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Light (pseudo-)scalar fields featured in many UV models,  
as PNGBs of spontaneously broken symmetries. 

Initially displaced from a minimum of its potential during the early cosmological 
history, the field begins to oscillate around the minimum when H~m. 

Correct cosmological equation of state for dark matter. 



Relic abundance set by initial conditions. 

Natural initial condition:                      

Assuming potential exists  
before end of inflation, 
contribution to energy density today:    

NGC 100
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B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagat-

ing protons in spin-symmetric contraction. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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ference are defined as
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The probability density associated with | s
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Assuming unpolarised isospin-invariant HXS, we use the
same ⇢2 (x0

1, x
0
2;x1, x2) for the proton-proton and proton-

neutron reduced density matrix, appearing in Eqs. (13)
and (4). Gs

2 is a normalisation constant. Inserting Eqs. (5)
and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.

We can repeat the same steps above for the spin anti-
symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates giving
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C. Coalescence from two-particle correlations
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Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element

when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [23]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-

out surface t
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R). We now make the connection to
observable quantities.
Inspecting Eqs. (10) and (14), we can write a di↵erential
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
done in Ref. [16], which used the Cooper-Frye pre-
scription [23] to make the replacement �
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µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.
While Ref. [16] (which focused on D formation) arrived at

this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.
Experimental collaborations report the coalescence factor
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,

0.2 0.4 0.6 0.8 1.0
ϕ/f

0.05

0.10

0.15

0.20
V(ϕ)

3

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagat-

ing protons in spin-symmetric contraction. Ignoring final-
state interactions (FSI), the position space representation
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i is an antisymmetric function of the particle co-
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ference are defined as
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i can be cal-
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Assuming unpolarised isospin-invariant HXS, we use the
same ⇢2 (x0

1, x
0
2;x1, x2) for the proton-proton and proton-

neutron reduced density matrix, appearing in Eqs. (13)
and (4). Gs

2 is a normalisation constant. Inserting Eqs. (5)
and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.

We can repeat the same steps above for the spin anti-
symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates giving
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C. Coalescence from two-particle correlations
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Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element

when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
�

d

dN

d

/d

3
P

d

and �1�2 dNs,a

/d

3
p1d

3
p2. Subtleties arise in

the computation of the RHS because for a relativistically ex-
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are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [23]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f
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. This was
done in Ref. [16], which used the Cooper-Frye pre-
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perpendicular to the HXS relativistic freeze-out surface.
While Ref. [16] (which focused on D formation) arrived at

this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.
Experimental collaborations report the coalescence factor
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,

Ultra-light dark matter (ULDM)



Relic abundance set by initial conditions. 

Natural initial condition:                      

Assuming potential exists  
before end of inflation, 
contribution to energy density today:    

NGC 100
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B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagat-

ing protons in spin-symmetric contraction. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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Assuming unpolarised isospin-invariant HXS, we use the
same ⇢2 (x0

1, x
0
2;x1, x2) for the proton-proton and proton-

neutron reduced density matrix, appearing in Eqs. (13)
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.

We can repeat the same steps above for the spin anti-
symmetric state | a
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i, for which the wave function is an
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C. Coalescence from two-particle correlations
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Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element

when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [23]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f
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perpendicular to the HXS relativistic freeze-out surface.
While Ref. [16] (which focused on D formation) arrived at

this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t
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(
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R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.
Experimental collaborations report the coalescence factor
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
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B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagat-

ing protons in spin-symmetric contraction. Ignoring final-
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and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.

We can repeat the same steps above for the spin anti-
symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates giving
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3
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2 (A2 (p1, p2) + F2 (P, q)) (15)

with G

a

2 = G

s

2/3.

C. Coalescence from two-particle correlations
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Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element

when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
�

d

dN

d
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and �1�2 dNs,a

/d

3
p1d

3
p2. Subtleties arise in

the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [23]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-

out surface t

f

= t

f

(

~

R). We now make the connection to
observable quantities.
Inspecting Eqs. (10) and (14), we can write a di↵erential

relation
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This can also be written as

d

d

3
R

✓
dN

d

d

3
P

d

◆
= G

d

f

W

1

 
~

P

d

2

,

~

R; t

f

!
⇥

Z
d

3
r |�

d

(~r)|2 fW

1

 
~

P

d

2

,

~

R� ~r; t

f

!
.

(17)

It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
done in Ref. [16], which used the Cooper-Frye pre-
scription [23] to make the replacement �
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R
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, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.
While Ref. [16] (which focused on D formation) arrived at

this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.
Experimental collaborations report the coalescence factor
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with p = P

d

/2 and where p

0 dN
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p

is the unpolarised 1-
proton spectrum. The two-particle correlation function is
constructed as
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
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On scales much larger than de Broglie wavelength, ULDM behaves like WIMP DM. 

Early structure formation: 

DM EoS achieved when H ~ m: 

Mpc scales enter the horizon. 
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On scales of order de Broglie wavelength, ULDM is markedly different than WIMPs. 
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On scales of order de Broglie wavelength, ULDM is markedly different than WIMPs. 
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On scales of order de Broglie wavelength, ULDM is markedly different than WIMPs. 
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On scales of order de Broglie wavelength, ULDM is markedly different than WIMPs. 
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple mergers. We merge
isolated soliton cores (t = 0) until a single bound halo forms, which is characterized by a stable soliton core at the centre of the halo and quantum fluctuations
throughout the domain. The volume rendering shows isocontours of density differing by factors of 10. Insets show projected density in log-space. The bottom
panel shows the time evolution of the total energy E, potential energy W, classical kinetic energy Kv and quantum gradient energy Kρ in the simulation.
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any given time are the exact solution for the given initial
conditions.
The smoothing radius ⇠ must be chosen to provide a

su�ciently smooth interpolation of the particle density.
We used ⇠ = 8�x where �x is the cell width at the
most refined level. We checked that increasing the radius
further does not systematically lead to di↵erent results.
However, the core mass in Fig. 6 can di↵er by up to 30%
owing to the approximations in the employed boundary
conditions.
Particles inside the Schrödinger domain are evolved

further but do not contribute to the density field that
sources gravity. Instead, the density of the Schrödinger
field | |2 acts as a source of gravity in this region.

A. Simulation Setup

We generate initial conditions with Music [45] us-
ing a transfer function for FDM generated by Axion-
CAMB [18]. All our simulations have a side length of
2.5 Mpc/h. We choose H

0

= 70 km/s/Mpc, ⌦
⇤

= 0.75,
⌦

m

= ⌦
FDM

= 0.25 and m
22

= m/(10�22 eV) = 2.5.
Starting from redshift z = 60 we sample phase space
with ⇠ 2.8⇥ 108 particles.
Employing the Poisson solver implemented in Enzo,

the initial particle phases S
i

are computed by solving

r · v = a�1r2S (8)

and interpolating from the grid to the particle positions.
Here, v is the velocity field generated by Music.
On top of the root grid with 5123 cells, two nested

static refinement levels with a side length of roughly
a quarter of the total domain are centered on the La-
grangian patch of a previously chosen halo. Three addi-
tional refinement levels with side lengths of 0.0625 Mpc/h
trace the position of the halo’s maximum density. Using
a refinement factor of two between levels, we resolve the
finest one with a cell width of 150 pc/h. In order to de-
termine the halo’s Lagrangian patch and the position of
its maximum density over time, we run low resolution
standard N-body simulations.
To minimize computational cost, the SP solver is ap-

plied only after a redshift of z ⇡ 7, where the particles
are still in the single stream regime and the gradient en-
ergy of  is negligible. At this redshift, the classical
wave function is constructed at the most refined level
and serves as an initial condition for the SP solver. Like
for the smoothing radii, initializing at earlier times has
no systematic e↵ects but produces statistical scattering
of the resulting core mass of 30%.
In total we have simulated seven halos with a mass

range between 8 ⇥ 108 M� and 7 ⇥ 1010 M�. For com-
parisons with standard CDM dynamics, we have rerun
five of these simulations with only the N-body solver us-
ing identical grid resolution and level setup.

9 kpc/h

FIG. 1. Volume rendering of a typical simulation. The large
box shows the N-body density in the full simulation domain,
the inlay shows the density of the Schrödinger field in the
central region of the indicated halo. The density thresholds
in the inlay are set to 0.75, 0.05 and 0.01 times the maximum
density.

III. RESULTS

For this work, we only consider halos that evolve with-
out major mergers. These are more abundant in FDM
cosmologies relative to CDM, owing to the low-mass cut-
o↵ in the initial power spectrum. Figure 1 shows a typical
snapshot of our simulations.

A. Averaged properties

Radial density profiles centered around the maximum
density of four representative halos are compared with
results from pure N-body runs in Fig. 2. Here, the virial
mass of a halo is the mass enclosed by the virial radius,
r
vir

, defined as the radius where the enclosed mean den-
sity is equal to ⇣(a)⇢̄ with [46]

⇣(a)⌦
m

(a) = 18⇡2 + 82 (⌦
m

(a)� 1)� 39 (⌦
m

(a)� 1)2 .
(9)

Taking radial density profiles already involves smoothing
the density by averaging over spherical shells. Conse-
quently, the granular structure of FDM halos which devi-
ates strongly from the smooth CDM density field on small
scales, is not visible apart from a small region around the
solitonic core. The radially averaged core profile agrees
well with previous results [6, 34, 36]. Among the five
halos in our sample that were rerun with a pure N-body

Veltmaat, Niemeyer, Schwabe,  
Phys.Rev. D98 (2018) 043509
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FIG. 2. (a) Time to Bose star formation in the cases of Gaus-
sian ( ) and �-peaked ( ) initial distributions. The �-graphs
are shifted downwards (⌧gr ! ⌧gr/10) for visualization pur-
poses. Lines depict fits by Eq. (4). (b) The same for isolated
miniclusters. (c), (d) Slices z̃ = const of the solution | ̃(t̃, x̃)|
describing formation of a Bose star in the center of a mini-
cluster; Ñ = 290, L̃ ⇡ 63.

that apart from the Coulomb logarithm ⇤ involves only
local parameters i.e. the boson number density n and
characteristic velocity v. So, up to weak logarithmic de-
pendence on the size L formation of the Bose star can be
regarded as a local process, with periodic box represent-
ing a central part of some DM halo. We will confirm this
intuition below.

We performed simulations of the gas with Gaussian
initial distribution at di↵erent L̃ and ñ. Our results for
⌧
gr

(circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v

0

and b ⇡ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial �-distribution, | 

p

|2 / �(|p| � mv
0

) (squares in
Fig. 2a). The new vales of ⌧

gr

are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical and justified ex-
pression for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [21] for the homogeneous isotropic Coulomb ensem-
ble,

@
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0
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h
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F̃ + (B̃F̃ � Ã)F̃ /2!̃
i
, (5)

see Supplementary material S1.4 for derivation. Here
the scattering integral in the right-hand side in-
volves Ã(!̃) =

R1
0

d!̃
1
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1
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), it is explicitly proportional to the

inverse relaxation time ⌧�1
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= 8⇡3n2G2(⇤ + a)/mv6
0

⇠
⌧�1

gr

. Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (t, !) (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ⇡ ⌧

gr

, where a ⇡ 5 is obtained
from the fit. We observe agreement in the kinetic region
!̃ � 2⇡2/L̃2 which confirms Eq. (5) at t < ⌧

gr

.
Note that unlike in the case of short-range interac-

tions [22] thermalization in Landau equation does not
proceed via power-law turbulent cascades [21], and we
do not observe them in Figs. 1e,f. Nevertheless, we think
that Eq. (5) provides the basis for analytic description of
gravitational Bose-Einstein condensation.

6. Miniclusters. So far we assumed that homoge-
neous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas forms
clumps at scales R & 2⇡/k

J

due to Jeans instabil-
ity, where k2

J

= 2⇡Gnm2h!�1i and the average is com-
puted with F (!). Starting numerical evolution from the
homogeneous ensemble with �-distributed momenta at
L > 2⇡/k

J

, we indeed observe formation of a virialized
minicluster in Fig. 2c. With time it remains stationary
until the Bose star appears in its center, see Fig. 2d and
movie [18]. Thus, formation of Bose stars is not specific
to finite boxes.

We checked that our kinetic expression for ⌧
gr

works
for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v2 ⇠ 4⇡GmnR2/3 in the
halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧

gr

⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧

gr

equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12, 13, 15].

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the ensemble. Due to com-
putational limitations we are able to observe only the
first decade of their mass increase that proceeds accord-
ing to the heuristic law M

s

(t) ' cv
0

(t/⌧
gr

� 1)1/2/Gm
with c = 3± 0.7. The ratio t/⌧

gr

in this expression sug-
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple mergers. We merge
isolated soliton cores (t = 0) until a single bound halo forms, which is characterized by a stable soliton core at the centre of the halo and quantum fluctuations
throughout the domain. The volume rendering shows isocontours of density differing by factors of 10. Insets show projected density in log-space. The bottom
panel shows the time evolution of the total energy E, potential energy W, classical kinetic energy Kv and quantum gradient energy Kρ in the simulation.
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any given time are the exact solution for the given initial
conditions.
The smoothing radius ⇠ must be chosen to provide a

su�ciently smooth interpolation of the particle density.
We used ⇠ = 8�x where �x is the cell width at the
most refined level. We checked that increasing the radius
further does not systematically lead to di↵erent results.
However, the core mass in Fig. 6 can di↵er by up to 30%
owing to the approximations in the employed boundary
conditions.
Particles inside the Schrödinger domain are evolved

further but do not contribute to the density field that
sources gravity. Instead, the density of the Schrödinger
field | |2 acts as a source of gravity in this region.

A. Simulation Setup

We generate initial conditions with Music [45] us-
ing a transfer function for FDM generated by Axion-
CAMB [18]. All our simulations have a side length of
2.5 Mpc/h. We choose H

0

= 70 km/s/Mpc, ⌦
⇤

= 0.75,
⌦

m

= ⌦
FDM

= 0.25 and m
22

= m/(10�22 eV) = 2.5.
Starting from redshift z = 60 we sample phase space
with ⇠ 2.8⇥ 108 particles.
Employing the Poisson solver implemented in Enzo,

the initial particle phases S
i

are computed by solving

r · v = a�1r2S (8)

and interpolating from the grid to the particle positions.
Here, v is the velocity field generated by Music.
On top of the root grid with 5123 cells, two nested

static refinement levels with a side length of roughly
a quarter of the total domain are centered on the La-
grangian patch of a previously chosen halo. Three addi-
tional refinement levels with side lengths of 0.0625 Mpc/h
trace the position of the halo’s maximum density. Using
a refinement factor of two between levels, we resolve the
finest one with a cell width of 150 pc/h. In order to de-
termine the halo’s Lagrangian patch and the position of
its maximum density over time, we run low resolution
standard N-body simulations.
To minimize computational cost, the SP solver is ap-

plied only after a redshift of z ⇡ 7, where the particles
are still in the single stream regime and the gradient en-
ergy of  is negligible. At this redshift, the classical
wave function is constructed at the most refined level
and serves as an initial condition for the SP solver. Like
for the smoothing radii, initializing at earlier times has
no systematic e↵ects but produces statistical scattering
of the resulting core mass of 30%.
In total we have simulated seven halos with a mass

range between 8 ⇥ 108 M� and 7 ⇥ 1010 M�. For com-
parisons with standard CDM dynamics, we have rerun
five of these simulations with only the N-body solver us-
ing identical grid resolution and level setup.

9 kpc/h

FIG. 1. Volume rendering of a typical simulation. The large
box shows the N-body density in the full simulation domain,
the inlay shows the density of the Schrödinger field in the
central region of the indicated halo. The density thresholds
in the inlay are set to 0.75, 0.05 and 0.01 times the maximum
density.

III. RESULTS

For this work, we only consider halos that evolve with-
out major mergers. These are more abundant in FDM
cosmologies relative to CDM, owing to the low-mass cut-
o↵ in the initial power spectrum. Figure 1 shows a typical
snapshot of our simulations.

A. Averaged properties

Radial density profiles centered around the maximum
density of four representative halos are compared with
results from pure N-body runs in Fig. 2. Here, the virial
mass of a halo is the mass enclosed by the virial radius,
r
vir

, defined as the radius where the enclosed mean den-
sity is equal to ⇣(a)⇢̄ with [46]

⇣(a)⌦
m

(a) = 18⇡2 + 82 (⌦
m

(a)� 1)� 39 (⌦
m

(a)� 1)2 .
(9)

Taking radial density profiles already involves smoothing
the density by averaging over spherical shells. Conse-
quently, the granular structure of FDM halos which devi-
ates strongly from the smooth CDM density field on small
scales, is not visible apart from a small region around the
solitonic core. The radially averaged core profile agrees
well with previous results [6, 34, 36]. Among the five
halos in our sample that were rerun with a pure N-body
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FIG. 2. (a) Time to Bose star formation in the cases of Gaus-
sian ( ) and �-peaked ( ) initial distributions. The �-graphs
are shifted downwards (⌧gr ! ⌧gr/10) for visualization pur-
poses. Lines depict fits by Eq. (4). (b) The same for isolated
miniclusters. (c), (d) Slices z̃ = const of the solution | ̃(t̃, x̃)|
describing formation of a Bose star in the center of a mini-
cluster; Ñ = 290, L̃ ⇡ 63.

that apart from the Coulomb logarithm ⇤ involves only
local parameters i.e. the boson number density n and
characteristic velocity v. So, up to weak logarithmic de-
pendence on the size L formation of the Bose star can be
regarded as a local process, with periodic box represent-
ing a central part of some DM halo. We will confirm this
intuition below.

We performed simulations of the gas with Gaussian
initial distribution at di↵erent L̃ and ñ. Our results for
⌧
gr

(circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v

0

and b ⇡ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial �-distribution, | 

p

|2 / �(|p| � mv
0

) (squares in
Fig. 2a). The new vales of ⌧

gr

are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical and justified ex-
pression for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [21] for the homogeneous isotropic Coulomb ensem-
ble,
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see Supplementary material S1.4 for derivation. Here
the scattering integral in the right-hand side in-
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R1
0

d!̃
1

min3/2(!̃, !̃
1

)F̃ 2(!̃
1

)/(3!̃
1

!̃1/2),

B̃(!̃) =
R
!̃

0

d!̃
1

F̃ (!̃
1

), it is explicitly proportional to the

inverse relaxation time ⌧�1
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gr

. Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (t, !) (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ⇡ ⌧

gr

, where a ⇡ 5 is obtained
from the fit. We observe agreement in the kinetic region
!̃ � 2⇡2/L̃2 which confirms Eq. (5) at t < ⌧

gr

.
Note that unlike in the case of short-range interac-

tions [22] thermalization in Landau equation does not
proceed via power-law turbulent cascades [21], and we
do not observe them in Figs. 1e,f. Nevertheless, we think
that Eq. (5) provides the basis for analytic description of
gravitational Bose-Einstein condensation.

6. Miniclusters. So far we assumed that homoge-
neous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas forms
clumps at scales R & 2⇡/k

J

due to Jeans instabil-
ity, where k2

J

= 2⇡Gnm2h!�1i and the average is com-
puted with F (!). Starting numerical evolution from the
homogeneous ensemble with �-distributed momenta at
L > 2⇡/k

J

, we indeed observe formation of a virialized
minicluster in Fig. 2c. With time it remains stationary
until the Bose star appears in its center, see Fig. 2d and
movie [18]. Thus, formation of Bose stars is not specific
to finite boxes.

We checked that our kinetic expression for ⌧
gr

works
for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v2 ⇠ 4⇡GmnR2/3 in the
halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧

gr

⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧

gr

equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12, 13, 15].

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the ensemble. Due to com-
putational limitations we are able to observe only the
first decade of their mass increase that proceeds accord-
ing to the heuristic law M

s

(t) ' cv
0

(t/⌧
gr

� 1)1/2/Gm
with c = 3± 0.7. The ratio t/⌧

gr

in this expression sug-
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
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between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
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Some facts about solitons 

2

In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
1p
2m

e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]

i@t = � 1

2m
r2 +m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the anzats2
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On scales of order de Broglie wavelength:

2

In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.

II. SOLITON PROPERTIES: ANALYTIC
CONSIDERATIONS

Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
1p
2m

e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]

i@t = � 1

2m
r2 +m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the anzats2
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.
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Our analysis in this section parallels earlier discussion
in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
We consider a real, massive, free1 scalar field �, satisfy-

ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as

�(x, t) =
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e�imt (x, t) + cc, (2)

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]
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1

⇡ �0.69. (9)

The mass of the �
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Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
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(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by
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(�r), (12)
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also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are
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1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by
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The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is
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= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
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This leads to a relation for an isolated soliton [4, 5],
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Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3
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. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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In this work we consider the soliton–host halo relations,
found by di↵erent numerical simulation groups [9–13].
Our first observation is that properties of the analytic
soliton solution can provide important insight on the nu-
merical results. We show that: (i) the soliton–host halo
relation, reported in [11], essentially attributes the total
energy (kinetic+gravitational) of the halo to the domi-
nant soliton. This energetic dominance of the soliton is
unlikely to hold for realistic galaxies above a certain size.
(ii) the soliton–host halo relation, reported in [9], essen-
tially equates the energy per unit mass in the soliton to
the energy per unit mass in the virial halo. This relation
could apply to real galaxies.

Assuming that the soliton–host halo relation of [9, 10]
is correct, we analyse its implications. We show that the
equality of energy per unit mass between the soliton and
the halo leads to a strong prediction: the peak circular ve-
locity characterising the host halo on large scales (few kpc
for typical 109 � 1010 M� dwarf galaxies) should repeat
itself in the core on small scales (< 1 kpc), insensitive to
the details of the host halo density profile. This implies
an observational constraint that can be tested without
free parameters. Applying this test to high resolution ro-
tation curves of dwarf galaxies from [24] and [25], we find
that ULDM in the mass rangem ⇠ 10�22�10�21 eV is in
strong tension with the data. As a result, if the soliton–
host halo relation of [9, 10] is correct, ULDM is excluded
below ⇠ 10�21 eV and cannot play a role in solving the
small scale puzzles of ⇤CDM.

The outline of this paper is as follows. In Sec. II we
review some basic properties of the soliton. In Sec. III
we discuss the soliton–host halo relations found in sim-
ulations, and show that these relations can be under-
stood in terms of fundamental properties of the soliton
and the halo. The simulations of [9, 10] are considered
in Sec. IIIA; they can be summarised by the statement
(E/M)|

soliton

= (E/M)|
halo

, where E is the total energy
(kinetic+gravitational, within the virial radius, for the
halo) and M is the mass (again within the virial radius,
for the halo). The simulations of [11] are considered in
Sec. III B; their main result can be summarised by the
statement E|

soliton

= E|
halo

. We argue that this result
is unlikely to represent realistic galaxies above a certain
size.

In Sec. IV, assuming that the soliton–host halo rela-
tion of [9, 10] is correct, we work out its observational
consequences. We show that in ULDM galaxies satisfy-
ing this relation, the rotation velocity in the inner core
should be approximately as high as the peak rotation ve-
locity in the outer part of the galaxy. In Sec. IVA we
compare this analysis to numerical profiles taken directly
from the published simulation results, finding good agree-
ment. In Sec. IVB we compare this prediction to dwarf
galaxy data from [24], finding tension with the data for
m ⇠ 10�22 � 10�21 eV. An important analysis is con-
tained in App. A, where we analyse the SPARC [25] ro-
tation curve data base, showing that halo-to-halo scatter
cannot resolve the discrepancy.

Our main results are unlikely to be a↵ected by baryonic
physics: the discrepancy between ULDM (with soliton–
host halo relation) and dwarf galaxy data is too large.
Nevertheless, for completeness, in Sec. V we calculate
how baryonic e↵ects could modify the soliton solution.
In Sec. VA we consider a smooth fixed distribution of
baryonic mass, deferring the case of a super-massive
black hole (SMBH) to App. B. An interesting case study,
where baryonic e↵ects would be important for an ULDM
soliton satisfying the soliton–host halo relation, is the
Milky-Way (MW) galaxy. We study ULDM in the MW
in Sec. VB, showing that a dedicated analysis of inner
MW kinematics – including simultaneous modelling of
the baryonic mass and the soliton – could potentially
test ULDM for m & 10�19 eV.
In Sec. VI we conclude and compare our results to

related results from previous literature. In Sec. VII we
present a brief summary.
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in, e.g. [4–6], which we expand to point out relevant prop-
erties of the soliton that help to understand results from
numerical simulations.
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ing the Klein-Gordon equation of motion and minimally
coupled to gravity. In the non-relativistic regime it is
convenient to decompose � as
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |, and that satis-
fies the Schroedinger-Poisson (SP) equations [27]
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described by the anzats2

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1⇥ 1014
⇣ m

10�22 eV

⌘
2

�2 M�/pc
3.

1 Analyses of interacting fields can be found in, e.g. [4, 5, 26].
2 Mpl = 1/

p
G.



Continuous family of ground state solutions,  
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
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. A numerical calculation gives [4–6]
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Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
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10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
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(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by
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also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��
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A mnemonic for the numerical value of � is given by
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The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
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3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,
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Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�
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| ⌧ 1, consistent with
the non-relativisitc approximation.
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with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have
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Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =
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Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
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⇡ 0.23�2, (25)

which can also be written as
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
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Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)
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Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.
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Formally, we are allowed to select any positive value
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for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
⇣ m

10�22 eV
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◆ 1
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M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4
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◆ 1
3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2
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(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
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matching between the inner soliton profile and the host
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are actually connected to properties of a single, isolated,
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via

3

Note that on the LHS of Eq. (12),
E

M

���
soliton

is defined

for the self-gravitating soliton without including the gravi-
tational potential induced by the large-scale halo. The halo
gravitational potential �h, defined to vanish at infinity, is
approximately constant throughout the halo inner region
where the soliton occurs and can be estimated as �h ⇠
10

E

M

���
halo

, up toO(1) corrections depending on the detailed

shape of the halo [17]. If we were to include the correc-
tion to the soliton energy due to this constant background

potential, it would change:
E

M

���
soliton

! E

M

���
soliton

+ �h.

This discussion suggests that the soliton–host halo relation
is better expressed using kinetic energy, rather than total
energy:

K

M

���
soliton

=

K

M

���
halo

. (13)

Because �h is approximately constant over the region where
the soliton is supported, the soliton shape is not distorted
and its kinetic energy is not modified from its value for
the self-gravitating solution. This means that for massive
halos in DM-only simulations, Eq. (13) and Eq. (12) are
indistinguishable.

Eq. (13) and Eq. (12) become distinguishable when we
turn on �b 6= 0, with a nontrivial spatial profile such that
�b is not constant throughout the large-scale halo.

III. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background of
a gravitational potential �b, chosen to roughly mimic the
inner region of the MW. For concreteness, throughout this
section we set m = 10

�22 eV. Results for m = 10

�21 eV
are collected in App. E 1.

The dominant contributions to the stellar mass profile of
the MW inner few hundred pc were described in the pho-
tometric analysis of Ref. [31] as a spherical nuclear stellar
cluster (NSC) and a nuclear stellar disk (NSD)3.

The NSC density profile was modelled as

⇢NSC(r) =

⇢̄NSC

1 +

⇣
r

rNSC

⌘nNSC
✓ (RNSC � r) , (14)

where ⇢̄NSC = 3.3 ⇥ 10

6
M

�

/pc3, rNSC = 0.22 pc,
RNSC = 200 pc. The index nNSC = 2 for r < r0 and

3 See Secs. 5.2-5.5 and Tab. 7 in [31]. In addition to the stellar
components, dynamics in the central ⇠ 1 pc is dominated by a
super-massive black hole (SMBH) with mass MBH ⇡ 4⇥106 M

�

.
Here we omit the SMBH contribution, which was studied in [17] and
shown to have negligible impact on the soliton for m . 10�20 eV.
We note that the numerical code in App. A is capable of handling
the SMBH contribution via the procedure described in App. A 1.
An interstellar gas torus at scale radius of ⇠ 100 pc contributes
⇠ 2 ⇥ 107 M

�

and is also neglected here in comparison to the
stellar components.

nNSC = 3 for r � r0, with r0 = 6 pc. With these parame-
ters we have MNSC ' 5.1⇥ 10

7 M
�

.
The NSD density profile was modelled as

⇢NSD = ⇢̄NSD exp

✓
� |z|
hz

� ⇢

h⇢

◆
, (15)

where h⇢ = 250 pc, hz = 50 pc, and ⇢̄NSD = 70 M

�

/pc3

is defined such that the total mass of the NSD is set to
MNSD ' 2.8⇥ 10

9 M
�

.
In Fig. 1 we plot the soliton mass vs. �, which allows us

to access di↵erent solutions. For � & 10

�3 we retrieve the
self-gravitating soliton result, shown by the dashed line. For
smaller � we find M / �

4 [17]4. Fig. 1, which accounts
for the non-spherical stellar potential, can be compared to
Fig. 16 in Ref. [17] which considered a spherically-averaged
approximation to the same stellar mass model. While the
trend is similar, there is an O(1) di↵erence in the M vs.
� relation in the phenomenologically interesting range � ⇠
10

�4 � 10

�3.
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FIG. 1: Soliton M-� relation in the stellar-induced background
gravitational potential of the inner MW. For a halo mass Mh =
1012 M

�

, the soliton host-halo relation found in DM-only numer-
ical simulations predicts � = 4.9 ⇥ 10�4. The ULDM particle
mass is m = 10�22 eV.

In Fig. 2 we study the deformation in the soliton shape
caused by the stellar mass distribution. We fix the soliton
mass to M ⇡ 1.35 ⇥ 10

9 M
�

. The contour lines show
the soliton mass density normalised to a reference value
of 23.6 M

�

/pc3. Solid lines show the result for the self-
gravitating soliton and dashed lines show the result obtained
when �b is included in the SPE. The baryonic potential
contracts the soliton profile towards the origin and deforms
it’s shape, that is no longer spherically symmetric.

4 This can be understood as follows. For small � the external potential
dominates and the SPE reduce to r2

� ⇡ 2(�b � �)�. Since this
equation is homogeneous and linear in �, the normalisation at ~x = 0
is a multiplicative factor and M /

R
d

3
x�

2 / �

4.
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The circular velocity rises as V
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1
2 at large r. The peak of V
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x
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pc (28)
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and the peak velocity is

maxV
circ,� ⇡ 2.3⇥ 105 � km/s (29)
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109 M�

◆
km/s.

III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density

xc ⇡ 160

✓
Mh

1012 M�

◆� 1
3 ⇣ m
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⌘�1

pc, (30)
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8
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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in the numerical simulations4. In Fig. 1 we collect rep-
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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(estimated) radially-averaged mass profile of the Milky Way
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WIMP dark matter:  

thought to affect outer part of rotation curve
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cut. Of the 175 galaxies in [25], 160 pass the M
gal

cut
for m = 10�22 eV, and 174 pass it for m = 10�21 eV.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). Our first pass
on the data includes only galaxies for which the predicted
soliton is resolved, namely, x

peak,� from Eq. (50), with
maxV

circ,� = maxV
circ,h, lies within the rotation curve

data. For these galaxies, we compute from data the ratio

V
circ, obs(xpeak,�)

maxV
circ,h

. (A1)

Here, V
circ, obs(xpeak,�) is the measured velocity at the

expected soliton peak position. We compute it by av-
eraging the two data points corresponding to measured
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FIG. 10. UGC 1281.

FIG. 11. UGC 4325.

radius just below and just above x
peak,�.

The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

FIG. 12. NGC 1560.

FIG. 13. NGC 100.

v [km/s]

position along major axis [arcmin]

Bosma & de Block 2002 
HI+Halpha

T ⇠ (mMpl)
1
2

⇠
⇣ m

10�22 eV

⌘ 1
2

keV (1)

z ⇠ 106
⇣ m

10�22 eV

⌘ 1
2

(2)

⌦c/⌦b ⇠ O(1) (3)

v2 =
GM

R
=

4⇡

3
G �⇢

✓
�dB

2

◆2

(4)

�dB =
2⇡

mv
=

2⇡

kdB

=
1

⇣
G �⇢m2

12⇡

⌘ 1
2
�dB

(5)

�dB =

✓
G �⇢m2

12⇡

◆� 1
4

⇡ 5.8
⇣ m

10�22 eV

⌘� 1
2

✓
�⇢/⇢

10�5

◆� 1
4
✓
1 + z

1000

◆� 3
4

kpc (proper!) (6)

kdB =
�
192⇡4G �⇢m2

� 1
4 (7)

GM(✓⇤)

c2D
= 3.6± 0.2 µarcsec (8)

GMBH

c2D
= 3.8± 0.4 µarcsec (9)

100 M� ⇠ 1068 eV (10)

1. derive Friedmann Eqs

2. derive redshift relation

3. derive thermal correction to Higgs potential from QFT perspective

m = 10�22 eV (11)

10�21 eV (12)

10�20 eV (13)

1



14

cut. Of the 175 galaxies in [25], 160 pass the M
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cut
for m = 10�22 eV, and 174 pass it for m = 10�21 eV.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). Our first pass
on the data includes only galaxies for which the predicted
soliton is resolved, namely, x

peak,� from Eq. (50), with
maxV

circ,� = maxV
circ,h, lies within the rotation curve

data. For these galaxies, we compute from data the ratio

V
circ, obs(xpeak,�)

maxV
circ,h
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Here, V
circ, obs(xpeak,�) is the measured velocity at the
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The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

FIG. 12. NGC 1560.

FIG. 13. NGC 100.

14

cut. Of the 175 galaxies in [25], 160 pass the M
gal

cut
for m = 10�22 eV, and 174 pass it for m = 10�21 eV.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). Our first pass
on the data includes only galaxies for which the predicted
soliton is resolved, namely, x

peak,� from Eq. (50), with
maxV

circ,� = maxV
circ,h, lies within the rotation curve

data. For these galaxies, we compute from data the ratio

V
circ, obs(xpeak,�)

maxV
circ,h

. (A1)

Here, V
circ, obs(xpeak,�) is the measured velocity at the

expected soliton peak position. We compute it by av-
eraging the two data points corresponding to measured

FIG. 10. UGC 1281.

FIG. 11. UGC 4325.

radius just below and just above x
peak,�.

The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

0 2 4 6 8
x [kpc]0

20

40

60

80

100
Vcirc [km/s]

NGC 1560

m=10-22eV

0 2 4 6 8
x [kpc]0

20

40

60

80

100
Vcirc [km/s]

NGC 1560

m=10-21eV

FIG. 12. NGC 1560.

FIG. 13. NGC 100.

14

cut. Of the 175 galaxies in [25], 160 pass the M
gal

cut
for m = 10�22 eV, and 174 pass it for m = 10�21 eV.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). Our first pass
on the data includes only galaxies for which the predicted
soliton is resolved, namely, x

peak,� from Eq. (50), with
maxV

circ,� = maxV
circ,h, lies within the rotation curve

data. For these galaxies, we compute from data the ratio

V
circ, obs(xpeak,�)

maxV
circ,h

. (A1)

Here, V
circ, obs(xpeak,�) is the measured velocity at the

expected soliton peak position. We compute it by av-
eraging the two data points corresponding to measured

FIG. 10. UGC 1281.

0 1 2 3 4 5
x [kpc]0

20

40

60

80

100

120

140

Vcirc [km/s]

UGC 4325

m=10-22eV

FIG. 11. UGC 4325.

radius just below and just above x
peak,�.

The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

FIG. 12. NGC 1560.

FIG. 13. NGC 100.

14

cut. Of the 175 galaxies in [25], 160 pass the M
gal

cut
for m = 10�22 eV, and 174 pass it for m = 10�21 eV.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). Our first pass
on the data includes only galaxies for which the predicted
soliton is resolved, namely, x

peak,� from Eq. (50), with
maxV

circ,� = maxV
circ,h, lies within the rotation curve

data. For these galaxies, we compute from data the ratio

V
circ, obs(xpeak,�)

maxV
circ,h

. (A1)

Here, V
circ, obs(xpeak,�) is the measured velocity at the

expected soliton peak position. We compute it by av-
eraging the two data points corresponding to measured

FIG. 10. UGC 1281.

FIG. 11. UGC 4325.

radius just below and just above x
peak,�.

The results of this first pass on the data are shown in
Fig. 14. 46 galaxies passed the resolved soliton cut for
m = 10�22 eV, and 4 galaxies pass it for m = 10�21 eV.

Including only galaxies with a resolved soliton causes
us to loose many relevant rotation curves, with discrim-
inatory power. To overcome this, yet maintain a simple
analysis, we perform a second pass on the data. Here,
we allow galaxies with unresolved soliton, as long as
the lowest radius data point is located not farther than
3 ⇥ x

peak,�. We need to correct for the fact that the
soliton peak velocity is outside of the measurement res-
olution. To do this, we modify the velocity observable

FIG. 12. NGC 1560.

0 2 4 6 8
x [kpc]0

20

40

60

80

100

120
Vcirc [km/s]

NGC 100

m=10-22eV

FIG. 13. NGC 100.

(dozens of other galaxies look similar)

T ⇠ (mMpl)
1
2

⇠
⇣ m

10�22 eV

⌘ 1
2

keV (1)

z ⇠ 106
⇣ m

10�22 eV

⌘ 1
2

(2)

⌦c/⌦b ⇠ O(1) (3)

v2 =
GM

R
=

4⇡

3
G �⇢

✓
�dB

2

◆2

(4)

�dB =
2⇡

mv
=

2⇡

kdB

=
1

⇣
G �⇢m2

12⇡

⌘ 1
2
�dB

(5)

�dB =

✓
G �⇢m2

12⇡

◆� 1
4

⇡ 5.8
⇣ m

10�22 eV

⌘� 1
2

✓
�⇢/⇢

10�5

◆� 1
4
✓
1 + z

1000

◆� 3
4

kpc (proper!) (6)

kdB =
�
192⇡4G �⇢m2

� 1
4 (7)

GM(✓⇤)

c2D
= 3.6± 0.2 µarcsec (8)

GMBH

c2D
= 3.8± 0.4 µarcsec (9)

100 M� ⇠ 1068 eV (10)

1. derive Friedmann Eqs

2. derive redshift relation

3. derive thermal correction to Higgs potential from QFT perspective

m = 10�22 eV (11)

10�21 eV (12)

10�20 eV (13)

1



The Milky Way: nuclear bulge vs. soliton 

10-4 10-3 10-2 10-1 100 101 102 103 104 105

r [pc]

105

106

107

108

109

1010

1011

1012

en
clo

se
d 

m
as

s 
[M

]

m=10-19 eV
m=10-20 eV
m=10-21 eV
m=10-22 eV
Ghez 2003
McGinn 1989
Fritz 2016
Lindqvist 1992
Schodel 2014
Sofue 2009
Sofue 2012
Sofue 2013
Chatzopoulos 2015
Deguchi 2004
Oh 2009
Trippe 2008
Gilessen 2008

NFW fit,
Piffl (2015)



The Milky Way: nuclear bulge vs. soliton 

10-4 10-2 100 102 104

r [pc]

105

106

107

108

109

1010

1011

1012

en
clo

se
d 

m
as

s 
[M

]

m=10-19 eV
m=10-20 eV
m=10-21 eV
m=10-22 eV
Ghez 2003
McGinn 1989
Fritz 2016
Lindqvist 1992
Schodel 2014
Sofue 2009
Sofue 2012
Sofue 2013
Chatzopoulos 2015
Deguchi 2004
Oh 2009
Trippe 2008
Gilessen 2008

Nuclear Bulge (disc+star cluster)
from photometry, Launhardt (2002)

NFW fit,
Piffl (2015)

there are probably about 10^9 stars in there…



  

Inner part of simulated galaxies forms a core 

Schive et al, Nature Phys. 10 (2014) 496-499

ULDM in galaxies

4564 P. Mocz et al.

Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple mergers. We merge
isolated soliton cores (t = 0) until a single bound halo forms, which is characterized by a stable soliton core at the centre of the halo and quantum fluctuations
throughout the domain. The volume rendering shows isocontours of density differing by factors of 10. Insets show projected density in log-space. The bottom
panel shows the time evolution of the total energy E, potential energy W, classical kinetic energy Kv and quantum gradient energy Kρ in the simulation.
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any given time are the exact solution for the given initial
conditions.
The smoothing radius ⇠ must be chosen to provide a

su�ciently smooth interpolation of the particle density.
We used ⇠ = 8�x where �x is the cell width at the
most refined level. We checked that increasing the radius
further does not systematically lead to di↵erent results.
However, the core mass in Fig. 6 can di↵er by up to 30%
owing to the approximations in the employed boundary
conditions.
Particles inside the Schrödinger domain are evolved

further but do not contribute to the density field that
sources gravity. Instead, the density of the Schrödinger
field | |2 acts as a source of gravity in this region.

A. Simulation Setup

We generate initial conditions with Music [45] us-
ing a transfer function for FDM generated by Axion-
CAMB [18]. All our simulations have a side length of
2.5 Mpc/h. We choose H

0

= 70 km/s/Mpc, ⌦
⇤

= 0.75,
⌦

m

= ⌦
FDM

= 0.25 and m
22

= m/(10�22 eV) = 2.5.
Starting from redshift z = 60 we sample phase space
with ⇠ 2.8⇥ 108 particles.
Employing the Poisson solver implemented in Enzo,

the initial particle phases S
i

are computed by solving

r · v = a�1r2S (8)

and interpolating from the grid to the particle positions.
Here, v is the velocity field generated by Music.
On top of the root grid with 5123 cells, two nested

static refinement levels with a side length of roughly
a quarter of the total domain are centered on the La-
grangian patch of a previously chosen halo. Three addi-
tional refinement levels with side lengths of 0.0625 Mpc/h
trace the position of the halo’s maximum density. Using
a refinement factor of two between levels, we resolve the
finest one with a cell width of 150 pc/h. In order to de-
termine the halo’s Lagrangian patch and the position of
its maximum density over time, we run low resolution
standard N-body simulations.
To minimize computational cost, the SP solver is ap-

plied only after a redshift of z ⇡ 7, where the particles
are still in the single stream regime and the gradient en-
ergy of  is negligible. At this redshift, the classical
wave function is constructed at the most refined level
and serves as an initial condition for the SP solver. Like
for the smoothing radii, initializing at earlier times has
no systematic e↵ects but produces statistical scattering
of the resulting core mass of 30%.
In total we have simulated seven halos with a mass

range between 8 ⇥ 108 M� and 7 ⇥ 1010 M�. For com-
parisons with standard CDM dynamics, we have rerun
five of these simulations with only the N-body solver us-
ing identical grid resolution and level setup.

9 kpc/h

FIG. 1. Volume rendering of a typical simulation. The large
box shows the N-body density in the full simulation domain,
the inlay shows the density of the Schrödinger field in the
central region of the indicated halo. The density thresholds
in the inlay are set to 0.75, 0.05 and 0.01 times the maximum
density.

III. RESULTS

For this work, we only consider halos that evolve with-
out major mergers. These are more abundant in FDM
cosmologies relative to CDM, owing to the low-mass cut-
o↵ in the initial power spectrum. Figure 1 shows a typical
snapshot of our simulations.

A. Averaged properties

Radial density profiles centered around the maximum
density of four representative halos are compared with
results from pure N-body runs in Fig. 2. Here, the virial
mass of a halo is the mass enclosed by the virial radius,
r
vir

, defined as the radius where the enclosed mean den-
sity is equal to ⇣(a)⇢̄ with [46]

⇣(a)⌦
m

(a) = 18⇡2 + 82 (⌦
m

(a)� 1)� 39 (⌦
m

(a)� 1)2 .
(9)

Taking radial density profiles already involves smoothing
the density by averaging over spherical shells. Conse-
quently, the granular structure of FDM halos which devi-
ates strongly from the smooth CDM density field on small
scales, is not visible apart from a small region around the
solitonic core. The radially averaged core profile agrees
well with previous results [6, 34, 36]. Among the five
halos in our sample that were rerun with a pure N-body

Veltmaat, Niemeyer, Schwabe,  
Phys.Rev. D98 (2018) 043509

3

FIG. 2. (a) Time to Bose star formation in the cases of Gaus-
sian ( ) and �-peaked ( ) initial distributions. The �-graphs
are shifted downwards (⌧gr ! ⌧gr/10) for visualization pur-
poses. Lines depict fits by Eq. (4). (b) The same for isolated
miniclusters. (c), (d) Slices z̃ = const of the solution | ̃(t̃, x̃)|
describing formation of a Bose star in the center of a mini-
cluster; Ñ = 290, L̃ ⇡ 63.

that apart from the Coulomb logarithm ⇤ involves only
local parameters i.e. the boson number density n and
characteristic velocity v. So, up to weak logarithmic de-
pendence on the size L formation of the Bose star can be
regarded as a local process, with periodic box represent-
ing a central part of some DM halo. We will confirm this
intuition below.

We performed simulations of the gas with Gaussian
initial distribution at di↵erent L̃ and ñ. Our results for
⌧
gr

(circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v

0

and b ⇡ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial �-distribution, | 

p

|2 / �(|p| � mv
0

) (squares in
Fig. 2a). The new vales of ⌧

gr

are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical and justified ex-
pression for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [21] for the homogeneous isotropic Coulomb ensem-
ble,
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i
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see Supplementary material S1.4 for derivation. Here
the scattering integral in the right-hand side in-
volves Ã(!̃) =

R1
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), it is explicitly proportional to the

inverse relaxation time ⌧�1

0

= 8⇡3n2G2(⇤ + a)/mv6
0

⇠
⌧�1

gr

. Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (t, !) (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ⇡ ⌧

gr

, where a ⇡ 5 is obtained
from the fit. We observe agreement in the kinetic region
!̃ � 2⇡2/L̃2 which confirms Eq. (5) at t < ⌧

gr

.
Note that unlike in the case of short-range interac-

tions [22] thermalization in Landau equation does not
proceed via power-law turbulent cascades [21], and we
do not observe them in Figs. 1e,f. Nevertheless, we think
that Eq. (5) provides the basis for analytic description of
gravitational Bose-Einstein condensation.

6. Miniclusters. So far we assumed that homoge-
neous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas forms
clumps at scales R & 2⇡/k

J

due to Jeans instabil-
ity, where k2

J

= 2⇡Gnm2h!�1i and the average is com-
puted with F (!). Starting numerical evolution from the
homogeneous ensemble with �-distributed momenta at
L > 2⇡/k

J

, we indeed observe formation of a virialized
minicluster in Fig. 2c. With time it remains stationary
until the Bose star appears in its center, see Fig. 2d and
movie [18]. Thus, formation of Bose stars is not specific
to finite boxes.

We checked that our kinetic expression for ⌧
gr

works
for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v2 ⇠ 4⇡GmnR2/3 in the
halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧

gr

⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧

gr

equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12, 13, 15].

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the ensemble. Due to com-
putational limitations we are able to observe only the
first decade of their mass increase that proceeds accord-
ing to the heuristic law M

s

(t) ' cv
0

(t/⌧
gr

� 1)1/2/Gm
with c = 3± 0.7. The ratio t/⌧

gr

in this expression sug-
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ULDM has more (unbound) substructure than CDM 

Schive et al, Nature Phys. 10 (2014) 496-499
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple mergers. We merge
isolated soliton cores (t = 0) until a single bound halo forms, which is characterized by a stable soliton core at the centre of the halo and quantum fluctuations
throughout the domain. The volume rendering shows isocontours of density differing by factors of 10. Insets show projected density in log-space. The bottom
panel shows the time evolution of the total energy E, potential energy W, classical kinetic energy Kv and quantum gradient energy Kρ in the simulation.
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any given time are the exact solution for the given initial
conditions.
The smoothing radius ⇠ must be chosen to provide a

su�ciently smooth interpolation of the particle density.
We used ⇠ = 8�x where �x is the cell width at the
most refined level. We checked that increasing the radius
further does not systematically lead to di↵erent results.
However, the core mass in Fig. 6 can di↵er by up to 30%
owing to the approximations in the employed boundary
conditions.
Particles inside the Schrödinger domain are evolved

further but do not contribute to the density field that
sources gravity. Instead, the density of the Schrödinger
field | |2 acts as a source of gravity in this region.

A. Simulation Setup

We generate initial conditions with Music [45] us-
ing a transfer function for FDM generated by Axion-
CAMB [18]. All our simulations have a side length of
2.5 Mpc/h. We choose H

0

= 70 km/s/Mpc, ⌦
⇤

= 0.75,
⌦

m

= ⌦
FDM

= 0.25 and m
22

= m/(10�22 eV) = 2.5.
Starting from redshift z = 60 we sample phase space
with ⇠ 2.8⇥ 108 particles.
Employing the Poisson solver implemented in Enzo,

the initial particle phases S
i

are computed by solving

r · v = a�1r2S (8)

and interpolating from the grid to the particle positions.
Here, v is the velocity field generated by Music.
On top of the root grid with 5123 cells, two nested

static refinement levels with a side length of roughly
a quarter of the total domain are centered on the La-
grangian patch of a previously chosen halo. Three addi-
tional refinement levels with side lengths of 0.0625 Mpc/h
trace the position of the halo’s maximum density. Using
a refinement factor of two between levels, we resolve the
finest one with a cell width of 150 pc/h. In order to de-
termine the halo’s Lagrangian patch and the position of
its maximum density over time, we run low resolution
standard N-body simulations.
To minimize computational cost, the SP solver is ap-

plied only after a redshift of z ⇡ 7, where the particles
are still in the single stream regime and the gradient en-
ergy of  is negligible. At this redshift, the classical
wave function is constructed at the most refined level
and serves as an initial condition for the SP solver. Like
for the smoothing radii, initializing at earlier times has
no systematic e↵ects but produces statistical scattering
of the resulting core mass of 30%.
In total we have simulated seven halos with a mass

range between 8 ⇥ 108 M� and 7 ⇥ 1010 M�. For com-
parisons with standard CDM dynamics, we have rerun
five of these simulations with only the N-body solver us-
ing identical grid resolution and level setup.
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FIG. 1. Volume rendering of a typical simulation. The large
box shows the N-body density in the full simulation domain,
the inlay shows the density of the Schrödinger field in the
central region of the indicated halo. The density thresholds
in the inlay are set to 0.75, 0.05 and 0.01 times the maximum
density.

III. RESULTS

For this work, we only consider halos that evolve with-
out major mergers. These are more abundant in FDM
cosmologies relative to CDM, owing to the low-mass cut-
o↵ in the initial power spectrum. Figure 1 shows a typical
snapshot of our simulations.

A. Averaged properties

Radial density profiles centered around the maximum
density of four representative halos are compared with
results from pure N-body runs in Fig. 2. Here, the virial
mass of a halo is the mass enclosed by the virial radius,
r
vir

, defined as the radius where the enclosed mean den-
sity is equal to ⇣(a)⇢̄ with [46]
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(9)

Taking radial density profiles already involves smoothing
the density by averaging over spherical shells. Conse-
quently, the granular structure of FDM halos which devi-
ates strongly from the smooth CDM density field on small
scales, is not visible apart from a small region around the
solitonic core. The radially averaged core profile agrees
well with previous results [6, 34, 36]. Among the five
halos in our sample that were rerun with a pure N-body
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FIG. 2. (a) Time to Bose star formation in the cases of Gaus-
sian ( ) and �-peaked ( ) initial distributions. The �-graphs
are shifted downwards (⌧gr ! ⌧gr/10) for visualization pur-
poses. Lines depict fits by Eq. (4). (b) The same for isolated
miniclusters. (c), (d) Slices z̃ = const of the solution | ̃(t̃, x̃)|
describing formation of a Bose star in the center of a mini-
cluster; Ñ = 290, L̃ ⇡ 63.

that apart from the Coulomb logarithm ⇤ involves only
local parameters i.e. the boson number density n and
characteristic velocity v. So, up to weak logarithmic de-
pendence on the size L formation of the Bose star can be
regarded as a local process, with periodic box represent-
ing a central part of some DM halo. We will confirm this
intuition below.

We performed simulations of the gas with Gaussian
initial distribution at di↵erent L̃ and ñ. Our results for
⌧
gr

(circles in Fig. 2a) cover two orders of magnitude, but
they are nevertheless well fitted by Eq. (4) with v = v

0

and b ⇡ 0.9 (upper line in Fig. 2a). To confirm that
Eq. (4) is universal, we repeated the calculations for the
initial �-distribution, | 

p

|2 / �(|p| � mv
0

) (squares in
Fig. 2a). The new vales of ⌧

gr

are still described by
Eq. (4), albeit with slightly di↵erent coe�cient b ⇡ 0.6.
We conclude that Eq. (4) is a practical and justified ex-
pression for the time of Bose star formation.

5. Kinetics. Let us show that evolution of F (t, !) in
Fig. 1e is indeed governed by the Landau kinetic equa-
tion [21] for the homogeneous isotropic Coulomb ensem-
ble,

@
t

F̃ = ⌧�1

0

@
!̃

h
Ã@

!̃

F̃ + (B̃F̃ � Ã)F̃ /2!̃
i
, (5)

see Supplementary material S1.4 for derivation. Here
the scattering integral in the right-hand side in-
volves Ã(!̃) =

R1
0

d!̃
1

min3/2(!̃, !̃
1

)F̃ 2(!̃
1

)/(3!̃
1

!̃1/2),

B̃(!̃) =
R
!̃

0

d!̃
1

F̃ (!̃
1

), it is explicitly proportional to the

inverse relaxation time ⌧�1

0

= 8⇡3n2G2(⇤ + a)/mv6
0

⇠
⌧�1

gr

. Notably, Eq. (5) is valid in the leading logarithmic
approximation ⇤ � 1 which is too rough for our numer-
ical solutions with ⇤ ⇠ 5. To get a quantitative compar-
ison, we added an unknown correction a = O(1) to ⇤.

We numerically evolve Eq. (5) starting from the same
initial distribution as in Fig. 1. In Fig. 1f the solution
F (t, !) (circles) is compared to the microscopic distribu-
tion (3) (dashed line) at t ⇡ ⌧

gr

, where a ⇡ 5 is obtained
from the fit. We observe agreement in the kinetic region
!̃ � 2⇡2/L̃2 which confirms Eq. (5) at t < ⌧

gr

.
Note that unlike in the case of short-range interac-

tions [22] thermalization in Landau equation does not
proceed via power-law turbulent cascades [21], and we
do not observe them in Figs. 1e,f. Nevertheless, we think
that Eq. (5) provides the basis for analytic description of
gravitational Bose-Einstein condensation.

6. Miniclusters. So far we assumed that homoge-
neous ensemble in the box correctly describes central
parts of DM halos. Now, we study the isolated ha-
los/miniclusters themselves and verify this assumption.
Recall that in large volume nonrelativistic gas forms
clumps at scales R & 2⇡/k

J

due to Jeans instabil-
ity, where k2

J

= 2⇡Gnm2h!�1i and the average is com-
puted with F (!). Starting numerical evolution from the
homogeneous ensemble with �-distributed momenta at
L > 2⇡/k

J

, we indeed observe formation of a virialized
minicluster in Fig. 2c. With time it remains stationary
until the Bose star appears in its center, see Fig. 2d and
movie [18]. Thus, formation of Bose stars is not specific
to finite boxes.

We checked that our kinetic expression for ⌧
gr

works
for the virialized miniclusters. To this end we gener-
ated many di↵erent miniclusters, computed their central
densities n and virial velocities hv2i = �2h!i/m using
the ! < 0 part of the distribution F (!), estimated their
radii R. In Fig. 2b we plot the times of Bose star for-
mation in the miniclusters versus these parameters and
⇤ = log(mvR) (points). The numerical data are well ap-
proximated by Eq. (4) with b ⇡ 0.7 (line) although the
statistical fluctuations are now larger due to limited con-
trol over momentum distribution inside the miniclusters.

Estimating the virial velocity v2 ⇠ 4⇡GmnR2/3 in the
halo of radiusR, one recasts Eq. (4) in the intuitively sim-
ple form ⌧

gr

⇠ 0.047 (R/v) (Rmv)3/⇤, where the numer-
ical factor is computed. Remarkably, ⌧

gr

equals to the
free-fall time R/v multiplied by the cube of kinetic con-
stant Rmv � 1 in Eq. (1). In non-kinetic case Rmv ⇠ 1
the Bose stars form immediately [12, 13, 15].

7. Bose star growth. After nucleation the Bose stars
start to acquire particles from the ensemble. Due to com-
putational limitations we are able to observe only the
first decade of their mass increase that proceeds accord-
ing to the heuristic law M

s

(t) ' cv
0

(t/⌧
gr

� 1)1/2/Gm
with c = 3± 0.7. The ratio t/⌧

gr

in this expression sug-
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drag from dynamical friction is reduced, eliminated, or even reversed if the stellar system hosting the clusters has
a homogeneous (constant-density) core. This e↵ect, sometimes called “core stalling”, is seen in a variety of N-body
simulations [75, 136, 137] but the physics behind it remains murky [136, 138, 139].

Here we ask how dynamical friction is modified if the dark matter in dwarf galaxies is comprised of FDM rather
than CDM [13]. There are three distinct e↵ects: (i) many exotic dark-matter models, including FDM, produce cores
at the centers of halos rather than the central cusp found in CDM [8, 140–145] and thus modify the rate of orbital
decay according to the classic Chandrasekhar formula [132] through changes in the dark-matter density and velocity
dispersion, the orbital speed, etc.; (ii) as reviewed above, core stalling can reduce or eliminate the drag from dynamical
friction in a homogeneous core compared to the value predicted by Chandrasekhar; (iii) standard estimates of the
drag from dynamical friction must be modified to account for the large de Broglie wavelengths of FDM particles, as
shown in Appendix D. Here we focus on the last of these e↵ects, also investigated by [146].

The orbital decay timescale for an object of mass mcl in a circular orbit of radius r in a host system of density ⇢(r)
and enclosed mass M (r) is given by Eq. (D16),

⌧ =
37.5Gyr

C

 
M (r)

108 M
�

1 kpc

r

!3/2
105 M

�

mcl

0.01M
�

pc�3

⇢(r)
, (52)

where the dimensionless constant C is plotted in Figure 2, and the fiducial values have been chosen to approximately
match Fornax and its globular clusters. For a more careful comparison between frictional decay times in FDM and
CDM we adopt masses for the five Fornax clusters from [137] and set their orbital radii equal to the projected radii
from the center of Fornax multiplied by 2/

p
3 (the ratio of the radius to the median projected radius in a spherical

distribution). For CDM (i) we take the Fornax density from the “steep cusp” model of [137], which has a logarithmic
density slope near the center d log ⇢/d log r = �1 as in the NFW profile [3] that characterizes CDM halos; (ii) we set
the constant C in Eq. (52) to 0.5 log[2v2r/(Gmcl)] following Eq. (D11); the factor 0.5 is a crude empirical correction
that arises because the classical dark-matter particles have velocities comparable to the globular clusters and only
particles traveling slower than the test object contribute to the frictional force [55]. For FDM we use the “large core”
model of [137], and determine C from Eq. (D14) using k = mv/~ where the velocity v is determined by assuming the
cluster is on a circular orbit.

TABLE I: Orbital decay times for the globular clusters in Fornax for cold dark matter (CDM) and fuzzy dark
matter (FDM)

projected radius cluster mass CDM FDM

n r
?

(kpc) mcl (M�

) C ⌧ (Gyr) kr C ⌧ (Gyr)

1 1.6 3.7⇥ 104 4.29 112 8.90 2.46 215

2 1.05 1.82⇥ 105 3.32 9.7 5.04 1.88 12

3 0.43 3.63⇥ 105 2.45 0.62 0.97 0.29 2.2

4 0.24 1.32⇥ 105 2.50 0.37 0.31 0.033 10

5 1.43 1.78⇥ 105 3.46 21.3 7.79 2.32 31

notes: Projected separations and globular cluster masses are taken
from [137]. Orbital decay times ⌧ are determined from Eq. (D16)
using the “steep cusp” and “large core” density distributions from
[137] for CDM and FDM respectively. The dimensionless wavenum-
ber kr = mvr/~ is evaluated assuming m = 3 ⇥ 10�22 eV and
v2 = GM (r)/r, appropriate for a circular orbit. The dimensionless
constant C is determined using Eq. (D14) for FDM, and as described
in the text for CDM.

The resulting decay times are shown in Table I for a particle mass of 3⇥ 10�22 eV. In all cases shown in the Table
the orbital decay times are longer in a FDM halo than in a CDM halo. The shortest decay time in the FDM halo
exceeds 2 Gyr, compared to 0.4 Gyr in the CDM halo. Four of the five clusters have decay times of 10 Gyr or more
in the FDM halo, thus solving the puzzle of why the globular clusters in Fornax have survived. For other particle
masses the decay time scales roughly as m�2 for clusters 3 and 4, which have the smallest orbits and the shortest
decay times. Observations of a larger sample of dwarf galaxies containing globular clusters could further test the
possibility that dynamical friction is suppressed compared to the expectations from CDM. Note that the dynamical
friction issue could in principle be decoupled from the issue of predicting the density profile. With su�ciently high
quality data, the density profile of the host galaxy can be observationally determined, sidestepping debates about the
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Figure 2: (Left) Rotation curve fit for NGC1705. The dark matter velocity dispersion is chosen

as � = v
circ

/
p
3 for simplicity. (Right) Black dots are data subtracted with v computed from

Eq. (78). The purple region corresponds to ±�
?

(t
age

) form
�

= 2⇥10�21 eV, where �
?

is obtained

for isotropic velocity distribution. The red band is ±�
?

(t
age

) for nonvanishing circular velocity,

� = v
circ

/
p
3.

and ⌘ = 1.78. The maximal circular velocity can also be expressed in terms of NFW parameters,

v2
max

= 0.58G⇢
0

r2
max

. Combined with fitting result on (V
vir

, c), we can compute stellar velocity

dispersion using Eq. (69). For this choice of mass, stellar velocity dispersion due to ultralight

dark matter at r . 2 kpc already exceeds observed error.

In Fig. 2, we show one example with NGC1705. Black dots are data subtracted by v that

we computed using Eq. (78). The purple boundary corresponds to ±�
t

(t
age

) that we computed

from Eq. (69), with t
age

= 13.6 Gyr. We cut the purple band at some finite r where the de

Brogile wavelength of dark matter becomes equal to the radius, �
dB

(r) = r.

7 Baryonic contribution to the heating
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Summary 

* ULDM exhibits wave dynamics on scales ~ de Broglie wavelength. 
* Lends itself to analytic understanding (nothing like this for WIMPs). 
* Predicts features in inner kinematics of galaxies. 

Bar et al. 1805.00122, 1903.03402 analysed dozens of LSB rotation curves. 
As far as we could see, the core isn’t there: 

m < 1e-21 eV in tension with observations. 
(disfavours ULDM from addressing small-scale puzzles of DM.) 

Questions / work in progress: 
Is the soliton—host halo relation correct? (or spurious effect of numerical simulations?) 
If yes, what is the dynamical reason for it? 

More observational tests of particle nature of dark matter, based on gravity alone?

Comparable independent constraints from Ly-alpha Forest 
Armengaud (1703.09126), Irsic (1703.04683), Zhang (1708.04389), Kobayashi (1708.00015) 
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Figure 3. Binning scheme in M87 for the NIFS data only. Although this
particular frame does not have data for each bin, the dithered set fills all bins.
Data in the mirror bins around the major axis are added to the bins shown.

Figure 4. Spectra at three different radii. The top is from 0.′′08 < R < 0.′′18, the
middle is from 0.′′18 < R < 0.′′3, and the bottom is from R = 0.′′6. The black
line is the spectrum and the smooth red line is the best-fit template convolved
with the best-fit LOSVD. The dashed lines are those regions excluded from
the fit due to high sky contamination. The spectrum at the top, which comes
from the central region, is not used in the fit due to AGN contamination. The
velocity dispersion obtained from the fits shown in red, from top to bottom, is
480 km s−1, 480 km s−1, and 445 km s−1, and the S/N per pixel in each is 30,
63, and 91.
(A color version of this figure is available in the online journal.)

Figure 5. Velocity dispersion vs. radius for M87. The black points are the
NIFS data. The red points are the VIRUS-P data from Murphy et al. (2011),
and the blue points are from the SAURON data. The multiple points at each
radius represent the various position angles. The solid line is the best-fit model,
convolved to the appropriate PSF. For the dynamical model, we include the
predicted dispersion within 0.′′18.
(A color version of this figure is available in the online journal.)

The technique is described in Gebhardt et al. (2000a) and
Pinkney et al. (2003). The LOSVD is defined in 15 velocity
bins of 260 km s−1. There is a smoothing parameter applied to
the LOSVD, but given the high S/N for most of the spectra,
the smoothing has little effect on the extractions; thus, there is
only a modest correlation between adjacent velocity bins. We
use Monte Carlo simulations to determine the uncertainties in
the LOSVD. The S/N of each spectrum determines the noise to
be used in the Monte Carlo simulations; from 1000 realizations
of each spectrum, we generate an average LOSVD and the 68%
uncertainty.

The dynamical modeling uses the non-parametric LOSVD
directly. However, it is sometimes convenient to express the
LOSVD in a parameterized form as Gauss–Hermite moments,
to show the radial run of the kinematics, and to compare the data
with the models. Table 2 shows the first four Gauss–Hermite
moments for the NIFS data. Figure 5 plots the velocity disper-
sion versus radius, where the dispersion is measured from a
Gauss–Hermite fit to the LOSVDs. Figure 5 plots all of the data
at each radius, and there are between 1 and 10 angular bins at
each radii; thus, there are multiple points at nearly all radii in
the figure. There is no rotation seen at a significant level in the
NIFS data.

We input 107 LOSVDs in the dynamical models. These
LOSVDs come from 40 spatial bins from the NIFS data, 25 from
the SAURON data, and 42 from the large radial data of Murphy
et al. (2011). The data in Murphy et al. come from the IFU
VIRUS-P, where we have nearly complete angular coverage. The
S/N of those data is very high (50–100 per resolution element).
The solid line in Figure 5 plots the velocity dispersion from
the best-fit dynamical model. The model generates LOSVDs,
and their dispersions come from Gauss–Hermite fits to those
LOSVDs. For the dynamical model dispersions, we average
along angles at a given radius for clarity. In Figure 5, we plot
both the NIFS and VIRUS-P dispersions, which have different
PSFs. The model is convolved to each of the PSFs, and the
plotted dispersions include the convolution.
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density

xc ⇡ 160

✓
Mh

1012 M�

◆� 1
3 ⇣ m

10�22 eV

⌘�1

pc, (30)

⇢(x) ⇡
190

�
m

10

�22
eV

��2

⇣
xc

100 pc

⌘�4

✓
1 + 0.091

⇣
x
xc

⌘
2

◆
8

M� pc�3, (31)

where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]
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Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is
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Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
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(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by
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(�r), (12)

��(r) = �2�
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(�r), (13)
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also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are
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, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by
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The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is
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with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have
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Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with
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This leads to a relation for an isolated soliton [4, 5],
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Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
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⇡ 0.23�2, (25)

which can also be written as
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The
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4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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Mc� ⇡ 0.236M�. Thus, using Eq. (26), we have an an-

alytic relation Mc� ⇡ 1.02
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central core profile is very well described a soliton, we
can use Eq. (26) to rephrase the empirical Eq. (34) by a
more intuitive (though equally empirical) expression:
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|
soliton

⇡ E

M
|
halo

. (35)

Thus, the simulations of Ref. [9, 10] can be summarised
by the statement, that the energy per unit mass of the
soliton matches the energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [11]

The simulations of Ref. [11] pointed to an empirical
scaling relation between the soliton massM and the total
energy of the ULDM distribution in the simulation box,
Eh,

M

(M2

pl/m)
⇡ 2.6

�����
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pl/m)

�����

1
3
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However, this is just Eq. (24), if we replace the halo
energy Eh by the energy of the soliton. Because the cen-
tral density profile found in [11] was an �� soliton, to a
good approximation, it must be the case that the total
energy of the halo in the simulations of [11] was domi-
nated by the central soliton contribution. This situation
is unlikely to hold for realistic cosmological host halos
above a certain mass.

How could this have happened? The initial condi-
tions in the simulations of [11] were a collection of N
solitons, which were then allowed to merge. We suspect
that these initial conditions were constructed such that
one initial state soliton – the soliton of initially largest
mass – grew to absorb essentially the entire (negative)
energy of the system. Di↵erently than the N-soliton ini-
tial conditions that were tested in [10], and consisted of N
identical initial solitons, the simulations of [11] initiated
their N solitons with a random distribution of proper-
ties. This distribution was flat in soliton radius, mean-
ing that it was peaked towards large soliton energy since
E� / x�3

c� . Considering the initial condition set-up as
explained in [11], we find that the most massive initial
state soliton typically needed to grow in mass by only a
factor of 1.5-2, to absorb the entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soli-
ton and the halo, implied by Eq. (35). Halos in [9, 10]
attained masses up to two orders of magnitude larger
than the central soliton mass, meaning their halo energy
was two orders of magnitude larger than the energy of
the soliton.

C. Discussion

For a soliton, � = 3E/M . Thus the association of
� with a thermodynamic chemical potential (normalised
per particle mass) for ULDM is suggestive in light of
Eq. (35), perhaps hinting that Eq. (35) represents ther-
modynamic equilibrium between ULDM particles in the
host halo and in the soliton. However, there is some evi-
dence to the contrary from simulations.
Ref. [29] simulated the ULDM halo+soliton system,

adding collisionless point particles (“stars”). The pres-
ence of stars, which aggregated dynamically in a cuspy
profile in the simulations of [29] (qualitatively consistent
with expectations for collisionless point particle N-body
simulations), generally resulted in more massive soliton
compared to pure ULDM simulations [9, 10] with a given
host halo mass. In Sec. VA we calculate the e↵ect of
embedding ULDM in a virialised distribution of baryons.
We show that the distorted soliton profiles found in [29],
in the presence of stars, match to the solution of the SP
equations perturbed by the stellar gravitational poten-
tial.
Ref. [29] went further to test the reversibility of the

system, by adiabatically “turning o↵” the stars after the
initial system virialised. When eliminating the stars, the
ULDM+soliton system did not relax back to Eq. (32).
Instead, the excess ULDM mass that was contained in
the soliton in the presence of stars remained captured in
the soliton, and did not return to the host halo (see Case
C in [29]; see also Sec. VA below). As a result, the fi-
nal state of the system, after first turning on and then
removing again the stars, was not described by Eq. (35):
the soliton ended up containing larger (negative) E/M
than the halo. This means that either Eq. (35) is not a
dynamical thermodynamic result, or – if it is – that in
some instances, achieving equilibrium could take a very
long time exceeding the age of the Universe (the simula-
tions of [29] were let to evolve over several Hubble times).
Given this information, we speculate that Eq. (35) does

express an initial condition, in the following sense. The
initial state of halo formation is characterised by some to-
tal energy and total mass in the virial radius; this E/M
would characterise the host halo. ULDM with this E/M
can quickly relax to a soliton, with soliton mass satisfying
Eq. (26) and leading to Eq. (35) without any additional
relaxation process. Further relaxation would increase the
soliton mass eventually, but this process, which requires
the system to eject mass at positive energies for any ad-
ditional mass element that gets absorbed into the soliton,
takes longer time to occur; long enough that it did not
a↵ect the soliton-host halo relation found in [9, 10]. The
results of [11] probably reflect a situation where the ini-
tial distribution of E/M was highly non-uniform in the
simulated volume (as we explained in Sec. III B, E/M in
the simulations of [11] was typically dominated by one,
or a small few initial solitons). In this case, a single soli-
ton can come to dominate E, and obviously E/M , for
the entire halo. Similarly, Ref. [13], which did not repro-
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Thus, the simulations of Ref. [9, 10] can be summarised
by the statement, that the energy per unit mass of the
soliton matches the energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [11]

The simulations of Ref. [11] pointed to an empirical
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However, this is just Eq. (24), if we replace the halo
energy Eh by the energy of the soliton. Because the cen-
tral density profile found in [11] was an �� soliton, to a
good approximation, it must be the case that the total
energy of the halo in the simulations of [11] was domi-
nated by the central soliton contribution. This situation
is unlikely to hold for realistic cosmological host halos
above a certain mass.

How could this have happened? The initial condi-
tions in the simulations of [11] were a collection of N
solitons, which were then allowed to merge. We suspect
that these initial conditions were constructed such that
one initial state soliton – the soliton of initially largest
mass – grew to absorb essentially the entire (negative)
energy of the system. Di↵erently than the N-soliton ini-
tial conditions that were tested in [10], and consisted of N
identical initial solitons, the simulations of [11] initiated
their N solitons with a random distribution of proper-
ties. This distribution was flat in soliton radius, mean-
ing that it was peaked towards large soliton energy since
E� / x�3

c� . Considering the initial condition set-up as
explained in [11], we find that the most massive initial
state soliton typically needed to grow in mass by only a
factor of 1.5-2, to absorb the entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soli-
ton and the halo, implied by Eq. (35). Halos in [9, 10]
attained masses up to two orders of magnitude larger
than the central soliton mass, meaning their halo energy
was two orders of magnitude larger than the energy of
the soliton.

C. Discussion

For a soliton, � = 3E/M . Thus the association of
� with a thermodynamic chemical potential (normalised
per particle mass) for ULDM is suggestive in light of
Eq. (35), perhaps hinting that Eq. (35) represents ther-
modynamic equilibrium between ULDM particles in the
host halo and in the soliton. However, there is some evi-
dence to the contrary from simulations.
Ref. [29] simulated the ULDM halo+soliton system,

adding collisionless point particles (“stars”). The pres-
ence of stars, which aggregated dynamically in a cuspy
profile in the simulations of [29] (qualitatively consistent
with expectations for collisionless point particle N-body
simulations), generally resulted in more massive soliton
compared to pure ULDM simulations [9, 10] with a given
host halo mass. In Sec. VA we calculate the e↵ect of
embedding ULDM in a virialised distribution of baryons.
We show that the distorted soliton profiles found in [29],
in the presence of stars, match to the solution of the SP
equations perturbed by the stellar gravitational poten-
tial.
Ref. [29] went further to test the reversibility of the

system, by adiabatically “turning o↵” the stars after the
initial system virialised. When eliminating the stars, the
ULDM+soliton system did not relax back to Eq. (32).
Instead, the excess ULDM mass that was contained in
the soliton in the presence of stars remained captured in
the soliton, and did not return to the host halo (see Case
C in [29]; see also Sec. VA below). As a result, the fi-
nal state of the system, after first turning on and then
removing again the stars, was not described by Eq. (35):
the soliton ended up containing larger (negative) E/M
than the halo. This means that either Eq. (35) is not a
dynamical thermodynamic result, or – if it is – that in
some instances, achieving equilibrium could take a very
long time exceeding the age of the Universe (the simula-
tions of [29] were let to evolve over several Hubble times).
Given this information, we speculate that Eq. (35) does

express an initial condition, in the following sense. The
initial state of halo formation is characterised by some to-
tal energy and total mass in the virial radius; this E/M
would characterise the host halo. ULDM with this E/M
can quickly relax to a soliton, with soliton mass satisfying
Eq. (26) and leading to Eq. (35) without any additional
relaxation process. Further relaxation would increase the
soliton mass eventually, but this process, which requires
the system to eject mass at positive energies for any ad-
ditional mass element that gets absorbed into the soliton,
takes longer time to occur; long enough that it did not
a↵ect the soliton-host halo relation found in [9, 10]. The
results of [11] probably reflect a situation where the ini-
tial distribution of E/M was highly non-uniform in the
simulated volume (as we explained in Sec. III B, E/M in
the simulations of [11] was typically dominated by one,
or a small few initial solitons). In this case, a single soli-
ton can come to dominate E, and obviously E/M , for
the entire halo. Similarly, Ref. [13], which did not repro-
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
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◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The
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can use Eq. (26) to rephrase the empirical Eq. (34) by a
more intuitive (though equally empirical) expression:

E

M
|
soliton

⇡ E

M
|
halo

. (35)

Thus, the simulations of Ref. [9, 10] can be summarised
by the statement, that the energy per unit mass of the
soliton matches the energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [11]

The simulations of Ref. [11] pointed to an empirical
scaling relation between the soliton massM and the total
energy of the ULDM distribution in the simulation box,
Eh,
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However, this is just Eq. (24), if we replace the halo
energy Eh by the energy of the soliton. Because the cen-
tral density profile found in [11] was an �� soliton, to a
good approximation, it must be the case that the total
energy of the halo in the simulations of [11] was domi-
nated by the central soliton contribution. This situation
is unlikely to hold for realistic cosmological host halos
above a certain mass.

How could this have happened? The initial condi-
tions in the simulations of [11] were a collection of N
solitons, which were then allowed to merge. We suspect
that these initial conditions were constructed such that
one initial state soliton – the soliton of initially largest
mass – grew to absorb essentially the entire (negative)
energy of the system. Di↵erently than the N-soliton ini-
tial conditions that were tested in [10], and consisted of N
identical initial solitons, the simulations of [11] initiated
their N solitons with a random distribution of proper-
ties. This distribution was flat in soliton radius, mean-
ing that it was peaked towards large soliton energy since
E� / x�3

c� . Considering the initial condition set-up as
explained in [11], we find that the most massive initial
state soliton typically needed to grow in mass by only a
factor of 1.5-2, to absorb the entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soli-
ton and the halo, implied by Eq. (35). Halos in [9, 10]
attained masses up to two orders of magnitude larger
than the central soliton mass, meaning their halo energy
was two orders of magnitude larger than the energy of
the soliton.

C. Discussion

For a soliton, � = 3E/M . Thus the association of
� with a thermodynamic chemical potential (normalised
per particle mass) for ULDM is suggestive in light of
Eq. (35), perhaps hinting that Eq. (35) represents ther-
modynamic equilibrium between ULDM particles in the
host halo and in the soliton. However, there is some evi-
dence to the contrary from simulations.
Ref. [29] simulated the ULDM halo+soliton system,

adding collisionless point particles (“stars”). The pres-
ence of stars, which aggregated dynamically in a cuspy
profile in the simulations of [29] (qualitatively consistent
with expectations for collisionless point particle N-body
simulations), generally resulted in more massive soliton
compared to pure ULDM simulations [9, 10] with a given
host halo mass. In Sec. VA we calculate the e↵ect of
embedding ULDM in a virialised distribution of baryons.
We show that the distorted soliton profiles found in [29],
in the presence of stars, match to the solution of the SP
equations perturbed by the stellar gravitational poten-
tial.
Ref. [29] went further to test the reversibility of the

system, by adiabatically “turning o↵” the stars after the
initial system virialised. When eliminating the stars, the
ULDM+soliton system did not relax back to Eq. (32).
Instead, the excess ULDM mass that was contained in
the soliton in the presence of stars remained captured in
the soliton, and did not return to the host halo (see Case
C in [29]; see also Sec. VA below). As a result, the fi-
nal state of the system, after first turning on and then
removing again the stars, was not described by Eq. (35):
the soliton ended up containing larger (negative) E/M
than the halo. This means that either Eq. (35) is not a
dynamical thermodynamic result, or – if it is – that in
some instances, achieving equilibrium could take a very
long time exceeding the age of the Universe (the simula-
tions of [29] were let to evolve over several Hubble times).
Given this information, we speculate that Eq. (35) does

express an initial condition, in the following sense. The
initial state of halo formation is characterised by some to-
tal energy and total mass in the virial radius; this E/M
would characterise the host halo. ULDM with this E/M
can quickly relax to a soliton, with soliton mass satisfying
Eq. (26) and leading to Eq. (35) without any additional
relaxation process. Further relaxation would increase the
soliton mass eventually, but this process, which requires
the system to eject mass at positive energies for any ad-
ditional mass element that gets absorbed into the soliton,
takes longer time to occur; long enough that it did not
a↵ect the soliton-host halo relation found in [9, 10]. The
results of [11] probably reflect a situation where the ini-
tial distribution of E/M was highly non-uniform in the
simulated volume (as we explained in Sec. III B, E/M in
the simulations of [11] was typically dominated by one,
or a small few initial solitons). In this case, a single soli-
ton can come to dominate E, and obviously E/M , for
the entire halo. Similarly, Ref. [13], which did not repro-
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Mc� ⇡ 0.236M�. Thus, using Eq. (26), we have an an-

alytic relation Mc� ⇡ 1.02
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m . Given that the

central core profile is very well described a soliton, we
can use Eq. (26) to rephrase the empirical Eq. (34) by a
more intuitive (though equally empirical) expression:

E
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|
soliton
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M
|
halo

. (35)

Thus, the simulations of Ref. [9, 10] can be summarised
by the statement, that the energy per unit mass of the
soliton matches the energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [11]

The simulations of Ref. [11] pointed to an empirical
scaling relation between the soliton massM and the total
energy of the ULDM distribution in the simulation box,
Eh,
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However, this is just Eq. (24), if we replace the halo
energy Eh by the energy of the soliton. Because the cen-
tral density profile found in [11] was an �� soliton, to a
good approximation, it must be the case that the total
energy of the halo in the simulations of [11] was domi-
nated by the central soliton contribution. This situation
is unlikely to hold for realistic cosmological host halos
above a certain mass.

How could this have happened? The initial condi-
tions in the simulations of [11] were a collection of N
solitons, which were then allowed to merge. We suspect
that these initial conditions were constructed such that
one initial state soliton – the soliton of initially largest
mass – grew to absorb essentially the entire (negative)
energy of the system. Di↵erently than the N-soliton ini-
tial conditions that were tested in [10], and consisted of N
identical initial solitons, the simulations of [11] initiated
their N solitons with a random distribution of proper-
ties. This distribution was flat in soliton radius, mean-
ing that it was peaked towards large soliton energy since
E� / x�3

c� . Considering the initial condition set-up as
explained in [11], we find that the most massive initial
state soliton typically needed to grow in mass by only a
factor of 1.5-2, to absorb the entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soli-
ton and the halo, implied by Eq. (35). Halos in [9, 10]
attained masses up to two orders of magnitude larger
than the central soliton mass, meaning their halo energy
was two orders of magnitude larger than the energy of
the soliton.

C. Discussion

For a soliton, � = 3E/M . Thus the association of
� with a thermodynamic chemical potential (normalised
per particle mass) for ULDM is suggestive in light of
Eq. (35), perhaps hinting that Eq. (35) represents ther-
modynamic equilibrium between ULDM particles in the
host halo and in the soliton. However, there is some evi-
dence to the contrary from simulations.
Ref. [29] simulated the ULDM halo+soliton system,

adding collisionless point particles (“stars”). The pres-
ence of stars, which aggregated dynamically in a cuspy
profile in the simulations of [29] (qualitatively consistent
with expectations for collisionless point particle N-body
simulations), generally resulted in more massive soliton
compared to pure ULDM simulations [9, 10] with a given
host halo mass. In Sec. VA we calculate the e↵ect of
embedding ULDM in a virialised distribution of baryons.
We show that the distorted soliton profiles found in [29],
in the presence of stars, match to the solution of the SP
equations perturbed by the stellar gravitational poten-
tial.
Ref. [29] went further to test the reversibility of the

system, by adiabatically “turning o↵” the stars after the
initial system virialised. When eliminating the stars, the
ULDM+soliton system did not relax back to Eq. (32).
Instead, the excess ULDM mass that was contained in
the soliton in the presence of stars remained captured in
the soliton, and did not return to the host halo (see Case
C in [29]; see also Sec. VA below). As a result, the fi-
nal state of the system, after first turning on and then
removing again the stars, was not described by Eq. (35):
the soliton ended up containing larger (negative) E/M
than the halo. This means that either Eq. (35) is not a
dynamical thermodynamic result, or – if it is – that in
some instances, achieving equilibrium could take a very
long time exceeding the age of the Universe (the simula-
tions of [29] were let to evolve over several Hubble times).
Given this information, we speculate that Eq. (35) does

express an initial condition, in the following sense. The
initial state of halo formation is characterised by some to-
tal energy and total mass in the virial radius; this E/M
would characterise the host halo. ULDM with this E/M
can quickly relax to a soliton, with soliton mass satisfying
Eq. (26) and leading to Eq. (35) without any additional
relaxation process. Further relaxation would increase the
soliton mass eventually, but this process, which requires
the system to eject mass at positive energies for any ad-
ditional mass element that gets absorbed into the soliton,
takes longer time to occur; long enough that it did not
a↵ect the soliton-host halo relation found in [9, 10]. The
results of [11] probably reflect a situation where the ini-
tial distribution of E/M was highly non-uniform in the
simulated volume (as we explained in Sec. III B, E/M in
the simulations of [11] was typically dominated by one,
or a small few initial solitons). In this case, a single soli-
ton can come to dominate E, and obviously E/M , for
the entire halo. Similarly, Ref. [13], which did not repro-

Schive et al 1406.6586 
Schive et al 1407.7762



4

The circular velocity rises as V
circ,� / r at small r and

decreases as V
circ,� / r�

1
2 at large r. The peak of V

circ

is obtained at

x
peak,� ⇡ 0.16��1

⇣ m

10�22 eV

⌘�1

pc (28)

⇡ 460
⇣ m

10�22 eV

⌘�2

✓
M�

109 M�

◆�1

pc,

and the peak velocity is

maxV
circ,� ⇡ 2.3⇥ 105 � km/s (29)

⇡ 83
⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
km/s.

III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �

1

profile (�2

1

(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�,(32)

so its � parameter is

� ⇡ 4.9⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (33)

Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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Mc� ⇡ 0.236M�. Thus, using Eq. (26), we have an an-

alytic relation Mc� ⇡ 1.02
⇣

|E�|
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central core profile is very well described a soliton, we
can use Eq. (26) to rephrase the empirical Eq. (34) by a
more intuitive (though equally empirical) expression:

E

M
|
soliton

⇡ E

M
|
halo

. (35)

Thus, the simulations of Ref. [9, 10] can be summarised
by the statement, that the energy per unit mass of the
soliton matches the energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [11]

The simulations of Ref. [11] pointed to an empirical
scaling relation between the soliton massM and the total
energy of the ULDM distribution in the simulation box,
Eh,
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However, this is just Eq. (24), if we replace the halo
energy Eh by the energy of the soliton. Because the cen-
tral density profile found in [11] was an �� soliton, to a
good approximation, it must be the case that the total
energy of the halo in the simulations of [11] was domi-
nated by the central soliton contribution. This situation
is unlikely to hold for realistic cosmological host halos
above a certain mass.

How could this have happened? The initial condi-
tions in the simulations of [11] were a collection of N
solitons, which were then allowed to merge. We suspect
that these initial conditions were constructed such that
one initial state soliton – the soliton of initially largest
mass – grew to absorb essentially the entire (negative)
energy of the system. Di↵erently than the N-soliton ini-
tial conditions that were tested in [10], and consisted of N
identical initial solitons, the simulations of [11] initiated
their N solitons with a random distribution of proper-
ties. This distribution was flat in soliton radius, mean-
ing that it was peaked towards large soliton energy since
E� / x�3

c� . Considering the initial condition set-up as
explained in [11], we find that the most massive initial
state soliton typically needed to grow in mass by only a
factor of 1.5-2, to absorb the entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soli-
ton and the halo, implied by Eq. (35). Halos in [9, 10]
attained masses up to two orders of magnitude larger
than the central soliton mass, meaning their halo energy
was two orders of magnitude larger than the energy of
the soliton.

C. Discussion

For a soliton, � = 3E/M . Thus the association of
� with a thermodynamic chemical potential (normalised
per particle mass) for ULDM is suggestive in light of
Eq. (35), perhaps hinting that Eq. (35) represents ther-
modynamic equilibrium between ULDM particles in the
host halo and in the soliton. However, there is some evi-
dence to the contrary from simulations.
Ref. [29] simulated the ULDM halo+soliton system,

adding collisionless point particles (“stars”). The pres-
ence of stars, which aggregated dynamically in a cuspy
profile in the simulations of [29] (qualitatively consistent
with expectations for collisionless point particle N-body
simulations), generally resulted in more massive soliton
compared to pure ULDM simulations [9, 10] with a given
host halo mass. In Sec. VA we calculate the e↵ect of
embedding ULDM in a virialised distribution of baryons.
We show that the distorted soliton profiles found in [29],
in the presence of stars, match to the solution of the SP
equations perturbed by the stellar gravitational poten-
tial.
Ref. [29] went further to test the reversibility of the

system, by adiabatically “turning o↵” the stars after the
initial system virialised. When eliminating the stars, the
ULDM+soliton system did not relax back to Eq. (32).
Instead, the excess ULDM mass that was contained in
the soliton in the presence of stars remained captured in
the soliton, and did not return to the host halo (see Case
C in [29]; see also Sec. VA below). As a result, the fi-
nal state of the system, after first turning on and then
removing again the stars, was not described by Eq. (35):
the soliton ended up containing larger (negative) E/M
than the halo. This means that either Eq. (35) is not a
dynamical thermodynamic result, or – if it is – that in
some instances, achieving equilibrium could take a very
long time exceeding the age of the Universe (the simula-
tions of [29] were let to evolve over several Hubble times).
Given this information, we speculate that Eq. (35) does

express an initial condition, in the following sense. The
initial state of halo formation is characterised by some to-
tal energy and total mass in the virial radius; this E/M
would characterise the host halo. ULDM with this E/M
can quickly relax to a soliton, with soliton mass satisfying
Eq. (26) and leading to Eq. (35) without any additional
relaxation process. Further relaxation would increase the
soliton mass eventually, but this process, which requires
the system to eject mass at positive energies for any ad-
ditional mass element that gets absorbed into the soliton,
takes longer time to occur; long enough that it did not
a↵ect the soliton-host halo relation found in [9, 10]. The
results of [11] probably reflect a situation where the ini-
tial distribution of E/M was highly non-uniform in the
simulated volume (as we explained in Sec. III B, E/M in
the simulations of [11] was typically dominated by one,
or a small few initial solitons). In this case, a single soli-
ton can come to dominate E, and obviously E/M , for
the entire halo. Similarly, Ref. [13], which did not repro-
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �
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profile (�2
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(r), to be precise).

FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �
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profile (�2
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is

M ⇡ 1.4⇥ 109
⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�,(32)
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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2 M2
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m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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This is equivalent to: 

3

Note that on the LHS of Eq. (12),
E

M

���
soliton

is defined

for the self-gravitating soliton without including the gravi-
tational potential induced by the large-scale halo. The halo
gravitational potential �h, defined to vanish at infinity, is
approximately constant throughout the halo inner region
where the soliton occurs and can be estimated as �h ⇠
10

E

M

���
halo

, up toO(1) corrections depending on the detailed

shape of the halo [17]. If we were to include the correc-
tion to the soliton energy due to this constant background

potential, it would change:
E

M

���
soliton

! E

M

���
soliton

+ �h.

This discussion suggests that the soliton–host halo relation
is better expressed using kinetic energy, rather than total
energy:

K

M

���
soliton

=

K

M

���
halo

. (13)

Because �h is approximately constant over the region where
the soliton is supported, the soliton shape is not distorted
and its kinetic energy is not modified from its value for
the self-gravitating solution. This means that for massive
halos in DM-only simulations, Eq. (13) and Eq. (12) are
indistinguishable.

Eq. (13) and Eq. (12) become distinguishable when we
turn on �b 6= 0, with a nontrivial spatial profile such that
�b is not constant throughout the large-scale halo.

III. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background of
a gravitational potential �b, chosen to roughly mimic the
inner region of the MW. For concreteness, throughout this
section we set m = 10

�22 eV. Results for m = 10

�21 eV
are collected in App. E 1.

The dominant contributions to the stellar mass profile of
the MW inner few hundred pc were described in the pho-
tometric analysis of Ref. [31] as a spherical nuclear stellar
cluster (NSC) and a nuclear stellar disk (NSD)3.

The NSC density profile was modelled as

⇢NSC(r) =

⇢̄NSC

1 +

⇣
r

rNSC

⌘nNSC
✓ (RNSC � r) , (14)

where ⇢̄NSC = 3.3 ⇥ 10

6
M

�

/pc3, rNSC = 0.22 pc,
RNSC = 200 pc. The index nNSC = 2 for r < r0 and

3 See Secs. 5.2-5.5 and Tab. 7 in [31]. In addition to the stellar
components, dynamics in the central ⇠ 1 pc is dominated by a
super-massive black hole (SMBH) with mass MBH ⇡ 4⇥106 M

�

.
Here we omit the SMBH contribution, which was studied in [17] and
shown to have negligible impact on the soliton for m . 10�20 eV.
We note that the numerical code in App. A is capable of handling
the SMBH contribution via the procedure described in App. A 1.
An interstellar gas torus at scale radius of ⇠ 100 pc contributes
⇠ 2 ⇥ 107 M

�

and is also neglected here in comparison to the
stellar components.

nNSC = 3 for r � r0, with r0 = 6 pc. With these parame-
ters we have MNSC ' 5.1⇥ 10

7 M
�

.
The NSD density profile was modelled as

⇢NSD = ⇢̄NSD exp

✓
� |z|
hz

� ⇢

h⇢

◆
, (15)

where h⇢ = 250 pc, hz = 50 pc, and ⇢̄NSD = 70 M

�

/pc3

is defined such that the total mass of the NSD is set to
MNSD ' 2.8⇥ 10

9 M
�

.
In Fig. 1 we plot the soliton mass vs. �, which allows us

to access di↵erent solutions. For � & 10

�3 we retrieve the
self-gravitating soliton result, shown by the dashed line. For
smaller � we find M / �

4 [17]4. Fig. 1, which accounts
for the non-spherical stellar potential, can be compared to
Fig. 16 in Ref. [17] which considered a spherically-averaged
approximation to the same stellar mass model. While the
trend is similar, there is an O(1) di↵erence in the M vs.
� relation in the phenomenologically interesting range � ⇠
10

�4 � 10

�3.
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FIG. 1: Soliton M-� relation in the stellar-induced background
gravitational potential of the inner MW. For a halo mass Mh =
1012 M

�

, the soliton host-halo relation found in DM-only numer-
ical simulations predicts � = 4.9 ⇥ 10�4. The ULDM particle
mass is m = 10�22 eV.

In Fig. 2 we study the deformation in the soliton shape
caused by the stellar mass distribution. We fix the soliton
mass to M ⇡ 1.35 ⇥ 10

9 M
�

. The contour lines show
the soliton mass density normalised to a reference value
of 23.6 M

�

/pc3. Solid lines show the result for the self-
gravitating soliton and dashed lines show the result obtained
when �b is included in the SPE. The baryonic potential
contracts the soliton profile towards the origin and deforms
it’s shape, that is no longer spherically symmetric.

4 This can be understood as follows. For small � the external potential
dominates and the SPE reduce to r2

� ⇡ 2(�b � �)�. Since this
equation is homogeneous and linear in �, the normalisation at ~x = 0
is a multiplicative factor and M /

R
d

3
x�

2 / �

4.

K/M: kinetic energy/mass. 
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �

1

soliton, rescale the
numerical result accordingly and present it in comparison
with the analytic �
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profile (�2
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density

xc ⇡ 160

✓
Mh

1012 M�

◆� 1
3 ⇣ m

10�22 eV

⌘�1

pc, (30)

⇢(x) ⇡
190

�
m

10

�22
eV

��2

⇣
xc

100 pc

⌘�4

✓
1 + 0.091

⇣
x
xc

⌘
2

◆
8

M� pc�3, (31)

where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
To make Fig. 1, in each case, we find the � parameter that
takes the numerical result into the �
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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We now discuss results from the numerical simulations
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Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The
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10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via

Schive et al 1406.6586 
Schive et al 1407.7762

This is equivalent to: 

K/M: kinetic energy/mass. 

Open questions  
1. Is this actually true? (more simulations?) 
2. If it is true, why?

3

Note that on the LHS of Eq. (12),
E

M

���
soliton

is defined

for the self-gravitating soliton without including the gravi-
tational potential induced by the large-scale halo. The halo
gravitational potential �h, defined to vanish at infinity, is
approximately constant throughout the halo inner region
where the soliton occurs and can be estimated as �h ⇠
10

E

M

���
halo

, up toO(1) corrections depending on the detailed

shape of the halo [17]. If we were to include the correc-
tion to the soliton energy due to this constant background

potential, it would change:
E

M

���
soliton

! E

M

���
soliton

+ �h.

This discussion suggests that the soliton–host halo relation
is better expressed using kinetic energy, rather than total
energy:

K

M

���
soliton

=

K

M

���
halo

. (13)

Because �h is approximately constant over the region where
the soliton is supported, the soliton shape is not distorted
and its kinetic energy is not modified from its value for
the self-gravitating solution. This means that for massive
halos in DM-only simulations, Eq. (13) and Eq. (12) are
indistinguishable.

Eq. (13) and Eq. (12) become distinguishable when we
turn on �b 6= 0, with a nontrivial spatial profile such that
�b is not constant throughout the large-scale halo.

III. APPLICATION: THE MILKY WAY

We now consider soliton solutions in the background of
a gravitational potential �b, chosen to roughly mimic the
inner region of the MW. For concreteness, throughout this
section we set m = 10

�22 eV. Results for m = 10

�21 eV
are collected in App. E 1.

The dominant contributions to the stellar mass profile of
the MW inner few hundred pc were described in the pho-
tometric analysis of Ref. [31] as a spherical nuclear stellar
cluster (NSC) and a nuclear stellar disk (NSD)3.

The NSC density profile was modelled as

⇢NSC(r) =

⇢̄NSC

1 +

⇣
r

rNSC

⌘nNSC
✓ (RNSC � r) , (14)

where ⇢̄NSC = 3.3 ⇥ 10

6
M

�

/pc3, rNSC = 0.22 pc,
RNSC = 200 pc. The index nNSC = 2 for r < r0 and

3 See Secs. 5.2-5.5 and Tab. 7 in [31]. In addition to the stellar
components, dynamics in the central ⇠ 1 pc is dominated by a
super-massive black hole (SMBH) with mass MBH ⇡ 4⇥106 M

�

.
Here we omit the SMBH contribution, which was studied in [17] and
shown to have negligible impact on the soliton for m . 10�20 eV.
We note that the numerical code in App. A is capable of handling
the SMBH contribution via the procedure described in App. A 1.
An interstellar gas torus at scale radius of ⇠ 100 pc contributes
⇠ 2 ⇥ 107 M

�

and is also neglected here in comparison to the
stellar components.

nNSC = 3 for r � r0, with r0 = 6 pc. With these parame-
ters we have MNSC ' 5.1⇥ 10

7 M
�

.
The NSD density profile was modelled as

⇢NSD = ⇢̄NSD exp

✓
� |z|
hz

� ⇢

h⇢

◆
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where h⇢ = 250 pc, hz = 50 pc, and ⇢̄NSD = 70 M

�

/pc3

is defined such that the total mass of the NSD is set to
MNSD ' 2.8⇥ 10

9 M
�

.
In Fig. 1 we plot the soliton mass vs. �, which allows us

to access di↵erent solutions. For � & 10

�3 we retrieve the
self-gravitating soliton result, shown by the dashed line. For
smaller � we find M / �

4 [17]4. Fig. 1, which accounts
for the non-spherical stellar potential, can be compared to
Fig. 16 in Ref. [17] which considered a spherically-averaged
approximation to the same stellar mass model. While the
trend is similar, there is an O(1) di↵erence in the M vs.
� relation in the phenomenologically interesting range � ⇠
10

�4 � 10

�3.
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FIG. 1: Soliton M-� relation in the stellar-induced background
gravitational potential of the inner MW. For a halo mass Mh =
1012 M

�

, the soliton host-halo relation found in DM-only numer-
ical simulations predicts � = 4.9 ⇥ 10�4. The ULDM particle
mass is m = 10�22 eV.

In Fig. 2 we study the deformation in the soliton shape
caused by the stellar mass distribution. We fix the soliton
mass to M ⇡ 1.35 ⇥ 10

9 M
�

. The contour lines show
the soliton mass density normalised to a reference value
of 23.6 M

�

/pc3. Solid lines show the result for the self-
gravitating soliton and dashed lines show the result obtained
when �b is included in the SPE. The baryonic potential
contracts the soliton profile towards the origin and deforms
it’s shape, that is no longer spherically symmetric.

4 This can be understood as follows. For small � the external potential
dominates and the SPE reduce to r2

� ⇡ 2(�b � �)�. Since this
equation is homogeneous and linear in �, the normalisation at ~x = 0
is a multiplicative factor and M /

R
d
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x�

2 / �

4.
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SIMULATIONS

We now discuss results from the numerical simulations
of three di↵erent groups, Refs. [9, 10], Ref. [11], and
Refs. [12, 13].

The first point to note is that soliton configurations, in
a form close to the idealised from discussed in Sec. II, ac-
tually occur dynamically in the central region of the halo
in the numerical simulations4. In Fig. 1 we collect rep-
resentative density profiles from Ref. [9] (blue), Ref. [11]
(orange), and Ref. [13] (green). We refer to those papers
for more details on the specific set-ups in each simulation.
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FIG. 1. Review of results from numerical simulations by
di↵erent groups. Dotted curves show density profiles from
Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),
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where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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Ref. [9] (blue), Ref. [11] (orange), and Ref. [13] (green). In
each case, we find the � parameter that takes the numerical
result into the �1 soliton, rescale the numerical result accord-
ingly and present it in comparison with the analytic soliton
profile.

4 The first simulations of cosmological ULDM galaxies [28] did not
have su�cient resolution to resolve the central core.

While di↵erent groups agree that a soliton forms in
the centre of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [9, 10] and Ref. [11] reported scaling relations
between the central soliton and the host halo. In Refs. [9,
10], the relation connects the soliton mass to the energy
per unit mass of the host halo, while in Ref. [11], the
relation is between the soliton mass and the host halo
energy. As we show below, based on the soliton review
in Sec. II, the scaling relations found by both groups
are actually connected to properties of a single, isolated,
self-gravitating soliton (a subset of our observations were
noted in [12, 13]).

A. Soliton vs. host halo: the simulations of
Ref. [9, 10]

At cosmological redshift z = 0, the numerical simula-
tions of [9, 10] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density
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where Mh is the virial mass of the host halo. As noted
in [6, 9, 10], Eqs. (30-31) are an excellent numerical fit
for a soliton ��. The mass of this soliton is
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Ref. [10] showed that Eq. (32) is consistent with the
relation (translating their result to natural units),

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to their data. Ref. [10] gave a
heuristic argument, pointing out that Eq. (34) identifies
the soliton scale radius (arbitrarily chosen as the core
radius xc in [10]) with the inverse velocity dispersion in
the host halo, in qualitative agreement with a wave-like
“uncertainty principle”.
However, there is another way to express Eq. (34). The

core mass of a �� soliton is related to its total mass via
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Figure 3. Intensity profiles of the observed H I. Left-hand figure: vertical
intensity profile, averaged over the inner 100 arcsec in the radial direction and
normalized to the peak intensity. Right-hand figure: radial intensity profile,
averaged over the inner 40 arcsec of the galaxy in the vertical direction.
Black line: data, Green squares: best-fitting model, Red diamonds (blue
triangles): best-fitting model with a scaleheight −2 arcsec (+4 arcsec) (see
Section 4). Blue dotted–dashed line: beam.

The H I in UGC 1281 shows significant extensions away from the
major axis. The H I extends up to 70 arcsec (1.8 kpc) on both sides
of the plane at column densities NH I = 4.0 × 1019 cm−2 (3σ ). This
extent is much more than the FWHM of the beam (26 arcsec) which
is clearly seen in Fig. 3. This figure shows the vertical distribution
of the data (black solid line) and a Gaussian (blue dot–dashed line)
with an FWHM of 26 arcsec. Both are normalized to the maximum
of the data. In this figure it is easily observed that the wings of the
data are much more extended than the observational beam.

3.2 Velocity distribution

3.2.1 Hα velocities

Fig. 4 shows the velocity field of the PPAK observations. This ve-
locity field was obtained by taking the peak position of the Gaussian
fitted to each bin (see Section 3.1.1). This is by no means equal to
the actual deprojected maximum rotational velocity in the galaxy
but it is an apparent mean velocity determined by a combination of
the rotational velocity, the density distribution of the ionized gas,

Figure 5. Velocities along the major axis. The left-hand panel shows the
Hα velocities: black symbols are the PPAK data presented in this paper,
blue symbols are the data obtained by Kuzio de Naray et al. (2006). The
right-hand figure shows H I velocities: black symbols are the H I, the blue
line shows the velocities obtained from the model. The red lines are the input
unprojected rotation curves of the best-fitting models described in Section 4.
The arrows indicate the positions of the velocity cuts parallel to the minor
axis in Fig. 6.

and the opacity of the dust. From here on whenever we mention ve-
locity we are referring to this mean velocity unless otherwise noted.
The Gaussian fitting procedure, and therefore the mean velocity,
was chosen because with a channel separation of 70 km s−1 it is
impossible to confidently fit the intrinsic shape of the emission line.

Fig. 5 (left) shows a cut 10-arcsec wide of the velocity field along
the major axis. Overplotted are the velocities obtained by Kuzio de
Naray et al. (2006) with the DensePAK IFU (blue symbols) and the
rotation curve obtained from the modelling (see Section 4). Kuzio
de Naray et al. (2006) were not able to trace emission as far out in
radius with their observations. Since their exposure time and fibre
size is equal to ours this is most likely caused by the fact that they
do not bin the data and the lower sensitivity of the DensePak IFU.
The velocities obtained by Kuzio de Naray et al. (2006) agree well
with our values, which assures us that there are no systematic errors
in our reduction or the Gaussian fitting procedure.

In this plot we see clearly that the part of the galaxy observed in
our Hα field of view is still resembling a slow rising rotation curve
that indicates solid body rotation. This behaviour of the rotation

Figure 4. Velocity field of the ionized gas. The field was constructed by taking the central position of the fitted Gaussian in all the binned spectra. The systemic
velocity (Vsys = 156 km s−1) has been set to 0. The separate pixels show the fibre positions and the colours run from −60 to 60 km s−1. The arrows indicate
the positions of the velocity cuts parallel to the minor axis in Fig. 6.
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Analytic soliton:

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]

�
1

⇡ �0.69. (9)

The mass of the �
1

soliton is

M
1

=
M2

pl

m

Z 1

0

drr2�2

1

(r) (10)

⇡ 2.79⇥ 1012
⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
d3x

✓
1

m2

|r |2 + � | |2
◆

= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
M2

pl

m
, (22)

M� ⇡ 2.06�
M2

pl

m
. (23)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2

pl/m)
⇡ 2.64

�����
E�

(M2

pl/m)

�����

1
3

. (24)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|
M�

⇡ 0.23�2, (25)

which can also be written as

M� ⇡ 4.3

✓ |E�|
M�

◆ 1
2 M2

pl

m
. (26)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
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(r), with �
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. A numerical calculation gives [4–6]
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sity drops by a factor of 2 from its value at the origin,
is
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tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1
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also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
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, (15)
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A mnemonic for the numerical value of � is given by
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. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
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= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (21)

Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with

E� ⇡ �0.476�3
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, (22)
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from the scaling parameter �,
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which can also be written as
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)

3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�
1

(r), with �
1

. A numerical calculation gives [4–6]
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1

⇡ �0.69. (9)

The mass of the �
1

soliton is
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1

=
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1
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⌘�1
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Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)

Other solutions of Eqs. (7-8) can be obtained from
�
1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r),��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6⇥ 10�4

⇣ m

10�22 eV
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M�

109 M�

◆
. (17)

The core radius can be compared with the particle de

Broglie wavelength, �dB(x) ⇡ 0.54 (��
1

(�x))�
1
2 xc�.

3 In the parallel literature of boson stars, µ = �m is called the
chemical potential of the field.

This gives an approximately constant �dB in the soliton
core region (where x < xc�),

�dB ⇡ 0.48xc�. (18)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27⇥ 108
⇣ m

10�22 eV

⌘�2

kpcM�. (19)

Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
and their eigenvalue |��| = �2|�

1

| ⌧ 1, consistent with
the non-relativisitc approximation.
The energy in an arbitrary nonrelativitsic ULDM con-

figuration is

E =
1

2

Z
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✓
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= Ek + Ep,(20)

with kinetic (potential) energy Ek (Ep). For the ansatz
Eq. (5), integrating by parts and using Eqs. (3-5) we have

E =
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Note that spherical symmetry is not needed for Eq. (21)
to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =

2E� with
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m
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The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V 2

circ,�(r) = r@r��(r). (27)
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3

The parameter � is proportional to the ULDM energy
per unit mass3. Validity of the non-relativistic regime
requires |�| ⌧ 1, and since we are looking for gravita-
tionally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2r (r�) = 2r (�� �)�, (7)

@2r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
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3 In the parallel literature of boson stars, µ = �m is called the
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Formally, we are allowed to select any positive value
of �, so solutions exist – formally – for any soliton mass.
However, if we select � & 1 we reach |��| > 1, outside of
the regime of validity of the non-relativistic approxima-
tion. Thus, self-consistent solutions are limited to �⌧ 1
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with kinetic (potential) energy Ek (Ep). For the ansatz
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to hold.
Considering the �� solitons, we find Ep,� = �2Ek,� =
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soliton gravitational potential is given by
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circ,�(r) = r@r��(r). (27)
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conditions in each of the 100 simulation runs in Ref. [3] contained a number N of randomly placed initial solitons,
with N ranging between 4 to 32. Each initial soliton was characterised by a core radius xc randomly selected (we
assume from a uniform distribution) in the range 8 � 50 kpc. Since the mass (energy) of a given soliton is inversely
proportional to its core radius (radius cubed), a uniform distribution of xc corresponds to a non-uniform distribution
of initial soliton masses and energies.

10-4 10-3 10-2

|E
tot

|/M3
tot

10-1

100

M
c
/M

to
t f

o
r 

m
a
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a
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a
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o
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# init solitons = 4
# init solitons = 6
# init solitons = 12
# init solitons = 20
# init solitons = 30

FIG. 3: Some insight on the simulations of Ref. [3].

In Fig. 3 we copy the information from Fig. 4 of Ref. [3]: black diamonds show the 100 converged simulation results
of [3]. The black dashed line shows the soliton mass-halo energy relation noted in [3]. Now, the x-axis of Fig. 3 is
|Etot|/M3

tot, so, since Etot and Mtot are conserved quantities, the x-axis location of each simulation run stays fixed
between the initial conditions at time t = 0 and the final state at large t. What moves in time in the simulation is
the y-axis coordinate, which shows the central soliton mass normalised to the total conserved mass M/Mtot. This
y-coordinate grows as the central soliton grows in mass by absorbing ULDM from the surrounding. We can estimate
how much vertical movement is actually happening in the simulation, as follows. Given the number of initial solitons
N , and assuming that the initial core radii are drawn from a uniform distribution in the range stated by [3], we can
produce random sets of Mtot, Etot with the corresponding statistics. In Fig. 3 we show the results of such random set
generation, for N = 4, 6, 12, 20, 30 (blue, green, cyan, magenta, red circles). The x-axis locations of the random sets
of initial solitons is well defined. On the y-axis, we characterised the initial conditions by taking the mass of the most
massive soliton in the set.

Two main points can be seen in Fig. 3. First, the initially most massive solitons in the simulations typically start
their life with a mass that is already not far o↵ below the mass of the final state evolved configuration. For simulations
starting with 4 initial solitons (blue points), the most massive soliton typically needs to grow by a mere factor of
1.5 or less, to achieve its final mass; for 30 initial solitons (red points), the typical growth is a factor of 2 or less.
This is a small mass adjustment: the evolved central solitons of [3] must be the result of only mild processing of the
initial state. Second, the global properties of the simulation runs depend on the initial number of solitons in the box.
Few-soliton systems populate large |Etot|/M3

tot, while many-soliton systems populate small |Etot|/M3
tot in the plot.

This is not a huge surprise: if [3] had taken a single soliton initial condition, than that simulation would start and
end its life at M/Mtot = 1 and |Etot|/M3

tot = 1/2.63 = 0.054, at the top right of Fig. 3 along the black dashed line.
We conclude that the simulations of [3] were constructed such that one (or a small few) initial state soliton – the

soliton of initially largest mass – grew to absorb essentially the entire (negative) total energy of the system. To do
so, the most massive soliton needed only to grow in mass by a factor of 1.5-2. Fig. 1 in Ref. [3], showing a rendering
of one simulation run, appears qualitatively consistent with this picture. This result is qualitatively consistent with
the assumption we made in Sec. III B, namely that the soliton will grow to suck in all available negative energy while
maintaining mass conservation together with the soliton mass-energy relation. However, the simulations of [3] describe
the evolution of a dominant soliton assembling an energetically sub-dominant halo around it. We, on the other hand,
are more interested in the scenario of a massive, energetically dominant, MW-like halo, assembling a soliton inside
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region and concluded that the density profile in this re-
gion should follow approximately ⇢ ⇠ x� 5

3 , steeper than
the usual inner NFW form ⇢ ⇠ x�1. This would a↵ect
the detailed shape of the rotation curve in the interme-
diate region between the two peaks, but not our general
results.

Eq. (49) was derived for an NFW host halo, but it is
the manifestation of the empirical Eq. (35) that is not
tied to a particular parametrisation of the host halo pro-
file. Building on Eq. (35), we expect in general that for
DM-dominated galaxies, the soliton peak circular veloc-
ity should roughly equal the peak circular velocity in the
host halo. The NFW example demonstrates that details
of the host halo profile a↵ect this result at the 10% level
or so.

In the rest of this paper, when we refer to Eq. (49),
we set the RHS to unity. Approximating the RHS of
Eq. (49) by unity, and replacing maxV

circ,h instead of
maxV

circ,� in Eq. (29), the peak circular velocity of a
host halo allows to predict the scale parameter � and
thus the soliton relevant for that host halo.

A. Comparison to numerical simulations

In Fig. 4 we compare our results to two soliton+halo
configurations from the simulations of [9] and [29] (for [9],
we take the largest halo, and for [29] we take the ini-
tial state of Case C). To calculate the soliton, we read
maxV

circ,h from the large-scale peak (at x ⇠ 20 kpc)
of the numerically extracted halo rotation curves (solid
lines), use it instead of maxV

circ,� in Eq. (29), and read
o↵ the value of �. The predicted soliton bump is shown
in dashed lines. It gives the correct soliton peak rotation
velocity to ⇠ 20% accuracy in both cases, consistent with
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FIG. 4. Comparison of the prediction of Eq. (49) (dashed
lines) to the numerical simulation results (solid lines) of
Refs. [9] (Schive 2014) and [29] (Chan 2017).

B. Comparison to real galaxies

We now consider some observational consequences of
our analysis. We choose to do so by examining the rota-
tion curves of nearby dwarf galaxies with halo masses in
the range ⇠ 109 to a few 1010 M�, within the range cov-
ered by the simulations of [9, 10] and above the minimal
mass of an ULDM halo with m � 10�22 eV.
In Fig. 5 we show the rotation curves of four dwarf

galaxies taken from Ref. [24] (see Ref. [25] for a recent
rendering of these and many other rotation curves), for
which high-resolution kinematical data is available. The
observed rotation curves are compared to the soliton con-
tribution predicted by Eq. (49), for m = 10�21, 10�22

and 2 ⇥ 10�23 eV. Eq. (49) overestimates the rotation
velocity in the inner part of all of the galaxies in Fig. 5.
We emphasize that in using Eq. (49) to predict the soli-

ton, we set the RHS of that equation to unity, and thus
we ignore any details of the shape of the host halo. As
we have learned from the NFW analysis, this prescrip-
tion for deriving the soliton profile would su↵er O(10%)
corrections from the detailed halo shape, but it relieves
us from the need to fit for the virial mass or any other
detail of the host halo. All that is needed is the peak
halo rotation velocity, a directly observable quantity6.
Eq. (49) represents the central value of the soliton–

host halo relation Eq. (35). Ref. [9, 10] showed a scatter
of about a factor of two in their Eq. (34) between simu-
lated halos. This translates to a factor of two scatter in
the soliton � parameter, derived through our procedure.
It is therefore important to check, if natural scatter be-
tween di↵erent galaxies could explain the discrepancy,
with the four galaxies in Fig. 5 being accidental outliers.
In App. A we address this question, by analysing the en-
tire SPARC data base [25] of 175 rotation curves. As we
show, the large majority of galaxies from [25] show strong
tension, and a factor of two scatter between di↵erent ha-
los is not enough to resolve the discrepancy highlighted
by the smaller sample of galaxies in Fig. 5.
The discrepancy remains large, and would be di�cult

to attribute to the scatter seen in the simulations. We
conclude that if the soliton-host halo relation of [9, 10]
is correct, then ULDM in the mass range m ⇠ 10�22 to
m ⇠ 10�21 is ruled out.
For lower particle mass, m . 10�23 eV, the soliton

contribution extends over much of the velocity profile of
the dwarf galaxies under discussion, leaving little room
for a host halo. This limit, where the galaxies are en-
tirely composed of a single giant soliton, was considered
in other works. We do not pursue it further, one reason
being that this range of small m is in significant tension
with Ly-↵ data [15, 16].

6 The rotation curves in Fig. 5 do not show a clear peak within
the range of the measurement; this means that our soliton bump,
derived from the peak velocity actually seen in the data, under-
estimates the true predicted soliton and is thus conservative.
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duce the soliton–host halo relation of [9, 10], was based
on two-soliton collision set-up with highly non uniform
initial state E/M . The subsequent work [12] analysed a
set-up with multiple two-soliton collisions, representing
more uniform initial E/M , and reproduced a soliton–
host halo consistent with that of [9, 10] (albeit with a
di↵erent perspective on the origins of the relation).

Our take from this discussion is that Eq. (35) could
indeed reflect the realistic soliton–host halo relation for
large enough cosmological halos, when the initial distri-
bution of E/M in the virial radius is not highly non-
uniform. Baryons aggregating in the halo centre, or an
initial excess in E/M in some localised region in the halo
(as in [11]) could lead to a more massive soliton.

To close this discussion, we stress that even though
Eq. (35) appears theoretically natural as discussed above,
it is still an empirical result and was only tested in [9, 10]
for host halo masses ranging from ⇠ 108 M� to ⇠
1011 M�. Our key numerical analysis will concern sys-
tems in this range of mass. We defer further speculations
about the theoretical implications of Eq. (35) to future
work.

IV. SOLITON-HOST HALO RELATION AND
GALACTIC ROTATION CURVES

As we have seen, the soliton–host halo relation found in
the simulations of [9, 10] can be summarised by Eq. (35),
equating the energy per unit mass of the virilised host
halo to that in the soliton component. For a virialised
system, the energy per unit mass maps to kinetic energy
density: in particular, the characteristic circular velocity
(or, up to an O(1) geometrical factor, the velocity dis-
persion) of test particles in the halo and in the soliton
should match. The peak circular velocity of the soli-
ton, given by Eqs. (28-29), occurs deep in the inner part,
x < 1 kpc, of the galaxy; while the peak circular velocity
of an NFW-like halo occurs far out at x ⇠ 2Rs, with
Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
simulations of [9, 10] is correct, ULDM predicts that the
peak rotation velocity in the outskirts of a halo should
approximately repeat itself in the deep inner bulge. We
now discuss this result quantitatively.

Consider a halo with an NFW density profile

⇢NFW (x) =
⇢c�c

x
Rs
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1 + x

Rs

⌘
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, (37)

where
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1+c

. (38)

The profile has two parameters: the radius Rs and the
concentration parameter c = R

200

/Rs, where R
200

is the
radius where the average density of the halo equals 200
times the cosmological critical density, roughly indicating

the virial radius of the halo. The gravitational potential
of the halo is
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Near the origin, x ⌧ Rs, �NFW is approximately con-
stant, �NFW (x ⌧ Rs) ⇡ �h, and is related to the mass
of the halo, M
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We can estimate the energy per unit mass of the viri-
alised halo by

E
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|
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c̃ =
c� ln(1 + c)

(1 + c) ln(1 + c)� c
. (43)

Typical values of the concentration parameter are in the
range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10� 20 [31].)
Plugging Eq. (42) into the soliton–host halo relation

Eq. (35), the scaling parameter � is fixed as

�0.23�2 ⇡ E�

M�
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4
�h, (44)
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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We can estimate the energy per unit mass of the viri-
alised halo by
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Typical values of the concentration parameter are in the
range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10� 20 [31].)
Plugging Eq. (42) into the soliton–host halo relation

Eq. (35), the scaling parameter � is fixed as
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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initial excess in E/M in some localised region in the halo
(as in [11]) could lead to a more massive soliton.

To close this discussion, we stress that even though
Eq. (35) appears theoretically natural as discussed above,
it is still an empirical result and was only tested in [9, 10]
for host halo masses ranging from ⇠ 108 M� to ⇠
1011 M�. Our key numerical analysis will concern sys-
tems in this range of mass. We defer further speculations
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work.
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the simulations of [9, 10] can be summarised by Eq. (35),
equating the energy per unit mass of the virilised host
halo to that in the soliton component. For a virialised
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Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
simulations of [9, 10] is correct, ULDM predicts that the
peak rotation velocity in the outskirts of a halo should
approximately repeat itself in the deep inner bulge. We
now discuss this result quantitatively.
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We can estimate the energy per unit mass of the viri-
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Typical values of the concentration parameter are in the
range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10� 20 [31].)
Plugging Eq. (42) into the soliton–host halo relation
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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density: in particular, the characteristic circular velocity
(or, up to an O(1) geometrical factor, the velocity dis-
persion) of test particles in the halo and in the soliton
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Rs the NFW characteristic radius, of order 10 kpc for a
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We can estimate the energy per unit mass of the viri-
alised halo by
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Typical values of the concentration parameter are in the
range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10� 20 [31].)
Plugging Eq. (42) into the soliton–host halo relation
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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We can estimate the energy per unit mass of the viri-
alised halo by
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Typical values of the concentration parameter are in the
range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10� 20 [31].)
Plugging Eq. (42) into the soliton–host halo relation
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.

Which fixes the soliton scale parameter. 
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Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.
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Consider the rotation velocity curve of an ULDM
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This halo rotation curve peaks at x ⇡ 2.16Rs with a
peak value
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On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
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where we used Eq. (44) to fix � and Eq. (29) to relate it
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circ,�.
As anticipated, Eq. (35) predicts approximately equal

peak circular velocities for the inner soliton component
and for the host halo,
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tails of the halo via the factor (c̃/0.4)
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plotted in Fig. 2 as function of the concentration param-
eter.

FIG. 2. Relation between halo and and soliton peak circular
velocities; see Eq. (49) and text for details.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,
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Fig. 3 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black,
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and
bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.

FIG. 3. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo
relation Eq. (35) with m = 10�22 eV. Solid black, dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5⇥ 1010 M� on the left and right
panels, respectively.

In Fig. 3, to define the rotation velocity for the to-
tal system, we set the ULDM mass density for the total
system to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate
the resulting mass profile M(x), and use spherical sym-
metry to find V

circ

(x) =
p
GM(x)/x. This prescrip-

tion for matching between the soliton and NFW parts
is ad-hoc and only roughly consistent with the simula-
tions of [9, 10]. The true transition region between the
NFW part and the soliton part probably deviates from
the pure NFW form. Ref. [32] considered this transition

soliton—host halo relation says:

6

duce the soliton–host halo relation of [9, 10], was based
on two-soliton collision set-up with highly non uniform
initial state E/M . The subsequent work [12] analysed a
set-up with multiple two-soliton collisions, representing
more uniform initial E/M , and reproduced a soliton–
host halo consistent with that of [9, 10] (albeit with a
di↵erent perspective on the origins of the relation).

Our take from this discussion is that Eq. (35) could
indeed reflect the realistic soliton–host halo relation for
large enough cosmological halos, when the initial distri-
bution of E/M in the virial radius is not highly non-
uniform. Baryons aggregating in the halo centre, or an
initial excess in E/M in some localised region in the halo
(as in [11]) could lead to a more massive soliton.

To close this discussion, we stress that even though
Eq. (35) appears theoretically natural as discussed above,
it is still an empirical result and was only tested in [9, 10]
for host halo masses ranging from ⇠ 108 M� to ⇠
1011 M�. Our key numerical analysis will concern sys-
tems in this range of mass. We defer further speculations
about the theoretical implications of Eq. (35) to future
work.

IV. SOLITON-HOST HALO RELATION AND
GALACTIC ROTATION CURVES

As we have seen, the soliton–host halo relation found in
the simulations of [9, 10] can be summarised by Eq. (35),
equating the energy per unit mass of the virilised host
halo to that in the soliton component. For a virialised
system, the energy per unit mass maps to kinetic energy
density: in particular, the characteristic circular velocity
(or, up to an O(1) geometrical factor, the velocity dis-
persion) of test particles in the halo and in the soliton
should match. The peak circular velocity of the soli-
ton, given by Eqs. (28-29), occurs deep in the inner part,
x < 1 kpc, of the galaxy; while the peak circular velocity
of an NFW-like halo occurs far out at x ⇠ 2Rs, with
Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
simulations of [9, 10] is correct, ULDM predicts that the
peak rotation velocity in the outskirts of a halo should
approximately repeat itself in the deep inner bulge. We
now discuss this result quantitatively.

Consider a halo with an NFW density profile
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, (37)

where
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. (38)

The profile has two parameters: the radius Rs and the
concentration parameter c = R

200

/Rs, where R
200

is the
radius where the average density of the halo equals 200
times the cosmological critical density, roughly indicating

the virial radius of the halo. The gravitational potential
of the halo is

�NFW (x) = �4⇡G⇢c�cR
3
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x
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1 +

x
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◆
. (39)

Near the origin, x ⌧ Rs, �NFW is approximately con-
stant, �NFW (x ⌧ Rs) ⇡ �h, and is related to the mass
of the halo, M
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= 200⇢c
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We can estimate the energy per unit mass of the viri-
alised halo by
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. (41)

This gives

E

M
|
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4
�h, (42)

c̃ =
c� ln(1 + c)

(1 + c) ln(1 + c)� c
. (43)

Typical values of the concentration parameter are in the
range c ⇠ 5 � 30 [30]. In this range, c̃ varies between
c̃ ⇠ 0.55 � 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10� 20 [31].)
Plugging Eq. (42) into the soliton–host halo relation

Eq. (35), the scaling parameter � is fixed as
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�h, (44)

which implies5

M� ⇡ 2.1
p
�c̃�h

M2

pl

m
(45)

⇡ 2.4⇥ 109
⇣ m

10�22 eV

⌘�1

✓
H(z)

H
0

◆ 1
3
✓

M
200

1012 M�

◆ 1
3

f(c) M�,

f(c) = 0.54

vuuutc

✓
c

1 + c

◆
1� ln(1+c)

c⇣
ln(1 + c)� c

1+c

⌘
2

.

Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 � 1.1 for c = 5 � 30. It agrees parametrically with
the simulation result, Eq. (32) (including the redshift de-
pendence, which we have suppressed in Eq. (32)). It also
agrees quantitatively to better than a factor of 2, sug-
gesting that the host halos in [9, 10] where not far from
the NFW profile that we used to derive Eq. (45).

5 For numerical estimates we use H0 = 70 km/s/Mpc.

Which fixes the soliton scale parameter. 

Equal specific energy ==> equal specific kinetic energy  
       ==> ~equal peak rotation velocity
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Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by
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This halo rotation curve peaks at x ⇡ 2.16Rs with a
peak value
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On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of
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where we used Eq. (44) to fix � and Eq. (29) to relate it
to maxV

circ,�.
As anticipated, Eq. (35) predicts approximately equal

peak circular velocities for the inner soliton component
and for the host halo,
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independent of the particle mass m, independent of the
halo mass M
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, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . This factor is

plotted in Fig. 2 as function of the concentration param-
eter.

FIG. 2. Relation between halo and and soliton peak circular
velocities; see Eq. (49) and text for details.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,
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Fig. 3 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black,
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and
bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.

FIG. 3. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo
relation Eq. (35) with m = 10�22 eV. Solid black, dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5⇥ 1010 M� on the left and right
panels, respectively.

In Fig. 3, to define the rotation velocity for the to-
tal system, we set the ULDM mass density for the total
system to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate
the resulting mass profile M(x), and use spherical sym-
metry to find V

circ

(x) =
p
GM(x)/x. This prescrip-

tion for matching between the soliton and NFW parts
is ad-hoc and only roughly consistent with the simula-
tions of [9, 10]. The true transition region between the
NFW part and the soliton part probably deviates from
the pure NFW form. Ref. [32] considered this transition

7

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by

V 2

circ,h(x)

V 2

circ,h(Rs)
=

2(1 + z) ln(1 + z)� 2z

z(1 + z)(ln(4)� 1)
, z ⌘ x

Rs
.(46)
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peak value
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On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of

maxV
circ,� ⇡ 1.51⇥ 105

✓
c̃

0.4

◆ 1
2

(��h)
1
2 km/s, (48)

where we used Eq. (44) to fix � and Eq. (29) to relate it
to maxV
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As anticipated, Eq. (35) predicts approximately equal

peak circular velocities for the inner soliton component
and for the host halo,
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independent of the particle mass m, independent of the
halo mass M
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, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)
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2 . This factor is

plotted in Fig. 2 as function of the concentration param-
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FIG. 2. Relation between halo and and soliton peak circular
velocities; see Eq. (49) and text for details.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,
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Fig. 3 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black,
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and
bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.
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FIG. 3. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo
relation Eq. (35) with m = 10�22 eV. Solid black, dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5⇥ 1010 M� on the left and right
panels, respectively.

In Fig. 3, to define the rotation velocity for the to-
tal system, we set the ULDM mass density for the total
system to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate
the resulting mass profile M(x), and use spherical sym-
metry to find V

circ

(x) =
p
GM(x)/x. This prescrip-

tion for matching between the soliton and NFW parts
is ad-hoc and only roughly consistent with the simula-
tions of [9, 10]. The true transition region between the
NFW part and the soliton part probably deviates from
the pure NFW form. Ref. [32] considered this transition
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FIG. 2. Relation between halo and and soliton peak circular
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Fig. 3 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black,
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and
bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.

FIG. 3. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo
relation Eq. (35) with m = 10�22 eV. Solid black, dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5⇥ 1010 M� on the left and right
panels, respectively.

In Fig. 3, to define the rotation velocity for the to-
tal system, we set the ULDM mass density for the total
system to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate
the resulting mass profile M(x), and use spherical sym-
metry to find V

circ

(x) =
p
GM(x)/x. This prescrip-

tion for matching between the soliton and NFW parts
is ad-hoc and only roughly consistent with the simula-
tions of [9, 10]. The true transition region between the
NFW part and the soliton part probably deviates from
the pure NFW form. Ref. [32] considered this transition
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On the other hand, in the inner galaxy x ⌧ Rs, the circu-
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Fig. 3 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black,
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and
bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.
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FIG. 3. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo
relation Eq. (35) with m = 10�22 eV. Solid black, dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5⇥ 1010 M� on the left and right
panels, respectively.

In Fig. 3, to define the rotation velocity for the to-
tal system, we set the ULDM mass density for the total
system to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate
the resulting mass profile M(x), and use spherical sym-
metry to find V

circ

(x) =
p
GM(x)/x. This prescrip-

tion for matching between the soliton and NFW parts
is ad-hoc and only roughly consistent with the simula-
tions of [9, 10]. The true transition region between the
NFW part and the soliton part probably deviates from
the pure NFW form. Ref. [32] considered this transition
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halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black,
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and
bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.

FIG. 3. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo
relation Eq. (35) with m = 10�22 eV. Solid black, dashed
orange, and dashed blue show Vcirc due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M200 = 1012 M� and 5⇥ 1010 M� on the left and right
panels, respectively.

In Fig. 3, to define the rotation velocity for the to-
tal system, we set the ULDM mass density for the total
system to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate
the resulting mass profile M(x), and use spherical sym-
metry to find V

circ

(x) =
p
GM(x)/x. This prescrip-

tion for matching between the soliton and NFW parts
is ad-hoc and only roughly consistent with the simula-
tions of [9, 10]. The true transition region between the
NFW part and the soliton part probably deviates from
the pure NFW form. Ref. [32] considered this transition
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independent of the particle mass m, independent of the
halo mass M

200

, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)
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2 . This factor is

plotted in Fig. 2 as function of the concentration param-
eter.

FIG. 2. Relation between halo and and soliton peak circular
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while PRIMAT gives

YBBN
P = 0.24714+(0.00012)0.00049

�(0.00013)0.00049 (95 %, TT,TE,EE+lowE). (72b)

The first set of error bars (in parentheses) reflects only the un-
certainty on !b, while the second set includes the theoretical
uncertainty �(YBBN

P ) added in quadrature. The two mean val-
ues are shifted by �YBBN

P ⇡ 4.2 ⇥ 10�4 because of di↵erences
in the adopted neutron lifetime and because PRIMAT includes
a more elaborate treatment of weak interaction rates. However,
this shift is quite close to the theoretical errors estimated from
both codes, and about an order of magnitude smaller that the
observational error quoted by Aver et al. (2015). As shown in
Fig. 38, the results from both codes lie well within the region
favoured by the Aver et al. (2015) observations. They are also
compatible at the 1� level with the combined Aver et al. (2015)
and Peimbert et al. (2016) results, but in 3.6–3.8� tension with
the Izotov et al. (2014) results. Evidently, there is an urgent need
to resolve the di↵erences between the helium abundance mea-
surements and this tension should be borne in mind when we
use the Aver et al. (2015) measurements below.
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Fig. 38. Summary of BBN results with Ne↵ = 3.046, using
Planck TT,TE,EE+lowE. All bands are 68 % credible intervals.
The standard BBN predictions computed with PArthENoPE are
shown in green (case (b) in the text), while those from PRIMAT
are in black dashed lines (case (c)). The blue lines show the
PArthENoPE results based on the experimental determination of
nuclear rates by Adelberger et al. (2011), instead of the theoret-
ical rate of Marcucci et al. (2016, case (a)).

Primordial deuterium. There has been significant progress re-
lated to deuterium abundance determination since the comple-
tion of PCP15. On the observational side, Cooke et al. (2018)
have published a new estimate based on their best seven
measurements in metal-poor damped Ly↵ systems, yDP ⌘
105nD/nH = 2.527 ± 0.030 (68 % CL). On the calculational
side, the value of the nuclear reaction rate d(p, �)3He, which
has a major impact on BBN computations of the primordial
deuterium calculation, has now been calculated ab initio. The
most recent theoretical calculation is presented in Marcucci et al.
(2016, leading to a smaller value of yDP) and di↵ers significantly

from previous predictions extrapolated from laboratory experi-
ments by Adelberger et al. (2011). This issue should be settled
by forthcoming precise measurements by the LUNA experiment
(Gustavino 2017). In this paper we will compare the results ob-
tained when the deuterium fraction is computed in three di↵erent
ways:

(a) with PArthENoPE, assuming the experimental rate from
Adelberger et al. (2011);

(b) with PArthENoPE, using the theoretical rate of
Marcucci et al. (2016);

(c) with PRIMAT, using the rate from Iliadis et al. (2016), based
on a hybrid method that consists of assuming the energy de-
pendence of the rate computed ab initio by Marcucci et al.
(2005) and normalizing it with a fit to a selection of labora-
tory measurements.

In addition to the d(p, �)3He reaction rates, the current versions
of PArthENoPE, PRIMAT, and other codes (such as that devel-
oped by Nollett & Burles 2000; Nollett & Holder 2011) make
di↵erent assumptions on other rates, in particular those of the
deuterium fusion reactions d(d, n)3He and d(d, p)3H, which also
contribute significantly to the error budget of the primordial deu-
terium fraction. PArthENoPE estimates these rates by averaging
over all existing measurements, while PRIMAT again uses a hy-
brid method based on a subset of the existing data. When using
one of approaches (a), (b), or (c), we adopt di↵erent theoretical
errors. For (a), Adelberger et al. (2011) estimate that the error in
their extrapolated rate propagates to �(yDP) = 0.06. For (b), we
rely on the claim by Marcucci et al. (2016) that the error is now
dominated by uncertainties on deuterium fusion and propagates
to �(yDP) = 0.03. For (c), the error computed by PRIMAT (close
to the best-fit value of !b) is similar, �(yDP) = 0.032.

These systematic error estimates are consistent with the dif-
ferences between di↵erent BBN codes. Taking d(p, �)3He from
Marcucci et al. (2016), the prediction of PArthENoPE 1.10 is
higher than that of the code by Nollett & Holder (2011) by
about �yDP = 0.04, which is comparable to the theoretical er-
ror adopted in this paper. Nollett & Holder (2011) attribute this
shift to their di↵erent assumptions on the deuterium fusion rates.
The shift between cases (b) and (c) is smaller, �yDP = 0.015,
suggesting that di↵erences in d(p, �)3He and in the deuterium
fusion rates nearly compensate each other in the final result.

Nuclear rate uncertainties are critically important in the dis-
cussion of the compatibility between deuterium measurements
and CMB data. Cooke et al. (2018) reported that their measure-
ment of primordial deuterium was in moderate 2.0� tension
with the Planck baryon density from PCP15. This is based on
the predictions of the code of Nollett & Holder (2011) with the
nuclear rate of Marcucci et al. (2016), including observational
errors on yDP and !b, but no theoretical error on the BBN code
prediction. Taking the same assumptions as Cooke et al. (2018),
but switching to PArthENoPE 1.10, we find agreement at the
1.4� level; when adding the theoretical error �(yDP) = 0.03, we
find consistency to 1.1�.

We now update this discussion using the latest Planck re-
sults. With our three assumptions (a), (b), and (c) on standard
BBN, the determination of !b by Planck 2018 for the base-
⇤CDM model (see Eq. 71) implies

(a) yDP = 2.587+(0.055)0.13
�(0.052)0.13

(b) yDP = 2.455+(0.054)0.081
�(0.053)0.080

(c) yDP = 2.439+(0.053)0.082
�(0.051)0.081
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Evidence for DM is gravitational: a huge problem. Naturally, our efforts are diverging.
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P ) added in quadrature. The two mean val-
ues are shifted by �YBBN

P ⇡ 4.2 ⇥ 10�4 because of di↵erences
in the adopted neutron lifetime and because PRIMAT includes
a more elaborate treatment of weak interaction rates. However,
this shift is quite close to the theoretical errors estimated from
both codes, and about an order of magnitude smaller that the
observational error quoted by Aver et al. (2015). As shown in
Fig. 38, the results from both codes lie well within the region
favoured by the Aver et al. (2015) observations. They are also
compatible at the 1� level with the combined Aver et al. (2015)
and Peimbert et al. (2016) results, but in 3.6–3.8� tension with
the Izotov et al. (2014) results. Evidently, there is an urgent need
to resolve the di↵erences between the helium abundance mea-
surements and this tension should be borne in mind when we
use the Aver et al. (2015) measurements below.
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Fig. 38. Summary of BBN results with Ne↵ = 3.046, using
Planck TT,TE,EE+lowE. All bands are 68 % credible intervals.
The standard BBN predictions computed with PArthENoPE are
shown in green (case (b) in the text), while those from PRIMAT
are in black dashed lines (case (c)). The blue lines show the
PArthENoPE results based on the experimental determination of
nuclear rates by Adelberger et al. (2011), instead of the theoret-
ical rate of Marcucci et al. (2016, case (a)).

Primordial deuterium. There has been significant progress re-
lated to deuterium abundance determination since the comple-
tion of PCP15. On the observational side, Cooke et al. (2018)
have published a new estimate based on their best seven
measurements in metal-poor damped Ly↵ systems, yDP ⌘
105nD/nH = 2.527 ± 0.030 (68 % CL). On the calculational
side, the value of the nuclear reaction rate d(p, �)3He, which
has a major impact on BBN computations of the primordial
deuterium calculation, has now been calculated ab initio. The
most recent theoretical calculation is presented in Marcucci et al.
(2016, leading to a smaller value of yDP) and di↵ers significantly

from previous predictions extrapolated from laboratory experi-
ments by Adelberger et al. (2011). This issue should be settled
by forthcoming precise measurements by the LUNA experiment
(Gustavino 2017). In this paper we will compare the results ob-
tained when the deuterium fraction is computed in three di↵erent
ways:

(a) with PArthENoPE, assuming the experimental rate from
Adelberger et al. (2011);

(b) with PArthENoPE, using the theoretical rate of
Marcucci et al. (2016);

(c) with PRIMAT, using the rate from Iliadis et al. (2016), based
on a hybrid method that consists of assuming the energy de-
pendence of the rate computed ab initio by Marcucci et al.
(2005) and normalizing it with a fit to a selection of labora-
tory measurements.

In addition to the d(p, �)3He reaction rates, the current versions
of PArthENoPE, PRIMAT, and other codes (such as that devel-
oped by Nollett & Burles 2000; Nollett & Holder 2011) make
di↵erent assumptions on other rates, in particular those of the
deuterium fusion reactions d(d, n)3He and d(d, p)3H, which also
contribute significantly to the error budget of the primordial deu-
terium fraction. PArthENoPE estimates these rates by averaging
over all existing measurements, while PRIMAT again uses a hy-
brid method based on a subset of the existing data. When using
one of approaches (a), (b), or (c), we adopt di↵erent theoretical
errors. For (a), Adelberger et al. (2011) estimate that the error in
their extrapolated rate propagates to �(yDP) = 0.06. For (b), we
rely on the claim by Marcucci et al. (2016) that the error is now
dominated by uncertainties on deuterium fusion and propagates
to �(yDP) = 0.03. For (c), the error computed by PRIMAT (close
to the best-fit value of !b) is similar, �(yDP) = 0.032.

These systematic error estimates are consistent with the dif-
ferences between di↵erent BBN codes. Taking d(p, �)3He from
Marcucci et al. (2016), the prediction of PArthENoPE 1.10 is
higher than that of the code by Nollett & Holder (2011) by
about �yDP = 0.04, which is comparable to the theoretical er-
ror adopted in this paper. Nollett & Holder (2011) attribute this
shift to their di↵erent assumptions on the deuterium fusion rates.
The shift between cases (b) and (c) is smaller, �yDP = 0.015,
suggesting that di↵erences in d(p, �)3He and in the deuterium
fusion rates nearly compensate each other in the final result.

Nuclear rate uncertainties are critically important in the dis-
cussion of the compatibility between deuterium measurements
and CMB data. Cooke et al. (2018) reported that their measure-
ment of primordial deuterium was in moderate 2.0� tension
with the Planck baryon density from PCP15. This is based on
the predictions of the code of Nollett & Holder (2011) with the
nuclear rate of Marcucci et al. (2016), including observational
errors on yDP and !b, but no theoretical error on the BBN code
prediction. Taking the same assumptions as Cooke et al. (2018),
but switching to PArthENoPE 1.10, we find agreement at the
1.4� level; when adding the theoretical error �(yDP) = 0.03, we
find consistency to 1.1�.

We now update this discussion using the latest Planck re-
sults. With our three assumptions (a), (b), and (c) on standard
BBN, the determination of !b by Planck 2018 for the base-
⇤CDM model (see Eq. 71) implies

(a) yDP = 2.587+(0.055)0.13
�(0.052)0.13

(b) yDP = 2.455+(0.054)0.081
�(0.053)0.080
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P ) added in quadrature. The two mean val-
ues are shifted by �YBBN

P ⇡ 4.2 ⇥ 10�4 because of di↵erences
in the adopted neutron lifetime and because PRIMAT includes
a more elaborate treatment of weak interaction rates. However,
this shift is quite close to the theoretical errors estimated from
both codes, and about an order of magnitude smaller that the
observational error quoted by Aver et al. (2015). As shown in
Fig. 38, the results from both codes lie well within the region
favoured by the Aver et al. (2015) observations. They are also
compatible at the 1� level with the combined Aver et al. (2015)
and Peimbert et al. (2016) results, but in 3.6–3.8� tension with
the Izotov et al. (2014) results. Evidently, there is an urgent need
to resolve the di↵erences between the helium abundance mea-
surements and this tension should be borne in mind when we
use the Aver et al. (2015) measurements below.
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Fig. 38. Summary of BBN results with Ne↵ = 3.046, using
Planck TT,TE,EE+lowE. All bands are 68 % credible intervals.
The standard BBN predictions computed with PArthENoPE are
shown in green (case (b) in the text), while those from PRIMAT
are in black dashed lines (case (c)). The blue lines show the
PArthENoPE results based on the experimental determination of
nuclear rates by Adelberger et al. (2011), instead of the theoret-
ical rate of Marcucci et al. (2016, case (a)).

Primordial deuterium. There has been significant progress re-
lated to deuterium abundance determination since the comple-
tion of PCP15. On the observational side, Cooke et al. (2018)
have published a new estimate based on their best seven
measurements in metal-poor damped Ly↵ systems, yDP ⌘
105nD/nH = 2.527 ± 0.030 (68 % CL). On the calculational
side, the value of the nuclear reaction rate d(p, �)3He, which
has a major impact on BBN computations of the primordial
deuterium calculation, has now been calculated ab initio. The
most recent theoretical calculation is presented in Marcucci et al.
(2016, leading to a smaller value of yDP) and di↵ers significantly

from previous predictions extrapolated from laboratory experi-
ments by Adelberger et al. (2011). This issue should be settled
by forthcoming precise measurements by the LUNA experiment
(Gustavino 2017). In this paper we will compare the results ob-
tained when the deuterium fraction is computed in three di↵erent
ways:

(a) with PArthENoPE, assuming the experimental rate from
Adelberger et al. (2011);

(b) with PArthENoPE, using the theoretical rate of
Marcucci et al. (2016);

(c) with PRIMAT, using the rate from Iliadis et al. (2016), based
on a hybrid method that consists of assuming the energy de-
pendence of the rate computed ab initio by Marcucci et al.
(2005) and normalizing it with a fit to a selection of labora-
tory measurements.

In addition to the d(p, �)3He reaction rates, the current versions
of PArthENoPE, PRIMAT, and other codes (such as that devel-
oped by Nollett & Burles 2000; Nollett & Holder 2011) make
di↵erent assumptions on other rates, in particular those of the
deuterium fusion reactions d(d, n)3He and d(d, p)3H, which also
contribute significantly to the error budget of the primordial deu-
terium fraction. PArthENoPE estimates these rates by averaging
over all existing measurements, while PRIMAT again uses a hy-
brid method based on a subset of the existing data. When using
one of approaches (a), (b), or (c), we adopt di↵erent theoretical
errors. For (a), Adelberger et al. (2011) estimate that the error in
their extrapolated rate propagates to �(yDP) = 0.06. For (b), we
rely on the claim by Marcucci et al. (2016) that the error is now
dominated by uncertainties on deuterium fusion and propagates
to �(yDP) = 0.03. For (c), the error computed by PRIMAT (close
to the best-fit value of !b) is similar, �(yDP) = 0.032.

These systematic error estimates are consistent with the dif-
ferences between di↵erent BBN codes. Taking d(p, �)3He from
Marcucci et al. (2016), the prediction of PArthENoPE 1.10 is
higher than that of the code by Nollett & Holder (2011) by
about �yDP = 0.04, which is comparable to the theoretical er-
ror adopted in this paper. Nollett & Holder (2011) attribute this
shift to their di↵erent assumptions on the deuterium fusion rates.
The shift between cases (b) and (c) is smaller, �yDP = 0.015,
suggesting that di↵erences in d(p, �)3He and in the deuterium
fusion rates nearly compensate each other in the final result.

Nuclear rate uncertainties are critically important in the dis-
cussion of the compatibility between deuterium measurements
and CMB data. Cooke et al. (2018) reported that their measure-
ment of primordial deuterium was in moderate 2.0� tension
with the Planck baryon density from PCP15. This is based on
the predictions of the code of Nollett & Holder (2011) with the
nuclear rate of Marcucci et al. (2016), including observational
errors on yDP and !b, but no theoretical error on the BBN code
prediction. Taking the same assumptions as Cooke et al. (2018),
but switching to PArthENoPE 1.10, we find agreement at the
1.4� level; when adding the theoretical error �(yDP) = 0.03, we
find consistency to 1.1�.

We now update this discussion using the latest Planck re-
sults. With our three assumptions (a), (b), and (c) on standard
BBN, the determination of !b by Planck 2018 for the base-
⇤CDM model (see Eq. 71) implies
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