Lecture |l: tensor network algorithms
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Overview: Tensor network algorithms (ground state)
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Contracting a tensor network
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Pairwise contractions...
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Pairwise contractions...




Pairwise contractions...
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the order of contraction matters for the
computational cost!!!




Contracting a tensor network

% Reshape tensors into matrices and multiply them with optimized routines (BLAS)

dimension D
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dimension D2

cost D>

% Computational cost: multiply the dimensions of all legs (connected legs only once)



Contraction: Example from the 2D MERA
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Contracting an MPS
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MERA: Contraction

Let’s compute <\If | O ‘ \If>

(): two-site operator
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MERA: Contraction

Causal cone

(V]O[w)

Isometries
are isometric
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Disentanglers
are unitary




MERA: Contraction

Causal cone

/ Isometries
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Efficient computation of expectation values of observables!



Contracting the PEPS
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Contracting the PEPS

dimension D2

Problem: how do we contract this??

no matter how we contract,
we will get intermediate
tensors with O(L) legs

number of coefficients D2L

Exponentially increasing with L!

NOT EFFICIENT



Contracting the PEPS

% Exact contraction of an PEPS is exponentially hard!

=3 Lse controlled approximate contraction scheme

i ! N\

MPS-MPO-based Corner transfer TRG
. T R Ic t.
approaches matrix method ensor Renormalization Group
Nishino, Okunishi. JPSJ65 (1996) (variants: HOTRG, SRG, HOSRG)
Murg,Verstraete,Cirac, PRA75 '07 ISNiNo, UKunisni, :
Jordan,et al. PRL79 (2008) Orus, Vidal, PRB 80 (2009) )L(?V'”t’ l\lla\F/’T:i |_P1F2>L3992§)20%07)
Haegeman & Verstraete (2017) Fishman et al, PRB 98 (2018) e etal. ( )

Xie et al. PRB 86 (2012), ...

% Accuracy of the approximate contraction is controlled by ¢
“boundary dimension” X TNR

* Convergence in X needs to be carefully checked = Tensor Network Renormalization
Evenbly & Vidal, PRL 115 (2015)

: 2 :
* Overall cost: O(D'1%) with x ~ D Loop-TNR:
Yang, Gu & Wen, PRL 118 (2017)



Contracting the PEPS

Example: 2D Heisenberg model (CTM)
% Fast convergence

% Effect of finite D is
much larger!

—0.6685 ' ' ' 7

% Be careful with

“variational” energy!!!




Contracting the PEPS

% Exact contraction of an PEPS is exponentially hard!

=3 Lse controlled approximate contraction scheme

i ! N\

MPS-MPO-based Corner transfer TRG
. T R Ic t.
approaches matrix method ensor Renormalization Group
Nishino, Okunishi. JPSJ65 (1996) (variants: HOTRG, SRG, HOSRG)
Murg,Verstraete,Cirac, PRA75 '07 ISNiNo, UKunisni, :
Jordan,et al. PRL79 (2008) Orus, Vidal, PRB 80 (2009) )L(?V'”t’ l\lla\F/’T:i |_P1F2>L3992§)20%07)
Haegeman & Verstraete (2017) Fishman et al, PRB 98 (2018) e etal. ( )

Xie et al. PRB 86 (2012), ...

% Accuracy of the approximate contraction is controlled by ¢
“boundary dimension” X TNR

* Convergence in X needs to be carefully checked = Tensor Network Renormalization
Evenbly & Vidal, PRL 115 (2015)

: 2 :
* Overall cost: O(D'1%) with x ~ D Loop-TNR:
Yang, Gu & Wen, PRL 118 (2017)



Contracting the PEPS using an MPS

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)
dlmen5|on D2

this is an MPS

this is an MPO (matrix product operator)



Contracting the PEPS using an MPS

dimension D2xD?2

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

this is an MPS with bond dimension D2 xD2

truncate the bonds to X

there are different techniques for the
efficient MPO-MPS multiplication
(SVD, variational optimization, zip-up
algorithm...)

Schollwéck, Annals of Physics 326, 96 (2011)
Stoudenmire, White, New J. of Phys. 12, 055026 (2010).



Contracting the PEPS using an MPS

Verstraete, Murg, Cirac, Adv. in Phys. 57, 143 (2008)

dlmen5|on X

proceed...

* We can do this from several directions

% Similar procedure when computing an expectation value



Compute expectation values
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Figure taken from Corboz, Orus, Bauer, Vidal, PRB 81, 165104 (2010)



Contracting the iPEPS using the corner transfer matrix method
Nishino, Okunishi, JPSJ65 (1996)

CTM

» Environment tensors account for infinite system around a bulk site
» CTM: Compute environment in an iterative way

» Accuracy can be systematically controlled with X



Contracting the iPEPS using the corner transfer matrix method

Nishino, Okunishi, JPSJ65 (1996)
Orus, Vidal, PRB 80 (2009)

dimension X

% Let the system grow in all
directions.
% Repeat until convergence

is reached
% The boundary tensors
form the environment
% Can be generalized to

arbitrary unit cell sizes
Corboz, et al.. PRB 84 (2011)



Simplest case: rotational symmetric tensors
Nishino, Okunishi, JPSJ65 (1996)

~ Approximate

|
U T ?li - resolution of the
~ ~ identity (in the
[/ |

relevant subspace)




Simplest case: rotational symmetric tensors
Nishino, Okunishi, JPSJ65 (1996)

Maii

Relevant subspace!?
== DMRG: Eigenvectors with largest eigenvalues of Pleft

9
Pleft [Simpler: EIG/SVD of one corner]

How can we best truncate from




General case: Renormalization step (left move)
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alternatively: only use upper
left and lower left corners
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T : _ P
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l

Wang, Pizorn & Verstraete, PRB 83 (2011)
. . Huang, Chen & Kao, PRB 86 (2012)
identity approx. Identlt)’ PC, Rice, Troyer, PRL 113 (2014)

T. Okubo, private comm.




CTM with Iarger unit cells PC, White, Vidal, Troyer, PRB 84 (2011)

% Each tensor has coordinates with respect to the unit cell: ~ Al®Y

o
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CTM with larger unit cells

Left move for L, x L, cell:do for all x and y!

e Do for all x € |1, L,]
— Do forally € |1, L,)]

* Compute projectors plz—Lyl ple—1y]
— Do for all y € [1,L,)]

x Compute updated environment




CTM with larger unit cells

Left move for L, x L, cell:do for all y and x!

Completed left

move of entire

unit cell!




CTM with larger unit cells

Other shapes than rectangular cell possible:
All 9 tensors different:

:::::6 . : : ‘::::

Only 3 different tensors:

I ] | ] { ] | I
J J J
1

-

, Q'IC}:: (example: Shastry-Sutherland model)

Unit cell with 30 tensors (60 sites)




Contracting the PEPS/iPEPS using TRG  Gu Levin Wen, B78, (2008

Levin, Nave, PRL99 (2007)
Tensor Renormalization Group ~ Xie etal. PRL103, (2009)

dimension X
SVD
sublattice A: —#— — _%{
SVD
sublattice B: —#— — ﬁf_

% Contract PEPS with periodic boundary conditions
% Finite or infinite systems

% Related schemes: SRG, HOTRG, HOSRG, ...



More advanced: Tensor network renormalization

(s)

. I.‘q Tensor Network Renormalization

—@

f
"-"* - G. Evenbly! and G. Vidal®

[a] Ynstitute for Quantum Information and Matier,
4 — California Institute of Technology, Pasadena CA 91125, Uﬂfﬂ
* Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Cﬂ?mdﬂ
& ? (Dated: December 3, 2014)

S -

% Additional ingredient: Disentanglers

% Remove short-range entanglement at each
coarse-graining step (key idea of the MERA)

% Faster convergence with chi

% Especially important for critical systems

- - / * Another variant: Loop-TNR:
Yang, Gu & Wen, PRL 118 (2017)

(f)




Contracting the PEPS

% Exact contraction of an PEPS is exponentially hard!

=3 Lse controlled approximate contraction scheme

i ! N\

MPS-MPO-based Corner transfer TRG
. T R Ic t.
approaches matrix method ensor Renormalization Group
Nishino, Okunishi. JPSJ65 (1996) (variants: HOTRG, SRG, HOSRG)
Murg,Verstraete,Cirac, PRA75 '07 ISNiNo, UKunisni, :
Jordan,et al. PRL79 (2008) Orus, Vidal, PRB 80 (2009) )L(?V'”t’ l\lla\F/’T:i |_P1F2>L3992§)20%07)
Haegeman & Verstraete (2017) Fishman et al, PRB 98 (2018) e etal. ( )

Xie et al. PRB 86 (2012), ...

% Accuracy of the approximate contraction is controlled by ¢
“boundary dimension” X TNR

* Convergence in X needs to be carefully checked = Tensor Network Renormalization
Evenbly & Vidal, PRL 115 (2015)

: 2 :
* Overall cost: O(D'1%) with x ~ D Loop-TNR:
Yang, Gu & Wen, PRL 118 (2017)



Summary: Tensor network algorithm for ground state
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Optimization



Optimization via imaginary time evolution

e Idea: exp(—BH)|T;)

Trotter-Suzuki : :
—BH) = exp(— H
decomposition: xp(=FH) = expl ﬁz )

* ID: L an on o on om on o

* At each step: apply a two-site operator to a bond and truncate bond back to D

UVs V3V

U 4l
| — SVD fo ? ?
—> — —
Keep D largest

singular values

Time Evolving Block Decimation (TEBD) algorithm

Note: MPS needs to be in canonical form



Optimization via imaginary time evolution

e |dea: exp(—ﬁﬁ)I\Pi> > |Uas)
T=0/n

Trotter-Suzuki . . "
decomposition: PP = el sz: g (exp TZ b) ( exp(—T b)

spl'ag sa FB s 1'y sa I'p sB 1'y sSa

e |D: N ‘
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* At each step: apply a two-site operator to a bond and truncate bond back to D
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infinite Time Evolving Block Decimation (iTEBD)
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Optlmlzatlon via Imaginary time evolution P

— A
: yrrrrrrry
 2D: same idea: apply m rFrrerrrere
to a bond and truncate bond back to D rYyryrryryrTYY

« However, SVD update is not optimal (because of loops in PEPS)!

simple update (SVD) full update
Jiang et al, PRL 101 (2008) Jordan et al, PRL 101 (2008)

* “local” update like in TEBD % Take the full wave function into

* Cheap, but not optimal account for truncation

(e.g. overestimates magnetization % optimal, but computationally more
in S=1/2 Heisenberg model) expensive

% Fast-full update [Phien et al, PRB 92 (2015)]

Cluster update Wang, Verstraete, arXiv:1110.4362 (2011)



O Ptl mization: sim P I e u Pdate Jiang, et al., PRL 101, 090603 (2008)

* iPEPS with “weights” on the bonds (takes environment effectively into account)

* Update works like in ID with iTEBD (infinite time-evolving block decimation)
G. Vidal, PRL 91, 147902 (2003)

®

Il
oo
l
D;ﬂ
-lk_Lw_L

Sk

keep only D largest singular values



Trick to make it cheaper

* |dea: Split off the part of the tensor which is updated

Fokd
TS

) >VD ) \jA %\jB
<':' \ \\T\

keep only D
largest singular

—1~ )\,—1"
F'A ) )L—31 )\’6 FA vB i SFB _31 values
%& — %_1 Qk = &gi}—l
2 4



Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)

OptimizatiOn: fU” UPdate Corboz, Orus, Bauer, Vidal, PRB 81, 165104 (2010)

* Approximate old PEPS + gate with a new PEPS with bond dimension D

+ Minimize || [0) — [¥') [|* = (U|W) + (P'|T) — (P]P') — (V| D)

* |teratively / CG / Newton / ...



Full-update: details

* Split off the part of the tensor \ A p B ANty
which is updated

Environment
of p and q
tensors

— g|\Ij P, q ~ |\Ij/ find new p’,and g’ to minimize: H |\If |\If/

d(p',q') = <‘T’\@> +(U'[P7) — (P[P) — (V| D)

“Cost-function” @ @




Finding p’ and q’ through sweeping

svD Do a0
* Initial guess with SVD: ‘ﬁ'

« Keep q’ fixed and optimize with respect to p’ (9 =0
P
° =0
ap/* o

S

/
* Solve linear system: M D — hew p’



Finding p’ and q’ through sweeping
P 9

VD Po 4o
* Initial guess with SVD: g = ‘ﬁ’ — T T

0
« Keep q’ fixed and optimize with respect to p: P dip’,¢)=0
p
/] —
* Solve linear system: Mp — b — hew p’
0

» Keep p’ fixed and optimize with respect to q": P dp',q') =0
~ =
* Solve linear system: Mq — — hew @’

* Repeat above until convergence in d(p/, q’)

A X p B Y
* Retrieve full tensors again: QPT — Q@\_Pr ﬁ\i - %




Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)

Optimization: fU” update Corboz, Orus, Bauer, Vidal, PRB 81, 165104 (2010)

* Approximate old PEPS + gate with a new PEPS with bond dimension D

Enwronment Environment

\dA' B'

A NN

) =g|¥) = |V

+ Minimize || [¥) — [')[|* = (U|¥) + (¥'[T') — (T|W') — (V| D)
* lteratively / CG / Newton / ...

* The full wave function is taken into account for the truncation!

* At each step the environment has to be computed! expensive... but optimal!



Optimization: simple vs full update

simple update Example: 2D Heisenberg model
“local” update like in TEBD O Simple update .
Cheap, but not optimal “ [ ™ Full update © |
(e.g. overestimates magnetization
in S=1/2 Heisenberg model) -
Q0 ©
a0 s "
full update 34| =
L g

Take the full wave function into 30! o

account for truncation

————————————————————————————————————

optimal, but computationally more
expensive 1/D

* Combine the two: Use simple update to get an initial state for the full update

* Don’t compute environment from scratch but recycle previous one
> fast full update Phien, Bengua, Tuan, PC, Orus, PRB 92 (2015)



Variational optimization for PEPS

Verstraete, Murg, Cirac, Adv. Phys. 57 (2008)

|. Select one of the PEPS tensors A

2. Optimize tensor A (keeping all the others fixed) by minimizing the energy:

tensor network including

all Hamiltonian terms tensor network from norm term

<\IJ|H|\IJ> minimize ‘/ — tensor A reshaped as a vector
B = —> Hzs = FENz
(V| ®)
solve generalized eigenvalue problem
N =
in 1D: | | | | |




Variational optimization for PEPS A5

Verstraete, Murg, Cirac, Adv. Phys. 57 (2008) mej Ty X rrrr
|. Select one of the PEPS tensors A R R G B P

rrryryryveyye

2. Optimize tensor A (keeping all the others fixed) by minimizing the energy:

tensor network including

all Hamiltonian terms tensor network from norm term

<\IJ|H|\I/> minimize ‘/ — tensor A reshaped as a vector

b= ——> Hx = ENzx
(P|P)

solve generalized eigenvalue problem

3. Take the next tensor and optimize (keeping other tensors fixed)

4. Repeat 2-3 iteratively until convergence is reached



Variational optimization for iPEPS . ,:.1’ _,f _,?’? 5?9? #,’r’ ’?ﬁ’

Main challenges: },’ &0 31) P

. Need to take into account infinitely many Hamlltonlan contrlbutlons

4 Solution: use corner-transfer matrix method [PC, PRB 94 (2016)]
4 Alternative: use “channel-environments’ [Vanderstraeten et al, PRB 92; PRB 94 (2016)]

4 Or:Use PEPO (similar to 3D classical) [cf. Nishino et al. Prog. Theor. Phys 105 (2001)]

2. Tensor A appears infinitely many times! (Min. problem highly non-linear)

4 Take adaptive linear combination of old and new tensor [PC, PRB 94 (2016)]
[see also Nishino et al. Prog. Theor. Phys 105 (2001), Gendiar et al. PTR 110 (2003)]

4 Alternative: use CG approach [Vanderstraeten, Haegeman, PC, Verstraete, PRB 94 (2016)]

tensor network including

all Hamiltonian terms tensor network from norm term

VIH W minimize ‘/ ensor A reshaped as a vector
E:<<\|IJI\I|J>> ——> Hz=ENz~ ’ t




H-environment

tensor network including
all Hamiltonian terms tensor network from norm

<\I/|H|\If> minimize ‘/
b= —> Hx=FEN=zx

(V|¥) 1
But how about H ?

» Need additional H-environment tensors:

&:++++...

= taking into account all Hamiltonian contributions in the infinite upper left corner




H-environment

+

Terms between a corner

Corner terms
O O O ..-E
o o

O O |

and an edge tensor

P + E P
+ B (o
_I_
Local terms




H-environment: bookkeeping

CTM left move:

C) = F=@—+$—+@—
L -

égltg+

... and similarly for right-, top-, bottom-move

» We can sum up all Hamiltonian contributions in an iterative way



Comparison: Heisenberg model

_ O~
107~
» 107}
LL
<
107}
—A—-simple update
— 0 —full update
—&— variational update
-5
10 ' ' '
2 4 6
D

0.42

0.4¢

0.38;

£ 0.36;

0.34

0.32f

0.3

Oh;

» Energy and order parameter are substantially improved
with the variational optimization

» Variational update (D=6): -0.66941|

» Extrapolated QMC result: -0.66944 [sandviksEvertz 2010




Summary: optimization in iPEPS

» Imaginary time evolution

4 Simple update: cheap and simple, but not accurate
Jiang et al, PRL 101 (2008)

4 Cluster update: improved accuracy
Wang et al, arXiv:1110.4362

4 Full update: high accuracy, more expensive
Jordan et al, PRL 101 (2008)

4 Fast-full update: high accuracy, cheaper than FU

Phien et al, PRB 92 (2015)

» Energy minimization / variational optimization

4 DMRG-like sweeping: higher accuracy, similar cost as FFU
PC, PRB 94 (2016)
4 CG-approach: higher accuracy, similar cost as FFU

Vanderstraeten, Haegeman, PC, and Verstraete, PRB 94 (2016)

4 See also variational optimization in the context of 3D classical models
Nishino et al. Prog. Theor. Phys 105 (2001), Gendiar et al. Prog. Theor. Phys 110 (2003)

4 ... more to explore...!



Summary: optimization in iPEPS
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Differentiable Programming Tensor Networks

Hai-Jun Liao,"” Jin-Guo Liu,' Lei Wang,"*”" and Tao Xiang" ™'
'Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2CAS Center for Excellence in Topological Quantum Computation,
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35()}1g5han Lake Materials Laboratory, Dongguan, Guangdong 523808, China
4Uni1v’er.s‘iry of Chinese Academy of Sciences, Beijing 100049, China
SCollaborative Innovation Center of Quantum Matter, Beijing 100190, China

® (Received 2 April 2019; published 5 September 2019)

Differentiable programming is a fresh programming paradigm which composes parameterized
algorithmic components and optimizes them using gradient search. The concept emerges from deep

learning but i¢ rogramming
tensor netwo Comput|ng grachents in an orithm as a
computation . . 0 I efficiently
using automa aUtomatlzed faShlono or networks
. Simplifies codes substantially! | U
Ising model Implemented in machine learning | the tensor
renormalizati I of infinite
soiecied ent frameworks (TensorFlow, PyTorch, ...) L ueor
the-art variatic 4ng removes

laborious human efforts in deriving and implementing analytical gradients for tensor network programs,
which opens the door to more innovations in tensor network algorithms and applications.

DOI: 10.1103/PhysRevX.9.031041 Subject Areas: Computational Physics, Condensed
Matter Physics




Automatic differentiation

Liao, Liu, Wang, Xiang, PRX (2019)
computation graph:

, T
input (tensors) oT! output (e.g. energy)

Compute the gradient via chain rule:

oL or OT" OT2 OT! from left to right
20 =~ 9 7 37T 90 (back propagation algorithm)

Define forward and backward function of each elementary operation
(primitives), e.g. addition, multiplication, math functions, matrix-matrix
multiplications, eigenvalue decompositions, etc.

— Gradient can be computed in an automatized fashion

See Juraj Hasik’s talk on Thursday!



Summary: Tensor network algorithms (ground state)

MPS PEPS
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\%ﬁf ansatz
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Find the best
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iterative optimization Contraction of the
of individual tensors imaginary time tensor network
(energy minimization) evolution exact / approximate



