Benasque, 7.08.2019

J. Lesgourgues

Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

1 Could the Hubble tension hint at new particle physics? - J. Lesgourgues

• Internal consistency of ACDM fit to CMB observables [Planck col. 1807.06209]

Still: CMB data probes the universe mainly at 10³<z<10⁵, with some sensitivity to lower redshift through: angular distance, CMB lensing, (late ISW). H₀ and σ₈ extrapolated from data+model.

Consistency of LCDM fit across multiple probes: CMB, BAO, BBN, distant SNIa...

He, D -> ω_{b} , N_{eff}

۲

BAO -> H₀, Ω_m , ω_b ; BBN -> ω_b

 Inconsistency with high H₀ measured with SNs calibrated with cepheids (HST, SHOEs). 4σ with Riess et al. 1903.07603. Quasar time-delay also prefer high H₀ and combination gives 5σ tension. • BAO+BBN versus SH0ES: if all basic assumptions are correct:

Etherington reciprocity relation (1933) : $d_L(z) = (1+z)^2 d_A(z)$ for general metric theories of gravity (see exceptions in Bassett & Kunz astro-ph/0312443)

 Deuterium = most robust primordial abundance measurements (> Helium > Lithium), because D not produced by stars. Converging observations:

 $10^{5} n_{D} / n_{H} = 2.527 \pm 0.030$ (68 % CL), Cooke et al. (2018)

• $\omega_b \longrightarrow BBN \text{ code } \longrightarrow n_D/n_H$:

uncertainties on nuclear rates: proton fusion $d(p,\gamma)^{3}$ He, deuterium fusion $d(d, n)^{3}$ He, $d(d, p)^{3}$ He

Authors	Code		<i>d</i> (<i>p</i> ,γ) ³ He	Δy _{DP}	100 ω _b
Cooke et al. (2018)	Nollett et al.		theo.	0.02	2.166 ± 0.015 ± 0.011
Planck 2018 case (a)	PArthENoPE	Δy _{DP} =0.04	obs.	0.06	2.270 ± 0.017 ± 0.034
Planck 2018 case (b)	PArthENoPE	Δy _{DP} =0.015	theo.	0.03	2.197 ± 0.016 ± 0.016
Planck 2018 case (c)	PRIMAT		mixed	0.03	2.188 ± 0.016 ± 0.017

• BAO+BBN predictions for ACDM in Schöneberg et al. [1907.11594]

case (a): 3.2σ BAO+BBN — SH0ES tension (3.6σ in Cuceu et al.) cases (a), (b), (c) give the same results

Lancaster et al. [1704.06657], Oldengott et al. [1706.02123], Di Valentino et al. [1710.02559],

Kreisch et al. [1902.00534], Park et al. [1904.02625]

- light sterile neutrino interacting with a scalar field
- Interacting Dark Matter Dark Radiation

Lesgourgues et al. [1507.04351], Buen-Abad et al. [1708.09406], Archidiacono et al. [1907.01496]

• Dark Matter converting into Dark Radiation

Poulin et al. [1606.02073], Binder et al. [1712.01246], Bringmann et al. [1803.03644]

- Dark Radiation from PBH
- Early Dark Energy Poulin et al. [1811.04083], Argrawal et al. [1904.01016], Lin et al. [1905.12618]
- fifth force effects on cepheids and supernovae physics
- Dark Matter interacting with Dark Energy
- etc. (non-exhaustive)

Desmond et al. [1907.03778]

Hooper et al. [1905.01301]

Pan et al. [1907.07540], ...

Archidiacono et al. [1606.07673]

Lancaster et al. [1704.06657], Oldengott et al. [1706.02123], Di Valentino et al. [1710.02559],

Kreisch et al. [1902.00534], Park et al. [1904.02625]

Archidiacono et al. [1606.07673]

Hooper et al. [1905.01301]

Desmond et al. [1907.03778]

Pan et al. [1907.07540], ...

- light sterile neutrino interacting with a scalar field
- Interacting Dark Matter Dark Radiation

Lesgourgues et al. [1507.04351], Buen-Abad et al. [1708.09406], Archidiacono et al. [1907.01496]

• Dark	Matter	converting	into	Dark Radiation
--------	--------	------------	------	----------------

Poulin et al. [1606.02073], Binder et al. [1712.01246], Bringmann et al. [1803.03644]

- Dark Radiation from PBH
- Early Dark Energy Poulin et al. [1811.04083], Argrawal et al. [1904.01016], Lin et al. [1905.12618]
- fifth force effects
- Dark Matter interacting with Dark Energy (=>w<-1)
- etc. (non-exhaustive)

change BAO scale	change $d_A(z), d_L(z)$	change standard
(but not angle)	only at very small z	candle physics

Lancaster et al. [1704.06657], Oldengott et al. [1706.02123], Di Valentino et al. [1710.02559],

Kreisch et al. [1902.00534], Park et al. [1904.02625]

- light sterile neutrino interacting with a scalar field
- Interacting Dark Matter Dark Radiation

Lesgourgues et al. [1507.04351], Buen-Abad et al. [1708.09406], Archidiacono et al. [1907.01496]

• Dark Matter converting into Dark Radiation

Poulin et al. [1606.02073], Binder et al. [1712.01246], Bringmann et al. [1803.03644]

- Dark Radiation from PBH
- Early Dark Energy Poulin et al. [1811.04083], Argrawal et al. [1904.01016], Lin et al. [1905.12618]
- fifth force effects
- Dark Matter interacting with Dark Energy
- etc. (non-exhaustive)

other form of energy excess around equality

9 / 33

Desmond et al. [1907.03778]

Hooper et al. [1905.01301]

Archidiacono et al. [1606.07673]

Pan et al. [1907.07540], ...

- Observations (CMB, BAO, LSS...) mainly sensitive to ratios:
 - $\rho_m / \rho_r \implies \omega_m / \omega_r = \Omega_m / \Omega_r \implies z_{eq}$
 - $\rho_{\Lambda} / \rho_{m} \implies \Omega_{m} = 1 \Omega_{\Lambda} \implies z_{\Lambda}$
- Fixed Ω_m : H₀ governs absolute matter and Λ density today, $\rho_m \sim \Omega_m H_0^2$, $\rho_{\Lambda} \sim \Omega_{\Lambda} H_0^2$
- May increase (H₀, N_{eff}) last same time with fixed z_{eq}

- So, high H₀, N_{eff}~4 (e.g. light sterile neutrino), and that's it?
- NO! Increasing (H₀,N_{eff}) has other (bad) effects: CMB damping tail, neutrino drag on CMB peaks,

also Bashinsky & Seljak 03, Hou et al. 11, Neutrino Cosmology (2013) JL et al.

- So, high H_0 , $N_{eff} \sim 4$ (e.g. light sterile neutrino), and that's it?
- NO! Increasing (H₀,N_{eff}) has other (bad) effects: CMB damping tail, neutrino drag on CMB peaks,
- $\Omega_m h^2 = \Omega_b h^2 + \Omega_{cdm} h^2$. CMB also fixes $\Omega_b h^2$ so Ω_b / Ω_{cdm} changes. Small-scale matter power spectrum enhanced. 1.20

NEUTRINO OSSANOLOGU Julien Lesourgues Genaros Miets Segio Pastor

[PDG review on Neutrinos in Cosmology, J.L. & L.Verde] also Bashinsky & Seljak 03, Hou et al. 11, Neutrino Cosmology (2013) JL et al.

12 / 33

- So, high H₀, N_{eff}~4 (e.g. light sterile neutrino), and that's it?
- NO! Increasing (H₀,N_{eff}) has other (bad) effects: CMB damping tail, neutrino drag on CMB peaks,
- $\Omega_m h^2 = \Omega_b h^2 + \Omega_{cdm} h^2$. CMB also fixes $\Omega_b h^2$ so Ω_b / Ω_{cdm} changes. Small-scale matter power spectrum enhanced.
- "bad effects" can be reduced by exotic physics:
 - extra radiation is self-interacting -> no neutrino drag;
 - radiation remains more clustered during RD -> less Silk damping;
 - Matter clusters less during MD -> no power spectrum enhancement...

- Can test only the background evolution in these models?
- ---> independently of perturbations, scattering, self-interactions...
- \rightarrow N_{eff} from free-streaming (v=c) or self-coupled (c_s²=1/3) relativistic species...
- BAO data test the background evolution :

$$\theta(z) = \frac{r_s(z_D)}{r_A(z)}$$

• not so opvious... ["hepsuryia & Lewis 1409.5066; Schöneberg et al. 1907.11594 Appendix A]

Ratio of the two could depend on cosmology (e.g. on N_{eff} of free-streaming species)

N_{eff} 3 —> 4 : ratio increases by 0.1%; BAO errors: 0.9% ; so sound horizon OK as a proxy!

Constraints on background cosmology with enhanced Neff

- Can we find test background evolution in these models?
- --> independently of perturbations, scattering, self-interactions...
- \rightarrow N_{eff} from free-streaming (v=c) or self-coupled (c_s²=1/3) relativistic species...
- BAO data test the background evolution
- BAO —> H₀, Ω_m , ω_b ; no H₀ constraint without ω_b prior
 - BAO + ω_b from CMB? No, ω_b degenerate with perturbation-related ingredients
 - BAO + ω_b from BBN? Yes!
- The BAO+BBN take on the Hubble tension [1907.11594]

with Nils Schöneberg Deanna Hooper

Constraints on background cosmology with enhanced Neff

• Adding Helium constraints?

- If N_{eff}≈3 at BBN and ΔN_{eff} generated between BBN and equality: still no constraint (e.g. DM annihilating into DR, 1712.01246, 1803.03644)
- If N_{eff} is constant between BBN and CMB:

Helium $\xrightarrow{\text{BBN}}$ N_{eff} bounds $\xrightarrow{\text{BAO}}$ H₀ bounds (independent of perturbations)

Constraints on background cosmology with enhanced Neff

- Tension BAO+BBN <—> SH0ES reduces from 3.2σ to 2.6σ level only!
- $H_0 = 67.7^{+2.0}_{-2.2} \text{ km/s/Mpc}$ (68% CL)
- Could be enough if H₀ ∖ (star formation bias), otherwise: N_{eff} produced late or radically different mechanism...

other form of energy excess around equality

Solving Hubble tension with extended cosmological model

self-interacting active neutrinos plus Dark Radiation

Lancaster et al. [1704.06657], Oldengott et al. [1706.02123], Di Valentino et al. [1710.02559],

Kreisch et al. [1902.00534], Park et al. [1904.02625]

light sterile neutrino interacting with a scalar field

Archidiacono et al. [1606.07673]

Interacting Dark Matter — Dark Radiation

Lesgourgues et al. [1507.04351], Buen-Abad et al. [1708.09406], Archidiacono et al. [1907.01496]

- Dark Matter converting into Dark Radiation Slightly better than ACDM+Neff by tuning annihilation history Poulin et al. [1606.02073], Binder et al. [1712.01246], Bringmann et al. [1803.03644]
- Dark Radiation from PBH Hooper et al. [1905.01301] No better than ACDM+Neff
- Early Dark Energy Poulin et al. [1811.04083], Argrawal et al. [1904.01016], Lin et al. [1905.12618]
- fifth force effects
- Dark Matter interacting with Dark Energy
- etc. (non-exhaustive)

Desmond et al. [1907.03778]

Pan et al. [1907.07540], ...

Particle physics: Buen-Abad, Marques-Tavares, Schmaltz, 1505.03542; <--- LHC-motivated Cosmo: Lesgourgues et al. 1507.04351; Buen-Abad et al. 1708.09406; Archidiacono et al. 1907.01496

- DM and DR = relics from a Dark Sector (dark symmetry, massive fermions, dark photons or dark gluons), DR = self-coupled fluid enhancing N_{eff}
- DM-DR momentum exchange rate ~ T², Γ/H = constant during radiation era, constant small dragging of DR over DM, DR growth rate enhanced, DM growth rate reduced
- "bad effects" of high Neff on CMB cured by DR sound speed and perturbations / on P(k) cured by DR drag on DM, even o8 reduction!

Particle physics: Buen-Abad, Marques-Tavares, Schmaltz, 1505.03542; Cosmo: Lesgourgues et al. 1507.04351; Buen-Abad et al. 1708.09406; Archidiacono et al. 1907.01496

Particle physics: Buen-Abad, Marques-Tavares, Schmaltz, 1505.03542; Cosmo: Lesgourgues et al. 1507.04351; Buen-Abad et al. 1708.09406; Archidiacono et al. 1907.01496

- This model : n=0 case of the ETHOS parametrisation of any Lagrangian-based DM-DR interaction [Cyr-Racine et al. 1512.05344]
- n = 2, 4 cases: exponential suppression of small-scale power spectrum + Dark Acoustic Oscillation: candidate for small-scale CDM crisis

- Krall et al [1705.08894]: constraints on n=0 with SDSS-II Ly-α: McDonald et al.'s (σ₈, N_{eff}): σ₈ larger than for ΛCDM, n=0 model disfavoured
- Garny et al. [1805.12203]: constraints on n=0 with BOSS Ly-α: analytical modelling of 1D flux power spectrum, n=0 model unconstrained by Lyman-α
- Bose et al. [1811.10630]: show how to compute 1D flux for n=4 with simulations; DAO washed out

Archidiacono, Hooper, Murgia, Bohr, Lesgourgues, Viel et al. 1907.01496

- high-resolution HIRES/MIKE Ly- α : with simulations for (α,β,γ) parametrisation $T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$ •
- Likelihood in MontePython finds "equivalent Λ CDM model", take linear P(k) ratio, fits (α,β,γ), get ullet $P_{F^{1D}}(k,z;\alpha,\beta,\gamma)$ by interpolation, fits data to get $\chi^2(\alpha,\beta,\gamma)$ like in Murgia et al. 1704.07838

Archidiacono, Hooper, Murgia, Bohr, Lesgourgues, Viel et al. 1907.01496

• Case n=4: Ly-α pushes down constraint on coupling by 6 orders of magnitude

- Case n=2: similar behaviour
- Case n=0: Ly-α less constraining than CMB! (model affects larger scales)

Lancaster et al. [1704.06657], Oldengott et al. [1706.02123], Di Valentino et al. [1710.02559], Kreisch et al. [1902.00534], <u>Park et al. [1904.02625]</u>

- Neutrinos cluster more than free-streaming ones: reduced the "bad effects" of increasing N_{eff} (e.g. neutrino drag) and of increasing $M_{\nu_{\text{c}}}$

- High-interaction case accommodates $N_{eff} \sim 2.8$ -4.5 and $M_v \sim 0.05$ -0.55 eV (95%CL)! M_v bounds released by factor 4.5
- Could be discriminated with more LSS data and better CMB temperature and polarisation data (Simons observatory, CMB Stage 4...)

Lancaster et al. [1704.06657], Oldengott et al. [1706.02123], Di Valentino et al. [1710.02559], Kreisch et al. [1902.00534], <u>Park et al. [1904.02625]</u>

Hannestad et al. 2013; Saviano et al. 2014; Archidiacono et al. 2016

- $\mathcal{L} \sim g_s \phi \bar{\nu}_4 \gamma_5 \nu_4$ motivated by LSND + MiniBoone oscillation anomalies, high H₀ by surprise
- Would not work with vector; pseudo-scalar (odd under parity) to avoid 5th force bounds;
- Late thermal equilibrium of φ: N_{eff} enhanced by ~0.5 after BBN by both pseudo-scalar and sterile neutrino.
- Light sterile + massless pseudo-scalar play the role of interacting radiation over some range of time,
- late decay of sterile v into massless pseudo-scalar removes eV-mass effects on matter power spectrum. LSS data compatible with m_s~eV.


```
Lancaster et al. [1704.06657]. Oldongott et al. [1706.02123]. Di Valentine et al. [1710.02559].
```

		n et al.		
• light sterile neutrir	Beyond Standard Model		Price to pay too high,	
• Interacting Dark M	particle physics must be rich,			
Lesgourgues	Chauld have accorded	'08.09	Models too fine-tuned,	
• Dark Matter conve	consequences.			
		[1712.	SH0ES driven by systematics,	
• Dark Radiation fro	Hubble tension comes from not			
• Early Dark Energy	having identified these effects?	al et a	Tension will disappear?	
• fifth force effects				
• Dark Matter intera	cting with Dark Energy		Pan et al. [1907.07540],	
• etc. (non-exhaustive)				
			the also solve on tension	
		[some models are	

1.	input.c	
2. 3. 4. 5. 6.	<pre>background.c. thermodynamics.c. perturbations.c. primordial.c. nonlinear.c</pre>	 Bottleneck 1. Integral over perturbation equations. Not highly parallelisable/vectorisable (just k loop) Replace by neural network Albers, Fidler, JL, Schöneberg, Torrado [1907.05764] Provide analytic approximations: accurate and fast-to-(re)train Only depends on few (background) cosmo parameters
7. 8. 9. 10.	<pre>transfer.c spectra.c. lensing.c output.c</pre>	 Bottleneck 2. Loop over line-of-sight integrals. Highly parallelisable/vectorisable Alternative integral formulations e.g. Schöneberg, JL, Simonovic, Zaldarriaga [1807.09540]

On-going progress on front of Einstein-Boltzmann solvers

On-going progress on front of Einstein-Boltzmann solvers

On-going progress on front of Einstein-Boltzmann solvers

