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Question 1 (Weighing the Universe)

We can estimate the total amount of luminous matter in the Universe, using information about the
number density of galaxies and the mass-to light ratio, Υ, for each type of galaxy. The mass-to-light
ratio is defined, in Solar units, as Υ = (M/M�)/(L/L�). The mass-to-light ratio is well known for stars
in the main branch and stellar evolution inside galaxies can be used to determine this quantity for a
whole galaxy. The exact value of Υ depends on the type of galaxy (e.g., for elliptical galaxies Υ ≈ 6.5,
for spiral galaxies Υ ≈ 1− 5, and irregular galaxies have Υ ≈ 1).

The number of galaxies per volume and per unit luminosity (a quantity referred to as “galaxy
luminosity density function”, Φ(L)) can be measured on small scales and extrapolated to the whole
Universe. An analytical fitting function (Schechter function) can be found that reads

Φ(L) =
Φ∗
L∗

(
L

L∗

)α
e−L/L∗ ,

with parameters L∗ = 2.53× 1010 L�, Φ∗ = 4.1× 10−3 Mpc−3, and α = −1.25.
How much mass is concentrated in luminous galaxies (compared to the critical density)? Hint:

estimate the mean luminosity density as L =
∫
LΦ(L) and then the matter density multiplying by the

mass-to-light ratio ρ = LΥ.
Use M� = 1.116× 1057 GeV ρc = 8.0992× h2 × 10−47 GeV−4, and 1 Mpc=1.5637× 1038 GeV−1.

Question 2 (Boltzman Equation 1)

In the derivation of Boltzmann’s equation for the evolution of the number density of massive species inthe
Early Universe we expanded the Liouville operator, L̂, that acts on the density distribution function.
Prove that for a FRW universe the following relation holds

L̂ = pµ
∂

∂xµ
− Γµσρp

σpρ
∂

∂pµ

= E
∂

∂t
−H|~p|2 ∂

∂E
(1)

Question 3 (Boltzman Equation 2)

Later, we performed an integral in momentum space that yielded

g

(2π)3

∫
d3~p

E

[
E
∂f

∂t
−H|~p|2 ∂f

∂E

]
=
dn

dt
+ 3Hn (2)

Check this result.
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Question 4 (Yield at freeze-out)

It is easy to estimate the value of the Yield that we need in order to reproduce the correct DM relic
abundance, Ωh2 ≈ 0.1, since

Ωh2 =
ρχ
ρc
h2 =

mχnχh
2

ρc
=
mχY∞s0h

2

ρc
, (3)

where Y∞ corresponds to the DM Yield today and s0 is todays entropy density. We can assume that
the Yield did not change since DM freeze-out and therefore

Ωh2 =
mχYfs0h

2

ρc
. (4)

Using the measured value s0 = 2970 cm−3, and the value of the critical density ρc = 1.054×10−5 h2 GeV
cm−3, as well as Plancks result on the DM relic abundance, estimate the correct range of values of the
yield at freeze-out and the approximate values of xf .

Question 5 (Freeze out of DM particles)

Using Botlzmann equation, expressed in terms of the yield Y = n/s, which reads

dY

dx
= −λ〈σv〉

x2

(
Y 2 − Y 2

eq

)
, (5)

define the quantity ∆Y ≡ Y − Yeq and show that, for non-relativistic particles, the solution can be
approximated as

∆Y = −
dYeq
dx

Yeq

x2

2λ〈σv〉
, 1 < x� xf (6)

∆Y∞ = Y∞ =
xf

λ
(
a+ b

2 xf

) , x� xf (7)

Question 6 (Dark Matter relic density 1)

Consider a simple model in which the Dark Matter is a Dirac fermion, χ, which only couples to the
Standard Model sector through the exchange of the a pseudoscalar particle A. The pseudoscalar A has
couplings gχ to the dark matter and gb to b quarks as described by the Lagrangian

L = i
(
gχχ̄γ

5χ+ gbb̄γ
5b
)
A

• Draw the Feynman diagram that corresponds to the pair-annihilation of two dark matter particles
into bb̄ .

• Considering only Dark Matter annihilation into bb̄, the annihilation cross section in the Early
Universe can be expanded in plane waves as 〈σv〉 ≈ abb̄ + bbb̄ x, with (see e.g, Ref.[2])

abb̄ =
1

m2
χ

(
Nc
32π

(
1− 4m2

b

s

)1/2
1

2

∫ 1

−1

d cos θCM |Mχχ→bb|2
)
s=4m2

χ
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Show that to leading order in velocity (i.e., x = 0)

〈σv〉 ≈ 3

2π

(gχgb)
2m2

χ

√
1−m2

b/m
2
χ

(4m2
χ −m2

A)2 +m2
AΓ2

A

Remember to average over initial spins and sum over final ones. You will also need the following

trace, Tr
[
(/p1
−mχ)γ5(/p2

+mχ)γ5
]

= 4(−p1 · p2 −m2
χ).

• Show that if the mediator is a scalar particle instead of a pseudoscalar then abb̄ = 0.

• Given a dark matter mass mχ = 100 GeV and a pseudoscalar mass mA = 1000 GeV, estimate the
value of the coupling gχgb for which the correct relic density is obtained. Neglect the pseudoscalar
decay width, ΓA and use that

Ωχh
2 ≈ 3× 10−10 GeV−2

〈σv〉

Question 7 (Dark Matter detection 1)

Consider now a scalar Dark Matter model, φ, which only couples to the Standard Model sector through
the exchange of the Higgs boson. The coupling, CφφH0

SM
(which can be understood as coming from a

quartic term φφH0
SMH

0
SM ) is fixed by imposing that the relic density is correct, Ωφh

2 ≈ 0.1, obtaining
CφφH0

SM
≈ 20GeV . Compute the prediction for the spin-independent scattering cross-section off pro-

tons, σSIφ−p, and compare it with current experimental constraints from LUX and SuperCDMS. Is this
cadidate viable or is it excluded if it has a mass mφ < 20 GeV?

To do this,

• Write down the effective Lagrangian that describes the elastic scattering of φ with quarks and
express the interaction strength, αq, in terms of the fundamental coupling CφφH0

SM
.

• Assume that the scattering off protons can be computed assuming that the contribution of s quarks
is dominant.

• The expression for the scattering cross-section of scalar dark matter can be found, e.g., in Section
3.4 of Ref. [6].

σSIφ−p =
fpm

2
p

4π(mφ +mp)2
, (8)

where
fp
mp

=
∑

qi=u,d,s

fpTqi
αqi
mqi

+
2

27
fpTG

∑
qi=c,b,t

αqi
mqi

. (9)

We can consider for simplicity that the s quark contribution dominates, and use fTqs = 0.229.
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Question 8 (Dark Matter detection 2)

In the previous question we noticed that the predictions for σSIχ−p exceed the current experimental limits
from the direct detection experiments LUX and SuperCDMS. Is there any way in which we can “fix”
this model?

• Think about why the annihilation cross section and the scattering cross section are related in the
example above. How can we break this relation?

• Consider enlarging the “exotic” sector by including more particles.

Question 9 (Neutrino decoupling 1)

In the Early Universe, neutrinos remain in equilibrium through the process e+ + e− ←→ νe + ν̄e. Using
that both the electron-positron and neutrino populations are relativistic and therefore their number
density scales as n ∼ T 3, the decoupling temperature of neutrinos can be roughly estimated by equating
the annihilation rate Γ = n〈σv〉 and the Hubble expansion rate H =

√
8πGρ/3. The energy density of

the Universe scales as ρ ∼ T 4. Show that neutrinos decouple at approximately T ∼ 1 MeV.

Question 10 (Neutrino decoupling 2)

From the question above, we know that when neutrinos decouple, they are still relativistic. The other
relativistic species in the thermal bath are electrons, positrons, photons and the three neutrinos and
antineutrinos. With this information the relic density of neutrinos in the Universe today can be estimated
as a function of the neutrino mass.

To do that, remember that for relativistic species the Yield at equilibrium can be written as yeq =
45

2π4 ζ(3)
geff
g∗s
≈ 0.278

geff
g∗s

.
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