<Cq3 � \n�NjCj�jCq3 L3�cna3L3Nj R8 j@3 �LRnNj R8 \n�NjnL ,Raa3I�A
jCRNc sCj@CN j@3 s�q3 8nN,jCRNY
iR nN03acj�N0 j@Cc $3jj3a I3j nc ,RNcC03a � Una3 cj�j3 CN j@3 8RaL

|ȥSURG〉 = |ĳ1〉 ⊗ |ĳ2〉 ⊗ · · ·⊗ |ĳ1〉 VЕYοW

8Ra cRL3 |ĳN〉Y iR a3Ua3c3Nj cn,@ � UaR0n,j cj�j3 sCj@ � iM. RN3 sRnI0
@�q3 jR a3Ua3c3Nj 3�,@ cn$cwcj3L |ĳN〉 sCj@ � c3U�a�j3 j3NcRaY bCN,3 j@3
jRj�I s�q3 8nN,jCRN Cc <Cq3N $w � UaR0n,j R8 cn,@ cn$cwcj3Lc. j@3 j3NA
cRac sRnI0 $3 jaCqC�IIw ,RNN3,j30 sCj@ � $RN0 0CL3NcCRN ' = 1Y B8
j@3a3 Cc cRL3 8RaL R8 3Nj�N<I3L3Nj sCj@CN j@3 cwcj3L. j@3 ,RNN3,jCRN
$3js33N j@3 j3NcRac sCII $3 NRNAjaCqC�I s@C,@ L3�Nc j@�j � I�a<3a $RN0
0CL3NcCRN Cc N33030 jR <Cq3 �N �,,na�j3 03c,aCUjCRN R8 j@3 \n�NjnL
cj�j3Y

ЕYϊ ΞЁζΞAϣΞЧ ϔϩ АζϩЅϱЁ ϩζАЧϱЁϡ ЅАΞАζЅ
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ЕYϊ ΞЁζΞAϣΞЧ ϔϩ АζϩЅϱЁ ϩζАЧϱЁϡ ЅАΞАζЅ Ϻχ
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iR nN03acj�N0 j@Cc $3jj3a I3j nc ,RNcC03a � Una3 cj�j3 CN j@3 8RaL

|ȥSURG〉 = |ĳ1〉 ⊗ |ĳ2〉 ⊗ · · ·⊗ |ĳ1〉 VЕYοW

8Ra cRL3 |ĳN〉Y iR a3Ua3c3Nj cn,@ � UaR0n,j cj�j3 sCj@ � iM. RN3 sRnI0
@�q3 jR a3Ua3c3Nj 3�,@ cn$cwcj3L |ĳN〉 sCj@ � c3U�a�j3 j3NcRaY bCN,3 j@3
jRj�I s�q3 8nN,jCRN Cc <Cq3N $w � UaR0n,j R8 cn,@ cn$cwcj3Lc. j@3 j3NA
cRac sRnI0 $3 jaCqC�IIw ,RNN3,j30 sCj@ � $RN0 0CL3NcCRN ' = 1Y B8
j@3a3 Cc cRL3 8RaL R8 3Nj�N<I3L3Nj sCj@CN j@3 cwcj3L. j@3 ,RNN3,jCRN
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ЕYϊ ΞЁζΞAϣΞЧ ϔϩ АζϩЅϱЁ ϩζАЧϱЁϡ ЅАΞАζЅ

i@3 $RN0 0CL3NcCRN Cc j@3 ICLCjCN< 8�,jRa CN j@3 �LRnNj R8 3Nj�N<I3A
L3Nj j@3 j3NcRa N3jsRaG ,�N 3N,RLU�cc �N0 j@nc j@3a3 Lncj $3 �N nUA
U3a $RnN0 R8 3Nj�N<I3L3Nj s@C,@ ,�N $3 03c,aC$30 $w � ,3aj�CN $RN0
0CL3NcCRNY iR 03j3aLCN3 j@Cc nUU3a ICLCj I3j nc ,RNcC03a � cn$cwcj3L

Matrix Product States

Projected Entangled-Pair State (PEPS)
Tensor with N indices

O(PN) O(poly(P,N,D))

Some of the advantages of Tensor Network Methods:
v TNs are build on genuine quantum correlations à Beyond Mean-Field calculations
v No Fermionic sign problem à Beyond QMC calculations
v Simulate systems in the thermodynamic limit à Beyond finite size Exact Diagonalization  

Verstraete et al, PRL, (206),  Orus, Ann. Phys. (2014),  Orus et al, PRB (2009), Corboz et al, PRB (2010), Corboz et al, PRB (2012)   
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Tensor Network for the Kagome lattice
iPEPS with coerce-graining three spin-½ into a block site with d=23 to form a square TN of block-sites

Simple Update:

Йз АζϩЅϱЁ ϩζАЧϱЁϡЅ

ī$ ī%
ȜDȜE ȜE

ȜF ȜG

ȜFȜG
JLM

ș

bp/

G'3

Ȝ̃

ī̃$ ī̃% ī′$ ī′%

Ȝ′D

'

ȜE ȜE

ȜF ȜG

ȜFȜG

,RNja�,jCRN

janN,�jCRN

03,RLURcCjCR
N

7C<na3 ЕYϺϺ- iM 0C�<a�L R8 j@3 cCLUI3 nU0�j3Y 7Cacj RN3 ,RNja�,jc �II j3NcRac
CNjR RN3 I�a<3 j3NcRaY �8j3as�a0c RN3 @�c jR U3a8RaL � bp/ jR 03A
,RLURc3 j@Cc I�a<3 j3NcRa $�,G CNjR cL�II3a j3NcRacY i@3 I�cj cj3U
Cc jR janN,�j3 CN j@3 I�a<3cj cCN<nI�a q�In3c jR 3Ncna3 j@�j j@3 $RN0
0CL3NcCRN 0R3c NRj <aRs sCj@ 3�,@ cj3UY i@3 Ȝȕc j@3a38Ra3 ,�aaw
�II j@3 cCN<nI�a q�In3c ,Raa3cURN0CN< jR RN3 cU3,C~, ICNGY bCN,3 �II
Ȝȕc <3j �$cRa$30 CN j@3 ~acj cj3U RN3 @�c jR 3uja�,j j@3L �<�CN CN
j@3 3N0 8aRL j@3 N3s ī′ȕc $w LnIjCUIwCN< sCj@ j@3 ,Raa3cURN0CN<
CNq3ac3Y

q�In3 03,RLURcCjCRN $3js33N j@3 CN0C,3c ,Raa3cURN0CN< jR ī$ �N0 ī%Y
�8j3as�a0c s3 @�q3 �<�CN jsR c3U�a�j3 j3NcRac ī̃$ �N0 ī̃% �N0 RN3 CNA
j3aL30C�j3 j3NcRa Ȝ̃ s@C,@ ,�aaC3c j@3 cCN<nI�a q�In3cY
i@3 $RN0 0CL3NcCRN $3js33N Ȝ̃ �N0 j@3 jsR nU0�j30 j3NcRac Cc NRs
I�a<3a j@�N j@3 RaC<CN�I $RN0 0CL3NcCRN $3js33N ī$ �N0 ī% �N0 R8
j@3 Ra03a O(G'3)Y i@Cc L3�Nc j@�j s3 @�q3 jR janN,�j3 j@Cc N3s $RN0
0CL3NcCRN $3,�nc3 Rj@3asCc3 j@3 a3\nCa30 ,RLUnj�jCRN�I a3cRna,3c
sRnI0 CN,a3�c3 �8j3a 3�,@ cj3UY
7Ra j@Cc a3�cRN. s3 janN,�j3 CN j@3 I�a<3cj cCN<nI�a q�In3c R8 j@Cc 03,RLA
URcCjCRNY �8j3a j@3 janN,�jCRN s3 a3L�CN sCj@ j@3 nU0�j30 j3NcRac ī′$.
ī′% �N0 Ȝ′Y i@Cc Cc j@3 UaR,30na3 jR nU0�j3 RN3 cCN<I3 ICNG R8 j@3 nNCj ,3II.
�N0 cR s3 aRj�j3 j@3 I�jjC,3 s@C,@ NRs ,RNcCcjc R8 j@3c3 N3s j3NcRac.
�N0 a3U3�j 3�,@ cj3U sCj@ �NRj@3a ICNGY bCN,3 j@3 I�jjC,3 Cc ja�NcI�jCRNA
�IIw CNq�aC�Nj s3 RNIw N330 jR 0R j@Cc 8Ra RN3 nNCj ,3II �N0 ,�N nU0�j3
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i@3 8nII nU0�j3 Cc j@3 RUjCL�I s�w jR ~N0 j@3 N3s j3NcRac sCj@ � cU3A
,C~, $RN0 0CL3NcCRN '. �8j3a �UUIwCN< � <Cq3N jsRA$R0w RU3a�jRaY Bj
Cc $�c30 RN j@3 LCNCLCy�jCRN R8 j@3 0Ccj�N,3 $3js33N j@3 RI0 �N0 j@3
N3s cj�j3Y i@3 0Ccj�N,3 δ Cjc3I8 Cc <Cq3N $w

δ =
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∣∣∣|Ȍ〉 − |Ȍ̃〉

∣∣∣
∣∣∣
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= 〈Ȍ|Ȍ〉 − 〈Ȍ|Ȍ̃〉 − 〈Ȍ̃|Ȍ〉+ 〈Ȍ̃|Ȍ̃〉 V�YϺW
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∣∣∣
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smoothly interpolate between H⊥ and Ĥ⊥ without changing
the ground-state space or closing the gap. For Ĥ⊥, it is now
straightforward to construct a continuous interpolating path
Ĥ (θ ) =

∑
i ĥi(θ ) + "j (θ ), where ĥi(θ ) = O⊗κ

! (θ )ĥiO⊗κ
! (θ ),

and "j (θ ) projects onto rg P!(θ ) for star j .

VI. CONCLUSIONS

In this paper, we have applied the PEPS formalism to the
study of the resonating valence bond states and dimer models.
We have discussed PEPS representations of the RVB and
the dimer model and studied their structure and relation. In
particular, we have given a local unitary mapping between
the dimer model and the toric code; furthermore, by defining
the dimer state with locally orthogonal dimers, we were able
to devise a local reversible mapping between the dimer state
and the RVB state which allowed us to prove that the RVB
state is the fourfold degenerate ground state of a local parent
Hamiltonian for any finite lattice. Subsequently, this allowed
us to devise a smooth interpolation between the dimer state and
the RVB state and the corresponding Hamiltonians. We have
studied this interpolating path numerically, considering the
behavior of correlation functions, the rate at which the ground
state changes, and the entanglement spectrum, and have found
that all of these quantities behave smoothly and show no sign
of a phase transition.

Our results make heavy use of the formalism of PEPS and
their associated parent Hamiltonians, and in particular of G
injectivity and G isometry, which we generalize in order to
assess the RVB state on the kagome lattice. Similarly, the
PEPS representation of the dimer-RVB interpolation allowed
for efficient numerical simulations, enabling us to study the
phase of the RVB state. We believe that these techniques
will be of further use in the study of related systems. In
particular, the results can be generalized to other lattices: First,
the PEPS description of RVB states applies to arbitrary graphs.
All lattices with the “linear independence property”8,27,28 are
G injective, and whenever the linearly independent blocks
allow cover the lattice up to disconnected patches (such as
in Fig. 9); this allows interpolating between the RVB and the
corresponding dimer state. (This is the case, for instance, for
the square-octagon or the star lattice in Ref. 28, whereas for
the hexagonal lattice it appears that no such covering can be
found.) Further, if the dimer model can be expressed in terms
of Z2-injective tensors, this allows us to conclude that it is
equivalent to the toric code. (This is the case, e.g., for the
star lattice, but not for the square-octagon lattice.) Also note
that our findings are not restricted to spin- 1

2 SU(2) singlets as
dimers, but can be generalized to higher dimensional singlets
or any other state, as long as Z2 injectivity can be established.
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APPENDIX A: DIFFERENT PEPS REPRESENTATIONS
FOR THE RVB AND DIMER STATE

In this Appendix, we give an overview of different PEPS
representations of the RVB and dimer state and how they are
related. We will start from the representation introduced in
Ref. 17, and subsequently show how to derive from it the
representation used in this paper.

1. PEPS representation of the RVB

We first explain the PEPS representation of the RVB state
introduced in Ref. 17, which is illustrated in Fig. 17: We place
states

|ω〉 = |01〉 − |10〉 + |22〉 ∈ C3 ⊗ C3 (A1)

along all edges of the lattice (observing its orientation); this
associates four three-level systems (qutrits) with each vertex.
Then, we apply the following map to the qutrits at each vertex,
which maps them to one physical qubit:

P4 = |0〉(〈0222| + 〈2022| + 〈2202| + 〈2220|)
+ |1〉(〈1222| + 〈2122| + 〈2212| + 〈2221|)

=
4∑

k=1

(|0〉〈0|k + |1〉〈1|k) ⊗ 〈222|/k. (A2)

Here, in the second formulation the sum runs over the four
virtual systems k, 〈0|k and 〈1|k act on the virtual system k, and
〈222|/k acts on all virtual systems but k.

What is the intuition underlying this construction? The
Hilbert space holding the bond state, |ω〉 = |01〉 − |10〉 +

FIG. 17. (Color online) PEPS representation for the RVB. Place
maximally entangled “bonds” |01〉 − |10〉 + |22〉 along the edges of
the lattice (blue), and subsequently apply the linear map ("PEPS
projector") P4 (red circle), Eq. (A2), which maps the four qutrits at
each vertex (encircled) to a spin- 1

2 degree of freedom. Alternatively,
we can obtain the (orthogonal) dimer state by replacing P4 with P4,⊥,
Eq. (A3): P4,⊥ ensures that only one qutrit per vertex holds a singlet,
but keeps the full Hilbert space, thus ensuring local orthogonality of
different dimer configurations.
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considered the behavior of correlation functions, the rate at
which the ground state changes in terms of the wave function
overlap,19 and the entanglement spectrum of the system, and
have found that all of these quantities behave smoothly and
show no sign of a phase transition.

Let us describe the organization of the paper. For the
sake of conciseness, alternative definitions, proofs, etc., have
been moved to appendices. In Sec. II, we introduce the RVB
and dimer states and their PEPS representations, as well
as the formulation using tensor networks. Alternative PEPS
representations are discussed in Appendix A. In Sec. III, we
discuss the relations between the toric code, the dimer state,
and the RVB state, using the symmetry of the underlying
tensors. Based on these findings, we show how to construct
a smooth interpolation between the dimer state and the
RVB state in Sec. IV, and subsequently study its properties
numerically. In Sec. V, we use the relation between the toric
code, the dimer state, and the RVB state to construct parent
Hamiltonians for the dimer state and the RVB, as well as a
smooth path of Hamiltonians for the interpolation between
them. Appendix C provides a simpler parent Hamiltonian
for the dimer state, based on a more direct mapping to the
toric code, and Appendix D shows how to directly derive a
(much more compact) parent Hamiltonian for the RVB state
by generalizing the techniques developed in Ref. 16 for PEPS
with symmetries to the symmetries found in the RVB.

II. DEFINITIONS

A. The RVB and orthogonal RVB state

We start by introducing dimer states and resonating valence
bond (RVB) states. We focus on the kagome lattice, Fig. 1(a),
both for its relevance and for clarity of the presentation; but
our techniques generalize to other lattices (see conclusions).
A dimer is a pair of vertices connected by an edge. A dimer
covering is a complete covering of the lattice with dimers,
Fig. 1(b). We can associate orthogonal quantum states |D〉
with each dimer covering D. Then, the dimer state is given by
the equal weight superposition |!dimer〉 =

∑
|D〉, where the

sum runs over all dimer coverings D. Usually, it is favorable to
ensure orthogonality of different states |D〉 and |D′〉 locally;
we will introduce such a version of the dimer state which is
particularly suited for our purposes in Sec. II C.

(a) (b)

FIG. 1. (Color online) (a) Oriented kagome lattice. Spins are
associated with vertices. (b) Dimer covering of the kagome lattice.
The lattice is completely covered with dimers (marked blue), i.e.,
disjoint pairs of adjacent vertices.

Let us now turn towards the resonating valence bond (RVB)
state. We first associate with each vertex of the lattice a spin- 1

2
particle, or qubit, with basis states |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉.
Then, for each dimer covering D we define a state |σ (D)〉
which is a tensor product of singlets |01〉 − |10〉 (we omit
normalization throughout) between the pairs of spins in each
dimer in the covering, where the singlets are oriented according
to the arrows in Fig. 1(a). The resonating valence bond
(RVB) state is then defined as the equal weight superposition
|!RVB〉 =

∑
D |σ (D)〉 over all dimer coverings.

B. PEPS representation of the RVB state

We will now give a description of the RVB state in terms
of projected entangled pair states (PEPS).13 PEPS are states
which can be described by first placing “virtual” entangled
states between the sites of the system, and subsequently
applying linear maps at each site to obtain the physical system.
A PEPS representation of RVB states has first been given in
Ref. 17; a detailed discussion how it is related to our description
can be found in Appendix A.

To obtain a PEPS description of the RVB state, we first
place 3-qutrit states

|ε〉 =
2∑

i,j,k=0

εijk|ijk〉 + |222〉 (1)

inside each triangle of the kagome lattice, as depicted in Fig. 2.
Here, εijk is the completely antisymmetric tensor with ε012 =
1, and i, j , and k are oriented clockwise [i.e., consistent with
the arrows in Fig. 1(a)]. Second, we apply the map

P = |0〉(〈02| + 〈20|) + |1〉(〈12| + 〈21|) (2)

at each vertex, which maps the two qutrits from the adjacent
|ε〉 states to one qubit. It is straightforward to check that this
construction exactly gives the resonating valence bond state
defined above (see Appendix A for a detailed discussion).

C. PEPS representation of dimer state

In a similar way as for the RVB state, we can also obtain a
PEPS representation of the dimer state. To this end, we enlarge
our local Hilbert space and replace the map P in Fig. 2 by the
map

P⊥ = |02〉〈02| + |12〉〈12| + |20〉〈20| + |21〉〈21|. (3)

FIG. 2. (Color online) PEPS construction of the RVB state: Place
|ε〉 states (green), Eq. (1), and then apply the map P (red), Eq. (2), as
indicated. To obtain the dimer state, replace P with P⊥, Eq. (3).
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RVB states !+,1
RVB and !+,2

RVB can be constructed as equal-weight
superposition of all dimer configurations of each class. In the
center of long (enough) cylinders, these two RVB states are
simply related by a unit translation along the cylinder. Of
course, as before, a vison line can be inserted between the two
ends of the cylinder to derive two new !−,1

RVB and !−,2
RVB wave

functions.
We finish this section with the case of the square lattice.

Because of the much more constrained nature of dimer
configurations on the square lattice, one can construct an
extensive number ∝ Nv of topological sectors. This will be
discussed in more details in Sec. IV.

III. PEPS REPRESENTATION OF RVB STATES

A. Mathematical construction

We start with the square lattice RVB wave function (NN
| ↑↓〉 − | ↓↑〉 singlets are all oriented from one sublattice
to the other) on a cylinder of length Nh and circumference
Nv , depicted in Figs. 5(a) and 5(c), corresponding to an
equal-weight (and equal-sign) summation of all (singlet) dimer
coverings. The RVB wave function can be expanded in the
local Sz basis |!RVB〉 =

∑
S cS |s1,s2, . . . ,sM〉, where sn = 0,1

are qubits (representing the two Sz = ±1/2 spin components)
on the M = NhNv sites and S = {sn}. Such a state can in
fact be represented by a D = 3 PEPS (Refs. 19 and 25) (up
to local unitaries) where each lattice site is replaced by a
rank-5 tensor As

α,α′;β,β ′ labeled by one physical index s = 0

FIG. 5. (Color online) RVB wave functions on a cylindrical
geometry: equal-weight superposition of hard-core dimer coverings
[see, e.g., (a) and (c)] have simple representations in terms of PEPS
[(b) and (d)]. The BL and BR boundary conditions of Figs. 1(a)
and 1(b) can be realized by fixing the virtual variables going out of
the cylinder ends; OBC (a) are defined by setting all boundary indices
to “2” (b). Generalized boundary conditions (c) translate in the PEPS
language by setting the boundary indices to 0 (spin ↓) or 1 (spin ↑)
(d). A bipartition of the cylinder generates two L and R edges along
the cut.

FIG. 6. (Color online) On the kagome lattice, an effective rank-5
tensor is constructed on each three-site unit cell. Three site tensors
(red dots) carrying the physical indices and two 120◦ tensors (in
the center of the shaded triangles) are grouped together (a), (b) to
construct the basic tensor (c). The kagome lattice is then mapped
onto an effective square lattice. A partition of the cylinder in the
vertical direction generates L and R edges (thick dotted line).

or 1, and by four virtual bond indices (varying from 0 to
2) along the horizontal (α,α′) and vertical (β,β ′) directions.
Physically, the absence of singlet on a bond is encoded by
the virtual index being “2” on that bond. To enforce the
hard-core dimer constraint, one takes As

α,α′;β,β ′ = 1 whenever
three virtual indices equal 2 and the fourth one equals s, and
As

α,α′;β,β ′ = 0 otherwise. The amplitudes cS are then obtained
by contracting all virtual indices, except those at the ends
of the cylinder fixed by boundary conditions, as depicted in
Figs. 5(b) and 5(d). For the kagome lattice, as shown in Fig. 6,
the RVB state can be represented in terms of rank-3 tensors
(i) As

α;β on the sites–As
2;s = As

s;2 = 1 and zero otherwise and
(ii) on the center of each triangle R2,2,2 = 1, and Rα,β,γ = εαβγ

otherwise, with εαβγ the antisymmetric tensor.25 One can then
group the three sites on each unit cell to obtain a rank-5
tensor (the physical dimension is now 23 = 8) connected on
an effective square lattice [Figs. 6(b) and 6(c)]. Note that for
the kagome PEPS, one can find a local parent Hamiltonian for
which the degeneracy is equal to 4 on the torus.25

In the PEPS formulation, the boundary conditions BL

and BR can be simply set by fixing the virtual states on
the bonds “sticking out” at each cylinder end. For example,
open boundary conditions as in Fig. 5(a) are obtained by
setting the boundary virtual indices to “2” as shown in
Fig. 5(b). Generalized boundary conditions can be realized
as in Figs. 5(c) and 5(d) by setting some of the virtual indices
on the ends to 0 or 1.

B. Topological energy splittings of kagome RVB wave functions

More and more numerical data from DMRG simulations
support the claim that the NN quantum HAF on the kagome
lattice is a topological Z2 spin liquid.9,11,12 It is therefore
interesting (and relevant) to consider the previous topological
NN-RVB wave functions as variational ground-state ansätze
for the NN HAF Hamiltonian on the kagome lattice

H = J
∑

〈ij〉
Si · Sj , (1)
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The next step is HOSVD, to decompose the tensor
Tα
aσi;bσj;cσk

into the product of a renormalized simplex
tensor and three renormalized projection (A) tensors. In
this step, one should also include the renormalization effect
of the environment tensors surrounding Tα (Fig. 6). Here,
we adopt an approximate scheme to simulate the contri-
bution of the environment tensors [8] by introducing a
positive singular bond vector λβ (or λα) of dimension D on
each bond linking the Sα (or Sβ) and A tensors. This
singular bond vector may be determined iteratively by
diagonalizing a density matrix W, which is defined below,
and it measures the entanglement between the correspond-
ing basis states on the two ends of the bond. This motivates
the definition of an environment-renormalized Tα tensor,

T̄α
aσi;bσj;cσk

¼ λβ;aλβ;bλβ;cTα
aσi;bσj;cσk

; (30)

where the three bonds of Tα are weighted by the corre-
sponding singular bond vectors. These additional bond
vectors are included to mimic the renormalization effect
from the environment tensors in an effective entanglement
mean-field approach, which avoids the (computationally
expensive) full calculation of the tensor environment.
To truncate T̄α into a tensor of lower rank, we use a

HOSVD to decompose it according to

T̄α
aσi;bσj;cσk

¼
X

a0b0c0
S̄αa0b0c0Ua0;aσiUb0;bσjUc0;cσk ; (31)

where S̄α is the core tensor of T̄α, which satisfies two key
properties for any given index. We illustrate these using the
second index b:
(1) fully orthogonal:

hS̄α∶;b;∶jS̄α∶;b0;∶i ¼ 0; if b ≠ b0;

where hS̄α∶;b;∶jS̄α∶;b0;∶i is the inner product of the two
subtensors.

(2) pseudodiagonal:

jS̄α∶;b;∶j ≥ jS̄α∶;b0;∶j; if b < b0;

where jS̄α∶;b;∶j is the norm of this subtensor, equal to the
square root of the sum of squares of all elements. These
norms play a role similar to the singular values of the matrix.
In Eq. (31),U is a unitary matrix of dimension dD × dD,

determined by diagonalizing the density matrix

Waσi;aσ
¯ i
¼

X

bcσjσk

T̄α
aσi;bσj;cσk

T̄aσ
¯ i
;bσj;cσkα

¼
X

a0
Ua0;aσiλ

2
α;a0σi

Ua0;aσ
¯ i
;

where λ2α;a0 are the eigenvalues of W, which measure the
weights of the corresponding basis vectorsUa0 in T̄α. With the
aid of theU matrices, we define the renormalized A tensor by

Aa0a½σ# ¼ Ua0;aσλ−1β;a;

where the dimension of the a0 bond is truncated toD. Finally,
by keeping the first D states for all three bond directions, we
truncate S̄α to a D ×D ×D tensor Sα. This renormalized Sα

tensor defines the new entangled simplex tensor for its
sublattice.
The projection with exp ð−τH

△

Þ is performed in the
same way. By repeating this iteration procedure, an
accurate ground-state wave function is obtained after
sufficiently many steps. The truncation error in the tensors
describing the ground-state wave function is reduced
iteratively throughout this renormalization procedure,
and the iteration can be terminated when the truncation
error falls below a desired value.

B. Ground-state energy for the spin-1=2 kagome
antiferromagnet

We have applied the simple update scheme to the PESS
representation of the spin-1=2 Heisenberg antiferromagnet
on the kagome lattice. The ground state of this frustrated
spin system has long been thought to be an ideal candidate
quantum spin liquid, a magnetic system with no sponta-
neous symmetry breaking but showing specific topological
order [25]. This model has been studied by approximate
approaches for several decades [26], with many proposals

FIG. 6 Flowchart for the simple update renormalization scheme
for the wave function using HOSVD. The environment contri-
bution around simplex α is described by a singular bond vector λβ
on each bond connected with the environment; λβ is an approxi-
mate measure of the entanglement on this bond. (a) expð−τH∇αÞ
acts on the tensors in a simplex to produce a new tensor T̄α

defined by Eq. (30)). (b) T̄ is decomposed by HOSVD
[Eq. (31)] into the product of a simplex tensor S̄ and three
unitary matrices U. The dimensions of the thick and thin black
bonds are, respectively, dD and D. (c) The thick bond dimension
is truncated from dD to D, defining the renormalized S and A
tensors.

XIE, CHEN, YU, KONG, NORMAND, AND XIANG PHYS. REV. X 4, 011025 (2014)
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Triangle PESS Update

Entangled-Pairs (two-partite entangled states) on the bonds 

Simplex states (three-partite entangled states) on triangles

Figure taken from Schuch et al PRB (2012)

Xie et al, PRX (2014)
Liao et al, PRL (2017)

Figure taken from Schuch et al PRB (2012)
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Isotropic Point: J▽ /J△=1

J▽ /J△ =1J▽ /J△≪1

Gapless U(1) QSL (DMRG)

Gapless U(1) QSL (PEPS)

Gapless U(1) QSL (VMC)

Gapped Z2 QSL (PEPS)

Gapped Z2 QSL (DMRG)

Xie et al, PRX (2014)
Picot et al, PRb (2016)
Liao et al, PRL (2017)

Jiang et al, Science (2008)
Yan et al, Science (2011)
Depenbrock et al, PRL (2012)

Ran et al, PRL (2007)
Y. Iqbal et al, PRB (2013)
Y. Iqbal et al, PRB (2014)
Y. Iqbal et al, PRB (2015)

Y.C.He et al, PRX (2017)
Repellin et al, PRB (2017)

Poilblanc et al, PRB (2012)
Schuch et al, PRB (2012)
Poilblanc et al, PRB (2013)
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Figure 4: (Color online) Scaling of the ground-state energy, "0, with respect to bond
dimension D at J5/J4 = 0.3. The power law scaling of energies with respect to D is
similar to the isotropic point, J5/J4 = 1, suggesting that both points belong to the same
phase.

3 Small Breathing Anisotropy

In the limit of the BKH model where J5/J4 = 1, i.e., the isotropic point, it has already
been shown that tensor network simulations favor a gapless U(1) QSL with algebraic decay
of correlations. We refer the interested reader to Refs. [27–29,32] for detailed discussions
on the isotropic spin-12 kagome Heisenberg antiferromagnet. Nevertheless, in order to
check the accuracy and e�ciency of our algorithms, we applied both iPEPS and PESS
methods to the BKH model at the isotropic point and recovered the results of Ref. [28,32].

Fig. 3 illustrates finite-entanglement scaling of the iPEPS and PESS energies for both
simple and full calculation of the environment with respect to bond dimension D. We
find that "0 converges algebraically with D, consistent with a gapless ground state. The
power-law form "0(D) = "0 + aD

� [27, 28] is shown in the inset of Fig. 3 for both iPEPS
and PESS energies.

We have further analyzed the energies on the upward and downward triangles of the
kagome lattice as well as, correlations hS↵

i .S
↵
j i (↵ = x, y, z) on every link of each triangle

in the unit-cell and and found the same energies and correlations on both triangles with
a uniform ground-state which respects all lattice symmetries and SU(2) symmetry of the
Hamiltonian (1), thus indicating the QSL nature of the ground-state at the isotropic point.

Our best variational energy at the isotropic point is "0 = �0.436979, obtained from
PESS with D = 13 which is lower than that of Ref. [32] for D = 13 9-PESS. Let us
further note that our iPEPS energy at this point is "0 = �0.433374 for D = 11, which is
slightly higher compared to that of the PESS due to the lower maximum achievable bond
dimension. Besides, it is already known that the simplex structure of the PESS tensors
can capture the three-partite entanglement inside a frustrated kagome triangle better and,
hence, is able to yield lower energies compared to iPEPS which only captures bipartite
entanglement on bonds of the lattice [28, 32].

Immediately away from the isotropic point, i.e., for J5/J4 < 1, the di↵erence in the
J4 and J5 couplings in Hamiltonian (1) breaks the lattice inversion center (i.e. the 180o
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Figure 9: (Color online) Nearest-neighbor spin-spin correlations (obtained with PESS
(D = 13)) on the three links of an upward triangle, 41,42,43 and on the links of a
downward triangle 51,52,53 (see also Fig. 6) which confirms the preservation of C3

rotational symmetry at the level of each individual triangle in the U(1) QSL phase and
breaking of the C3 symmetry in the nematic phase. The values for 41,42 are the average
value of the correlation on the two links.

indicating that the C3 rotational symmetry is preserved at the level of each individual
triangle. Besides, we performed entanglement scaling of energies for all of the points in
Fig. 9 and observed algebraic decay of correlation for all points. Our findings therefore
suggest that the algebraic U(1) spin-liquid phase of the spin-12 kagome Heisenberg antifer-
romagnet is stable up to very large breathing anisotropies. Our results are in agreement
with the recent experiments on vanadium oxyfluoride compounds [37–39] which detected
signatures of a gapless U(1) QSL at breathing ratio J5/J4 ⇡ 0.55 [37]. Our phase dia-
gram, Fig. 8, obtained with tensor network in the thermodynamic limit indeed confirms
that J5/J4 ⇡ 0.55 lies in the stability region of the U(1) QSL phase of BKH model.

6 Discussion and outlook

First introduced as a toy model to study the spin-1/2 kagome antiferromagnet [14], the
breathing spin-1/2 kagome antiferromagnet has recently attracted attention on its own
due to its experimental relevance for some vanadium compounds [37–39]. In the present
paper, we have performed large scale tensor network calculations of that model based
on projected entangled-pair state and projected entangled-simplex state methods. The
picture emerging from these calculations is consistent with the DMRG results of Ref. [44]:
The system seems to be a U(1) liquid from the isotropic limit J5/J4 = 1 down to
very small values of J5/J4, and to undergo a first-order transition into a critical, lattice
nematic phase that breaks rotational symmetry in real space. Note that our simulations
locate quite convincingly the transition at J5/J4 ' 0.05. This should be contrasted to
the conclusions of Ref. [44], where the actual critical value of J5/J4 (if any) could not be
pinned down because of the still strong dependence of the results on the circumference of
the cylinder.

13

J▽ /J△≈ 0.55

Experiment
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Figure 1: (Color online) Kagome lattice with anisotropic breathing interactions. The
AF Heisenberg exchange couplings are di↵erent on the edges of upward and downward
triangles.

to large-scale tensor network calculations based on infinite projected entangled-pair state
(iPEPS) [45–48] and infinite projected entangled-simplex state (PESS) [28, 32] methods
on the infinite 2D kagome lattice. In particular, we focus more on the large breathing
anisotropy limit and perform accurate energy analysis and finite-size entanglement scaling
of energies to try and reveal the true ground-state of the system out of the energeti-
cally competing VBC, Z2 QSL and nematic phases. Our results suggest that the U(1)
QSL phase of the isotropic kagome Heisenberg antiferromagnet is stable up to very large
breathing anisotropy J5/J4 ⇡ 0.05 and that, for larger anisotropy, it undergoes a first-
order quantum phase transition (QPT) to a critical lattice-nematic phase. We capture
the lattice-nematic ordering by accurate analysis of the energy density on every bond of
the up and down triangles of the kagome lattice in translationally invariant unit-cells with
di↵erent sizes and further reveal the critical nature of the lattice-nematic phase showing
in particular power-law spin-spin correlations along the emerging chains.

The paper is organized as follows. In Sec. 2 we introduce the BKH model on the
kagome lattice and briefly discuss the details of the iPEPS and PESS machinery we used
for evaluating the ground-state of the system. Next, in Sec. 3 we elaborate on the the U(1)
gapless QSL phase of BKH model at the isotropic point with no breathing anisotropy. We
further study the large breathing anisotropic limit of the BKH model and lattice-nematic
ground-state of the system in Sec. 4. In Sec. 5 we investigate the quantum phase transition
and full phase diagram of the BKH model. Finally Sec. 6 is devoted to a discussion and
to a conclusion.

2 Model and Method

The spin-12 breathing-kagome Heisenberg antiferromagnetic model [14, 40] is defined by

H = J4
X

hiji24

Si · Sj + J5
X

hiji25

Si · Sj , (1)

where the first (second) sum runs over edges of the upward, 4, (downward, 5,) triangles of
the kagome lattice (see Fig. 1). Here J4 and J5 are the antiferromagnetic (AF) Heisenberg
exchange couplings, respectively on the up and down triangles and Si is the spin operator
at lattice site i. As discussed above, we are interested in analyzing the ground-state
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Figure 5: (Color online) Scaling of the iPEPS and PESS ground-state energy per-site with
respect to inverse bond dimension D in the large breathing anisotropy limit at J5/J4 =
0.01. Our variational energies obtained with SU, FU and PESS are lower as compared to
those of Ref. [42] for U(1) QSL, Z2 QSL and VBC phases and are in agreement with the
DMRG results of Ref. [44] for a lattice-nematic phase.

rotational symmetry). However, as long as the breathing anisotropy is not too large,
we expect the QSL to remain stable. Our analysis indeed confirms that introducing
small breathing anisotropy does not destroy the QSL ground state of the spin-12 kagome
Heisenberg antiferromagnet and the uniformity and SU(2) invariance of the ground-state
are preserved at the level of each individual triangles. Nevertheless, upward triangles
will have lower energies due to larger J4 couplings compared to J5. Fig. 4 shows the
ground-state energy of the system for both iPEPS and PESS at J5/J4 = 0.3. The power
law scaling of energies with respect to D is similar to the isotropic point, J5/J4 = 1,
which suggests that both points belong to the same phase. In fact, in future sections, and
especially in Fig. 8, we will show that the U(1) QSL ground-state of the BKH model at
the isotropic point persists to very large breathing anisotropies.

We postpone further discussions regarding the stability and persistence of the U(1)
QSL ground-state of the system in the presence of breathing anisotropy to Sec. 5.

4 Large Breathing Anisotropy

In this section, we elaborate on the less studied limit J5/J4 ⌧ 1, i.e. the large breathing
anisotropic regime. In the extreme case where the couplings on the down triangles are
zero, J5 = 0, the system is composed of decoupled upward triangles with AF interactions,
with a highly-degenerate ground-state and a ground-state energy "0 = �0.25.

By switching on and gradually increasing the J5 couplings on the downward triangles,
forming an ordered ground-state becomes a highly non-trivial task. An early study based
on the short-range RVB basis [41] suggests that a gapped Z2 spin-liquid ground-state
may emerge in the presence of large breathing anisotropy. In another study based on
Gutzwiller projected wave functions, the analysis of the energy shows that the U(1) spin-
liquid phase of the BKH model undergoes a dimer instability at large breathing anisotropy
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Figure 6: (Color online) The lattice-nematic pattern in the large breathing anisotropy
limit at J5/J4 = 0.01 constructed from strong and weak correlations on the links of the
upward and downward kagome triangles which breaks the C3 local rotational symmetry of
the system while preserving the translational invariance in every direction on the lattice.
The correlations reported in the figure are obtained with PESS D = 13. The values on the
green links are the average correlation of the two edges (see the text for further discussion).

The nematic state breaks the C3 local rotational symmetry of the triangles while pre-
serving the translational invariance in every direction of the lattice. This is in contrast
with the VBC phase which breaks both translational and rotational symmetries of the sys-
tem [42]. The lattice-nematic state on the kagome lattice is, in fact, three-fold degenerate.
Repeating the simulations with di↵erent initial states, we found the two other degenerate
nematic states with the same magnitude of correlations on bonds but a di↵erent pattern.
This implies that in the regime of very large breathing anisotropy, the system undergoes a
dimensional reduction with three degenerate ground states that consist of almost decou-
pled chains. Let us further stress that our results for the large breathing anisotropies are
in agreement with the recent DMRG results [44].

For completeness of our analysis and further to see how the lattice-nematic state com-
petes with other states from previous studies, we consider the Taylor expansion of the
BKH energy in the large breathing anisotropy limit up to second order in perturbation
theory

"0

J4
= �0.25 + c1

J5
J4

+ c2

✓
J5
J4

◆2

+ . . . . (2)

The first constant term in the above equation is the energy of decoupled upward triangles.
The coe�cients c1, c2 can further be obtained by quadratic fits of the energy curve. Similar
values of the coe�cient c2 can also be obtained by linear fits of the first-order derivatives
of the energy curves (as shown in the upper inset of Fig. 8).

Table 2 provides the c1, c2 expansion coe�cients of our lattice-nematic states obtained
with PESS (D = 13) compared with those of the e↵ective model known as trimerized
kagome model, which corresponds to a frustrated spin-orbital model on the triangular
lattice [14, 44]. Note that, since our energy curve shows a discontinuity in its slope, we
have performed two separate fits on each side of the discontinuity. The coe�cients for Z2,
U(1) QSLs and VBC state of Ref. [42] and Z2 QSL⇤ of Ref. [57] as well as those of the
nematic state obtained with DMRG in Ref. [44] are also provided in the table. One can
clearly see that the c1 coe�cient of the nematic state obtained both in our simulations
and previous DMRG results is larger (in absolute value) than those of the Z2, U(1) QSLs
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Figure 9: (Color online) Nearest-neighbor spin-spin correlations (obtained with PESS
(D = 13)) on the three links of an upward triangle, 41,42,43 and on the links of a
downward triangle 51,52,53 (see also Fig. 6) which confirms the preservation of C3

rotational symmetry at the level of each individual triangle in the U(1) QSL phase and
breaking of the C3 symmetry in the nematic phase. The values for 41,42 are the average
value of the correlation on the two links.

indicating that the C3 rotational symmetry is preserved at the level of each individual
triangle. Besides, we performed entanglement scaling of energies for all of the points in
Fig. 9 and observed algebraic decay of correlation for all points. Our findings therefore
suggest that the algebraic U(1) spin-liquid phase of the spin-12 kagome Heisenberg antifer-
romagnet is stable up to very large breathing anisotropies. Our results are in agreement
with the recent experiments on vanadium oxyfluoride compounds [37–39] which detected
signatures of a gapless U(1) QSL at breathing ratio J5/J4 ⇡ 0.55 [37]. Our phase dia-
gram, Fig. 8, obtained with tensor network in the thermodynamic limit indeed confirms
that J5/J4 ⇡ 0.55 lies in the stability region of the U(1) QSL phase of BKH model.

6 Discussion and outlook

First introduced as a toy model to study the spin-1/2 kagome antiferromagnet [14], the
breathing spin-1/2 kagome antiferromagnet has recently attracted attention on its own
due to its experimental relevance for some vanadium compounds [37–39]. In the present
paper, we have performed large scale tensor network calculations of that model based
on projected entangled-pair state and projected entangled-simplex state methods. The
picture emerging from these calculations is consistent with the DMRG results of Ref. [44]:
The system seems to be a U(1) liquid from the isotropic limit J5/J4 = 1 down to
very small values of J5/J4, and to undergo a first-order transition into a critical, lattice
nematic phase that breaks rotational symmetry in real space. Note that our simulations
locate quite convincingly the transition at J5/J4 ' 0.05. This should be contrasted to
the conclusions of Ref. [44], where the actual critical value of J5/J4 (if any) could not be
pinned down because of the still strong dependence of the results on the circumference of
the cylinder.
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Figure 8: (Color online) Ground-state energy per-site of the BKH model for 0  J5/J4 
1. The U(1) QSL persists to large breathing anisotropies and breaks down to a lattice-
nematic phase at J5/J4 ⇡ 0.05. The upper inset shows the numerical derivative of the
energy for several points around the transition point. The dashed lines show the slope
of the derivative, @"0 = c1 + 2c2(

J5
J4

), obtained with c1, c2 from Table 2 for both sides of

the QPT point. The lower inset shows a zoom of the energy curves at large breathing
anisotropy. In order to observe the level crossing and the first-order nature of the QPT
more appropriately, we have subtracted the linear correction of the e↵ective model from
all data points and fits, i.e., "0 � 0.1353(J5/J4). The error bars are standard deviation
from the mean-value of PESS data for di↵erent simulations.

5 Quantum Phase Transition

In previous sections, we have identified and characterized two di↵erent phases at the
extreme regimes of the BKH Hamiltonian (1), the U(1) spin-liquid at the isotropic point
J5/J4 = 1 with zero anisotropy and the lattice-nematic phase at large breathing anisotropy
limit, J5/J4 ⌧ 1. It is, therefore, reasonable to expect a quantum phase transition be-
tween the two extreme phases. In order to study the QPT, we analyzed the whole regime
of the parameter space, 0  J5/J4  1, and calculated the ground-state energy of the
BKH model and its derivative. Fig. 8 shows the ground-state energy of the PESS simu-
lations for the whole range of couplings (up to D = 13) and its first-order derivative (see
the upper inset) which reveals a first-order quantum phase transition at J5/J4 ⇡ 0.05
between the U(1) QSL and the lattice-nematic phase of the BKH model. The lower inset
further shows the level crossing of the Taylor expansion of energies in the large breathing
limit, compared with that of the e↵ective model in Ref. [44], another signature of the
first-order nature of the QPT.

In order to further check the stability of the U(1) QSL on the right side of the QPT
point, we performed a careful entanglement scaling of energies for several couplings explic-
itly for regions previously suggested to host a phase transition, and we investigated the
energy densities and bond correlations on all bonds of the upward and downward kagome
triangle. Fig. 9 shows the correlations on all links of the up and down kagome triangles
for 0 6 J5/J4 6 1. One can clearly observe that, in the range 0.1 6 J5/J4 6 0.5, the
correlations on the links of upwards and on the links of downward triangles are the same,
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Figure 6: (Color online) The lattice-nematic pattern in the large breathing anisotropy
limit at J5/J4 = 0.01 constructed from strong and weak correlations on the links of the
upward and downward kagome triangles which breaks the C3 local rotational symmetry of
the system while preserving the translational invariance in every direction on the lattice.
The correlations reported in the figure are obtained with PESS D = 13. The values on the
green links are the average correlation of the two edges (see the text for further discussion).

The nematic state breaks the C3 local rotational symmetry of the triangles while pre-
serving the translational invariance in every direction of the lattice. This is in contrast
with the VBC phase which breaks both translational and rotational symmetries of the sys-
tem [42]. The lattice-nematic state on the kagome lattice is, in fact, three-fold degenerate.
Repeating the simulations with di↵erent initial states, we found the two other degenerate
nematic states with the same magnitude of correlations on bonds but a di↵erent pattern.
This implies that in the regime of very large breathing anisotropy, the system undergoes a
dimensional reduction with three degenerate ground states that consist of almost decou-
pled chains. Let us further stress that our results for the large breathing anisotropies are
in agreement with the recent DMRG results [44].

For completeness of our analysis and further to see how the lattice-nematic state com-
petes with other states from previous studies, we consider the Taylor expansion of the
BKH energy in the large breathing anisotropy limit up to second order in perturbation
theory

"0

J4
= �0.25 + c1

J5
J4

+ c2

✓
J5
J4

◆2

+ . . . . (2)

The first constant term in the above equation is the energy of decoupled upward triangles.
The coe�cients c1, c2 can further be obtained by quadratic fits of the energy curve. Similar
values of the coe�cient c2 can also be obtained by linear fits of the first-order derivatives
of the energy curves (as shown in the upper inset of Fig. 8).

Table 2 provides the c1, c2 expansion coe�cients of our lattice-nematic states obtained
with PESS (D = 13) compared with those of the e↵ective model known as trimerized
kagome model, which corresponds to a frustrated spin-orbital model on the triangular
lattice [14, 44]. Note that, since our energy curve shows a discontinuity in its slope, we
have performed two separate fits on each side of the discontinuity. The coe�cients for Z2,
U(1) QSLs and VBC state of Ref. [42] and Z2 QSL⇤ of Ref. [57] as well as those of the
nematic state obtained with DMRG in Ref. [44] are also provided in the table. One can
clearly see that the c1 coe�cient of the nematic state obtained both in our simulations
and previous DMRG results is larger (in absolute value) than those of the Z2, U(1) QSLs
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Table 2: The c1, c2 coe�cients of the Taylor expansion for the BKH model at large
breathing limit obtained with PESS (D = 13) compared with those of the DMRG data for
the e↵ective model in Ref. [44] (after extrapolation to infinite cylinders) as well as with
the Z2, U(1) QSLs and VBC states of Ref. [42] and Z2 QSL⇤ of Ref. [57].

Wave Function c1 c2

nematic (PESS) �0.1358 �0.0113
U(1) QSL (PESS) �0.1345 �0.0663
U(1) QSL (Iqbal et al.) �0.1190 �0.079
Z2 QSL (Iqbal et al.) �0.1245 0
VBC (Iqbal et al.) �0.1255 �0.055
Z2 QSL⇤ �0.1323 �0.0628
E↵ective Model �0.1353 0

and VBC states suggesting a stabilized nematic state as the true ground state of the BKH
model in the large breathing anisotropy limit.

We have further calculated the long-range spin-spin correlation C(r) = hS(x,y).S(x+r,y)i�
hS(x,y)i.hS(x+r,y)i in the large breathing anisotropy limit compared with several points in
the small-breathing limits. Fig. 7 shows the log-log plot of C(r) obtained with PESS
(D = 11) at J5/J4 = 0.01 in the lattice-nematic phase compared with J5/J4 = 0.3
and 1 in the spin-liquid phase. C(r) in the QSL phase behaves similarly in di↵erent di-
rections of the lattice, as expected from a QSL phase with no broken symmetry. Most
importantly, C(r) for J5/J4 = 0.3 and 1 decay similarly especially at small distances,
suggesting that they belong to the same phase. This is another strong signature that the
QSL phase persists in the large breathing anisotropy limit. However, C(r) in the lattice-
nematic phase is di↵erent along the strong chain, x-direction, and perpendicular to the
chain, y-direction, as shown in the inset of Fig. 7. In fact, C(r) along the strong chain
shows a very similar power-law decay as the QSL phase. We have therefore, approximated
the power-law decay of C(r) at J5/J4 = 0.3 and 1 and J5/J4 = 0.01 along the strong
chain with C(r) ⇠ C0r

�↵, shown as a dashed blue line in the Fig. 7. C(r) decays al-
gebraically with C0 = 0.21,↵ = 4.3 indicating that the wave functions at J5/J4 = 0.3
and 1 and at J5/J4 = 0.01 along the strong chain are critical. The spin-spin correlation
perpendicular to the strong chain at J5/J4 = 0.01 shows a di↵erent power-law decay
with C0 = 0.37,↵ = 5.5, which is the expected behavior of the lattice-nematic state with
a di↵erent pattern in the x- and y-direction.

Note that our findings for the large breathing anisotropy limit are in agreement with the
Lieb-Schultz-Mattis theorem [58, 59] which states that, for systems with half-odd integer
spins in the unit-cell, there cannot exist a gapped spin-liquid with a unique ground state.
Therefore, the critical nature found in both phases in the phase diagram is consistent with
the theorem.

Let us note that our TN ansatz su↵ers from a small spurious magnetic ordering of
the order ⇠ 0.003 which is believed to be an artifact of the PEPS methods with finite
bond dimension. The e↵ects of such a spurious magnetization is then seen as zigzag
oscillations in the hS(x,y).S(x+r,y)i (see in the inset of Fig. 7). We, therefore, subtract the
local magnetic contribution from the spin-spin correlation to correctly capture the power-
law decay. Last but not least, the scattered deviation of C(r) from the power-law fitting
which is observed at large distances for C(r) < 10�5 is an artifact of the simple-update
optimization without implementation of the SU(2) symmetry [60].
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Table 2: The c1, c2 coe�cients of the Taylor expansion for the BKH model at large
breathing limit obtained with PESS (D = 13) compared with those of the DMRG data for
the e↵ective model in Ref. [44] (after extrapolation to infinite cylinders) as well as with
the Z2, U(1) QSLs and VBC states of Ref. [42] and Z2 QSL⇤ of Ref. [57].

Wave Function c1 c2

nematic (PESS) �0.1358 �0.0113
U(1) QSL (PESS) �0.1345 �0.0663
U(1) QSL (Iqbal et al.) �0.1190 �0.079
Z2 QSL (Iqbal et al.) �0.1245 0
VBC (Iqbal et al.) �0.1255 �0.055
Z2 QSL⇤ �0.1323 �0.0628
E↵ective Model �0.1353 0

and VBC states suggesting a stabilized nematic state as the true ground state of the BKH
model in the large breathing anisotropy limit.

We have further calculated the long-range spin-spin correlation C(r) = hS(x,y).S(x+r,y)i�
hS(x,y)i.hS(x+r,y)i in the large breathing anisotropy limit compared with several points in
the small-breathing limits. Fig. 7 shows the log-log plot of C(r) obtained with PESS
(D = 11) at J5/J4 = 0.01 in the lattice-nematic phase compared with J5/J4 = 0.3
and 1 in the spin-liquid phase. C(r) in the QSL phase behaves similarly in di↵erent di-
rections of the lattice, as expected from a QSL phase with no broken symmetry. Most
importantly, C(r) for J5/J4 = 0.3 and 1 decay similarly especially at small distances,
suggesting that they belong to the same phase. This is another strong signature that the
QSL phase persists in the large breathing anisotropy limit. However, C(r) in the lattice-
nematic phase is di↵erent along the strong chain, x-direction, and perpendicular to the
chain, y-direction, as shown in the inset of Fig. 7. In fact, C(r) along the strong chain
shows a very similar power-law decay as the QSL phase. We have therefore, approximated
the power-law decay of C(r) at J5/J4 = 0.3 and 1 and J5/J4 = 0.01 along the strong
chain with C(r) ⇠ C0r

�↵, shown as a dashed blue line in the Fig. 7. C(r) decays al-
gebraically with C0 = 0.21,↵ = 4.3 indicating that the wave functions at J5/J4 = 0.3
and 1 and at J5/J4 = 0.01 along the strong chain are critical. The spin-spin correlation
perpendicular to the strong chain at J5/J4 = 0.01 shows a di↵erent power-law decay
with C0 = 0.37,↵ = 5.5, which is the expected behavior of the lattice-nematic state with
a di↵erent pattern in the x- and y-direction.

Note that our findings for the large breathing anisotropy limit are in agreement with the
Lieb-Schultz-Mattis theorem [58, 59] which states that, for systems with half-odd integer
spins in the unit-cell, there cannot exist a gapped spin-liquid with a unique ground state.
Therefore, the critical nature found in both phases in the phase diagram is consistent with
the theorem.

Let us note that our TN ansatz su↵ers from a small spurious magnetic ordering of
the order ⇠ 0.003 which is believed to be an artifact of the PEPS methods with finite
bond dimension. The e↵ects of such a spurious magnetization is then seen as zigzag
oscillations in the hS(x,y).S(x+r,y)i (see in the inset of Fig. 7). We, therefore, subtract the
local magnetic contribution from the spin-spin correlation to correctly capture the power-
law decay. Last but not least, the scattered deviation of C(r) from the power-law fitting
which is observed at large distances for C(r) < 10�5 is an artifact of the simple-update
optimization without implementation of the SU(2) symmetry [60].
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Table 2: The c1, c2 coe�cients of the Taylor expansion for the BKH model at large
breathing limit obtained with PESS (D = 13) compared with those of the DMRG data for
the e↵ective model in Ref. [44] (after extrapolation to infinite cylinders) as well as with
the Z2, U(1) QSLs and VBC states of Ref. [42] and Z2 QSL⇤ of Ref. [57].

Wave Function c1 c2

nematic (PESS) �0.1358 �0.0113
U(1) QSL (PESS) �0.1345 �0.0663
U(1) QSL (Iqbal et al.) �0.1190 �0.079
Z2 QSL (Iqbal et al.) �0.1245 0
VBC (Iqbal et al.) �0.1255 �0.055
Z2 QSL⇤ �0.1323 �0.0628
E↵ective Model �0.1353 0

and VBC states suggesting a stabilized nematic state as the true ground state of the BKH
model in the large breathing anisotropy limit.

We have further calculated the long-range spin-spin correlation C(r) = hS(x,y).S(x+r,y)i�
hS(x,y)i.hS(x+r,y)i in the large breathing anisotropy limit compared with several points in
the small-breathing limits. Fig. 7 shows the log-log plot of C(r) obtained with PESS
(D = 11) at J5/J4 = 0.01 in the lattice-nematic phase compared with J5/J4 = 0.3
and 1 in the spin-liquid phase. C(r) in the QSL phase behaves similarly in di↵erent di-
rections of the lattice, as expected from a QSL phase with no broken symmetry. Most
importantly, C(r) for J5/J4 = 0.3 and 1 decay similarly especially at small distances,
suggesting that they belong to the same phase. This is another strong signature that the
QSL phase persists in the large breathing anisotropy limit. However, C(r) in the lattice-
nematic phase is di↵erent along the strong chain, x-direction, and perpendicular to the
chain, y-direction, as shown in the inset of Fig. 7. In fact, C(r) along the strong chain
shows a very similar power-law decay as the QSL phase. We have therefore, approximated
the power-law decay of C(r) at J5/J4 = 0.3 and 1 and J5/J4 = 0.01 along the strong
chain with C(r) ⇠ C0r

�↵, shown as a dashed blue line in the Fig. 7. C(r) decays al-
gebraically with C0 = 0.21,↵ = 4.3 indicating that the wave functions at J5/J4 = 0.3
and 1 and at J5/J4 = 0.01 along the strong chain are critical. The spin-spin correlation
perpendicular to the strong chain at J5/J4 = 0.01 shows a di↵erent power-law decay
with C0 = 0.37,↵ = 5.5, which is the expected behavior of the lattice-nematic state with
a di↵erent pattern in the x- and y-direction.

Note that our findings for the large breathing anisotropy limit are in agreement with the
Lieb-Schultz-Mattis theorem [58, 59] which states that, for systems with half-odd integer
spins in the unit-cell, there cannot exist a gapped spin-liquid with a unique ground state.
Therefore, the critical nature found in both phases in the phase diagram is consistent with
the theorem.

Let us note that our TN ansatz su↵ers from a small spurious magnetic ordering of
the order ⇠ 0.003 which is believed to be an artifact of the PEPS methods with finite
bond dimension. The e↵ects of such a spurious magnetization is then seen as zigzag
oscillations in the hS(x,y).S(x+r,y)i (see in the inset of Fig. 7). We, therefore, subtract the
local magnetic contribution from the spin-spin correlation to correctly capture the power-
law decay. Last but not least, the scattered deviation of C(r) from the power-law fitting
which is observed at large distances for C(r) < 10�5 is an artifact of the simple-update
optimization without implementation of the SU(2) symmetry [60].
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Figure 7: (Color online) Log-log plot of the long range spin-spin correlations C(r) =
hS(x,y).S(x+r,y)i obtained with PESS (D = 11) in the nematic phase at large breathing
anisotropy J5/J4 = 0.01 and in the QSL phase at J5/J4 = 0.3 and 1. All correlations
show approximate power-law decays, C(r) ⇠ C0r

�↵, shown by straight dashed lines. A
similar decay up to 7 or 8 lattice spacings is observed in the QSL phase and along the
chain of the nematic phase, with an exponent ↵ ' 4.2. The green dashed line shows the
power-law fit in the nematic phase, perpendicular to the chains, with ↵ ' 5.5. The inset
shows the linear plot of C(r).
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Table 2: The c1, c2 coe�cients of the Taylor expansion for the BKH model at large
breathing limit obtained with PESS (D = 13) compared with those of the DMRG data for
the e↵ective model in Ref. [44] (after extrapolation to infinite cylinders) as well as with
the Z2, U(1) QSLs and VBC states of Ref. [42] and Z2 QSL⇤ of Ref. [57].

Wave Function c1 c2

nematic (PESS) �0.1358 �0.0113
U(1) QSL (PESS) �0.1345 �0.0663
U(1) QSL (Iqbal et al.) �0.1190 �0.079
Z2 QSL (Iqbal et al.) �0.1245 0
VBC (Iqbal et al.) �0.1255 �0.055
Z2 QSL⇤ �0.1323 �0.0628
E↵ective Model �0.1353 0

and VBC states suggesting a stabilized nematic state as the true ground state of the BKH
model in the large breathing anisotropy limit.
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Figure 6: (Color online) The lattice-nematic pattern in the large breathing anisotropy
limit at J5/J4 = 0.01 constructed from strong and weak correlations on the links of the
upward and downward kagome triangles which breaks the C3 local rotational symmetry of
the system while preserving the translational invariance in every direction on the lattice.
The correlations reported in the figure are obtained with PESS D = 13. The values on the
green links are the average correlation of the two edges (see the text for further discussion).

The nematic state breaks the C3 local rotational symmetry of the triangles while pre-
serving the translational invariance in every direction of the lattice. This is in contrast
with the VBC phase which breaks both translational and rotational symmetries of the sys-
tem [42]. The lattice-nematic state on the kagome lattice is, in fact, three-fold degenerate.
Repeating the simulations with di↵erent initial states, we found the two other degenerate
nematic states with the same magnitude of correlations on bonds but a di↵erent pattern.
This implies that in the regime of very large breathing anisotropy, the system undergoes a
dimensional reduction with three degenerate ground states that consist of almost decou-
pled chains. Let us further stress that our results for the large breathing anisotropies are
in agreement with the recent DMRG results [44].

For completeness of our analysis and further to see how the lattice-nematic state com-
petes with other states from previous studies, we consider the Taylor expansion of the
BKH energy in the large breathing anisotropy limit up to second order in perturbation
theory

"0

J4
= �0.25 + c1

J5
J4

+ c2

✓
J5
J4

◆2

+ . . . . (2)

The first constant term in the above equation is the energy of decoupled upward triangles.
The coe�cients c1, c2 can further be obtained by quadratic fits of the energy curve. Similar
values of the coe�cient c2 can also be obtained by linear fits of the first-order derivatives
of the energy curves (as shown in the upper inset of Fig. 8).

Table 2 provides the c1, c2 expansion coe�cients of our lattice-nematic states obtained
with PESS (D = 13) compared with those of the e↵ective model known as trimerized
kagome model, which corresponds to a frustrated spin-orbital model on the triangular
lattice [14, 44]. Note that, since our energy curve shows a discontinuity in its slope, we
have performed two separate fits on each side of the discontinuity. The coe�cients for Z2,
U(1) QSLs and VBC state of Ref. [42] and Z2 QSL⇤ of Ref. [57] as well as those of the
nematic state obtained with DMRG in Ref. [44] are also provided in the table. One can
clearly see that the c1 coe�cient of the nematic state obtained both in our simulations
and previous DMRG results is larger (in absolute value) than those of the Z2, U(1) QSLs
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v Breathing anisotropy arises naturally in materials with impurity or under perturbation

v The spin-½ Breathing Kagome antiferromagnetic model is a suitable play ground to understand 
the effects of breathing anisotropy

v Tensor Network methods are powerful techniques for studying frustrated systems

v Gapless U(1) Spin Liquid of the BKH model persists to very large breathing anisotropies

v Lattice Nematic phase at very large breathing limit 

v First-order QPT between the U(1)  QSL and the Nematic phase at  J▽ /J△≈ 0.05

v The Nematic phase is a critical gapless phase

v Our results is also in agreement with current experiment on Vanadium Oxyfluoride compound


