The 16-fold way in the Kitaev honeycomb model

Jean-Noël Fuchs (LPTMC, CNRS & Sorbonne Université, Paris)

On-going work with Julien Vidal (LPTMC) & Sourabh Patil (IISER Pune) since 2018

Benasque, 11/02/2020

Outline & main message

1) Kitaev honeycomb model as Majorana fermions in Z_2 gauge field (0 or π flux) characterized by integer Chern number, modulo 16

2) Triangular vortex lattices :

Chern = $0,\pm 1,...,\pm 6,8$ but not ± 7

3) Effective models in the dilute vortex limit

Kitaev's honeycomb model

Spin 1/2 on the honeycomb lattice with compass nearest neighbor exchange interaction

$$H = -\sum_{\langle i,j \rangle} J_{\alpha} \sigma_i^{\alpha} \sigma_j^{\alpha} \qquad \alpha = x, y, z$$

Kitaev 2006

Conserved quantities For a plaquette p

A vortex is (by definition) $w_p = -1$ Hilbert space splits in uncoupled « vortex sectors » $\dim \mathcal{H} = 2^N = 2^{N/2} \times 2^{N/2}$ Kitaev 2006

Majorana fermions & Z₂ gauge field

Problem maps to honeycomb tight-binding model of MF with anisotropic hopping (J_x, J_y, J_z) in static Z_2 gauge field : $u_{jk} = -u_{kj} = \pm 1$

$$H = \sum_{j,k} i \frac{J_{\alpha}}{2} u_{jk} c_j c_k \qquad \{c_i, c_j\} = 2\delta_{i,j}$$

Z₂ magnetic field : $w_p = \prod_{\substack{(i,j) \in p}} u_{ij} = \pm 1$ $0 \text{ or } \pi - \text{flux}$

Quadratic hamiltonian \rightarrow free MF Doubled spectrum $\pm \epsilon_k \text{ with } k = 1, ..., N/2$ Groundstate in vortex-free sector

Kitaev 2006

Phase diagram of vortex-free sector

B : graphene-like, two Dirac cones : gapless nodal fermions + gapped vortices A : beyond merging of Dirac cones : gapped fermions + gapped vortices (toric code) _{Kitaev 2006}

3-spin term breaking time-reversal In order to gap the B phase in a chiral way Restrict to isotropic exchange interaction

$$J_x = J_y = J_z = 1$$
 and κ

Kitaev 2006

NNN hopping with inhomogeneous magnetic field within the unit cell

Equivalent to Haldane's model of Chern insulator but for MF, with M = 0 and $\phi = \pi/2$ & with a « vortex pattern » Haldane 1988

Vortex-free sector (white background)

Kitaev 2006

Periodic table of gapped noninteracting fermions (10-fold way)

System	Cartan nomenclature	TRS	PHS	SLS	d = 1	d = 2	<i>d</i> = 3					
standard	A (unitary)	0	0	0	-	(\mathbf{Z})	-					
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	-	-	-					
	AII (symplectic)	-1	0	0	-	\mathbf{Z}_2	\mathbf{Z}_2					
chiral	AIII (chiral unit.)	0	0	1	Z	-	Ζ					
(sublattice)	BDI (chiral orthog.)	+1	+1	1	Z	-	-					
	CII (chiral sympl.)	-1	-1	1	Z	-	\mathbf{Z}_2					
BdG	D	0	+1	0	$ \mathbf{Z}_2 $		-					
(Majorana	С	0	-1	0	-	Z	-					
fermions)	DIII	-1	+1	1	\mathbf{Z}_2	\mathbf{Z}_2	Z					
	CI	+1	-1	1	-	-	Ζ					

Haldane model: 2D topological insulator (quantum Hall effect)

Kitaev chain: 1D topological superconductor

Kitaev honeycomb model: 2D topological superconductor

Schnyder, Ryu, Furusaki & Ludwig 2008 ; Kitaev 2009

D class: 2D topological superconductor that breaks TRS

Bulk excitations :

- gapped Bogolubov quasiparticles, BdG bands carry a non-zero Chern number (Z topological invariant)

- alternatively: gapped (massive) MF in 2+1, Majorana bands carry a non-zero Chern number

<u>v integer</u>

Volovik 1988

Chiral & real edge modes

Edge excitations :

v = number of chiral-Majorana edge modes (bulk-edge correspondance)

half an integer quantum edge channel : chiral central charge $c_{-} = \nu/2$ thermal transport $I = \frac{\pi}{12}c_{-}T^{2}$

<u>v integer</u>

Volovik 1988, Kitaev 2006

Excitations bound to a vortex

single complex fermion mode = pair of Majorana zero modes (MZM) $H = 2\epsilon(a^{\dagger}a - 1/2) = 2\epsilon i c \tilde{c}$ $\{a_i, a_j^{\dagger}\} = \delta_{i,j}$

Caroli, de Gennes, Matricon 64

unpaired MZM = separated MZM pair $H = t ic_1c_2$ $t \rightarrow 0$ $\{c_i, c_j\} = 2\delta_{i,j}$

Kopnin-Salonaa 91; Volovik 99 see also Jackiw-Rossi 81

<u>Fractionalized excitations</u> : MZM are non-abelian anyons

MZM or Majorana bound state or Majorana anyon or Majorino (Wilczek)

= MF, at zero energy, localized in a vortex core (or another topological defect)

Ising anyon $\sigma \times \sigma = 1 + \epsilon$

Rk1: MF = fermion that is its own antiparticle \neq MZM

Rk2: Jackiw's mechanism of fractionalization

Read & Green 00; Ivanov 01; see also Moore & Read 91

Exchange statistics of vortices : 16-fold way

- 1) 2 layers of topo SC with Chern v = QHE with v
- 2) π -flux binds a v/2 charge because q= $\sigma_{xy} \phi$
- 3) braiding of two charge-flux composites ($\nu/2,\pi$)
- 4) AB phase = $\pi v/2$
- 5) exchange phase = $\pi v/4$
- 6) exchange phase per layer = $\pi v/8 = 2\pi v/16$

v integer mod 16

Kitaev 2006

Summary of anyon theories

• <u>Odd v=±1;±3;±5;±7</u> : non-abelian Ising anyons gs torus deg. = 3 ; planar deg. = 2ⁿ (n vortex pairs) single non-abelian vortex $\sigma \times \sigma = 1 + \epsilon$

Even v=0;±2;±4;±6;±8 : abelian anyons gs torus deg. = 4 ; planar deg. = 1 two abelian vortices (e & m or a & ā)
a) v=0;±4;8 : Z₂xZ₂ anyons (toric code) e × m = ε
b) v=±2;±6 : Z₄ anyons a × a = ā × ā = ε

Kitaev 2006 ; reviewed in lectures by Bernevig (video at PiTP 2015 and notes with Neupert, arXiv:1506.05805)

Kitaev's model : known phases when $J_x = J_y = J_z = 1 \& 0 < \kappa \ll 1$

<u>vortex free</u> : v=1

Kitaev 2006

vortex full : v=2

Lahtinen, Pachos 2010

triangular vortex lattices

Lahtinen, Ludwig, Pachos, Trebst 2012: v=4Zhang, Batista, Halasz 2019: v=3,8Us: v=5,6 not 7

Vortex-full sector (black background)

Triangular vortex lattices at any к

Direct: black vortices in a vortex-free (white) sea

Dual: white vortices in a vortex-full (black) sea

Periodic system in the thermodynamic limit

Gap versus ĸ

Chern number versus к

Also vortex-full gives v = -2,2In agreement with Lahtinen, Ludwig, Pachos, Trebst 2012

Gapped by vortex lattice if $1/\rho=0 \mod 3$: Dirac points nesting. Kamfor, Dusuel, Schmidt, Vidal, 2011

Dual triangular lattices (triangular lattice of white vortices)

Extended gapless phases at finite ĸ

Close to vortex free (direct)

Vortex density p=1/n

Pattern of Chern numbers

$1/3^{*}$	1/4	1/7	$1/9^{*}$	$1/12^{*}$	1/13	1/16	1/19	$1/21^{*}$	1/25
0	4	2	0	0	2	2	2	0	2
4	0	-2	4	4	-2	-2	-2	4	-2
-2	4	2	-2	8	4	4		-2	4
2	-8	-2	2	-4	0	0		2	0
-2		-14	-2	-8	4	4		-2	4
-6			4	-2	-2				-2
			0	-6	2				2
			4		-2				-2
			-2						4
									0
									4

Increasing κ

Black family : flux per triangle = $\pi/2$, i.e. ρ =odd/n Only even Chern numbers, changes by 4,6,8 or 12 Stars: gapped at κ =0 i.e. Chern=0 (TRS) when denominator is multiple of 3 (nesting, see Kamfor et al. 11)

Effective model : ingredients

- Close to zero energy : localized modes in vortices (either MF or DF), well separated from bulk modes (large bulk gap, dilute vortex lattice)
- Hopping between vortices
- Broken time-reversal symmetry
- Conservation of fermionic parity

Direct effective model: MF on triangular lattice $t_1 \& t_{\sqrt{3}}$

Lahtinen, Ludwig, Pachos & Trebst 2012

MF on triangular lattice: validity

ŝ

Dual effective model: $p_x + ip_y$ SC on triangular lattice with 0 or π flux

Bogolubov-de Gennes Hamiltonian

$$H(\mathbf{k}) = \begin{pmatrix} H_0(\mathbf{k}) & \Delta(\mathbf{k}) \\ \Delta(\mathbf{k})^* & -H_0(-\mathbf{k}) \end{pmatrix}$$

$$H_0(\mathbf{k}) = \epsilon - 2\sum_j t_j \cos \mathbf{k} \cdot \mathbf{a}_j$$

$$\Delta(\mathbf{k}) = 2i\Delta \sum_{j} (\mathbf{u}_{x} + i\mathbf{u}_{y}) \cdot \mathbf{a}_{j} \sin \mathbf{k} \cdot \mathbf{a}_{j}$$

$$\upsilon = \upsilon_{f} + \upsilon_{v} = \pm 2 + \upsilon_{v} = 0, \pm 1, \pm 2, \pm 3, \pm 4$$

DF on triangular lattice: validity

Gap: effective model VS microscopics

Red family : $\rho = 12/13$

Dilute limit: $\rho = (n-1)/n \rightarrow 1$ Isolated white vortices with $\pm \epsilon$, gap = 2ϵ

$$\upsilon = \upsilon_{\rm f} + \upsilon_{\rm v} = \pm 2 + 0$$

Vortex-full background dominates (except at $\kappa \approx 0$ and 0.5)

Conclusion

- All Chern numbers should be accessible in the Kitaev honeycomb model by vortex pattern engineering. In particular modulo 16.
- Triangular vortex lattice:
 Chern = 0;±1;±2;±3;±4;±5;±6;8 but not ±7
- Kitaev honeycomb model (2D topological superconductors): relation btw topological bands (Chern numbers) and topological order (anyons)