Plan

Part I: Functional Formulation of QFT, renormalization, Wilson RG

Part II: Lattice Formulation of scalar, fermion and gauge QFT

Part III: Lattice QCD: numerical methods and applications

Introduction to Lattice Field Theory P. Hernández (IFIC, UVEG-CSIC)

Plan

Part I: Functional Formulation of QFT, renormalization, Wilson RG Part II: Lattice Formulation of scalar, fermion and gauge QFT Part III: Lattice QCD: numerical methods and applications Bibliography

L. Lellouch et al. (ed.), Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing. 93rd Session Les Houches International School Oxford University Press 2011

C. Gattringer & CB Lang, QCD on the Lattice An Introduction for Beginners Springer Verlag 2009

T. DeGrand & C DeTar, Lattice Methods for Quantum Chromodynamics World Scientific 2006

HJ Rothe, Lattice Gauge Theories (3rd ed.) World Scientific 2005

J. Smit, Introduction to Quantum Fields on a Lattice Cambridge University Press 2002

[pioneer] M Creutz, Quarks, Gluons and Lattices Cambridge University Press 1983

The Standard Model of particle physics has been tested sub % to be the theory describing microscopic particles and their interactions

Parity Violation

The Standard Model of particle physics has been tested sub % to be the theory describing microscopic particles and their interactions

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{matter} + \mathcal{L}_{SSB}$$

Gauge principle

 $SU(3) \times SU(2) \times U(1)_Y$

The Standard Model of particle physics has been tested sub % to be the theory describing microscopic particles and their interactions

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{matter} + \mathcal{L}_{SSB}$$

$$\mathcal{L}_{gauge} = -\frac{1}{4g_{U(1)}^2} B_{\mu\nu} B_{\mu\nu} - \frac{1}{4g_{SU(2)}^2} W_{\mu\nu} W_{\mu\nu} - \frac{1}{4g_{SU(3)}^2} G_{\mu\nu} G_{\mu\nu}$$

$$\mathcal{L}_{matter} = \sum_{a} \bar{\Psi}^a i \ \mathcal{D}\Psi^a$$

$$\mathcal{L}_{SSB} = \sum_{ab} \bar{\Psi}^a Y_{ab} \Phi \Psi^b + h.c. + \mathcal{L}(\Phi)$$

$$\underbrace{\left\{ \begin{array}{c} \zeta = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ + \zeta F \partial \varphi + h.c. \\ + \beta \varphi f^2 - V(\phi) \end{array}\right\}}_{q \neq \mu}$$

The Standard Model interactions imply a *#* of free parameters and accidental symmetries:

Sector	Free Param.	Discrete Sym.	Flavour Sym.
Gauge Gauge+matter <mark>Gauge+matter+SSB</mark>	3 3 22-24	$\begin{array}{c} C, P, T \\ T, Q', P \\ Q', P', T \end{array}$	$ \prod_{\substack{\text{multiplet}\\ U(1)_{B-L}} U(N_f) $

+ A non-accidental "symmetry": strong CP

$$\mathcal{L}_{\rm SM} \supset \overline{\theta} \frac{\alpha_s}{8\pi} G \tilde{G} \qquad \overline{\theta} \leq 10^{-10}$$

Most of what we know is derived from perturbation theory and is not enough!

The need to go beyond perturbation theory

SU(3) interactions weak at large energies become strong at low energies

Growth of the coupling at low energies: Confinement Generation of a mass gap Chiral symmetry breaking

Confinement

We do not observe asymptotic states with net color charge, only hadrons which are color singlets

Static potential (potential between infinitely heavy quarks) grows with r:

Mass gap

Light hadron masses (except pions) are dominated by the strong binding energy

$$\frac{m_{\rm proton}}{2m_u + m_d} \sim 100$$

The mass of ordinary matter is mostly color binding energy!

One of the 6 Millennium Prize Problems still to be solved (1M\$ prize!)

Yang–Mills Existence and Mass Gap. Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory exists on R_4 and has a mass gap $\Delta > 0$. Existence includes establishing axiomatic properties at least as strong as those cited in [45, 35].

Spontaneous Chiral Symmetry Breaking

The lightest pseudoscalar mesons are significantly lighter than the mass gap because they are Nambu-Goldstone bosons of chiral symmetry breaking

In the limit $m_u = m_d = 0$, there is a chiral global symmetry in QCD

$$\left(\begin{array}{c} u \\ d \end{array} \right)_L \to U_L \left(\begin{array}{c} u \\ d \end{array} \right)_L \qquad \qquad \left(\begin{array}{c} u \\ d \end{array} \right)_R \to U_R \left(\begin{array}{c} u \\ d \end{array} \right)_R$$

Due to the strong interactions a quark condensate forms:

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \Sigma \ \delta_{ij}$$

Spontaneous symmetry breaking:

$$SU(2)_L \times SU(2)_R \to SU(2)_V$$

Three goldstone bosons:

$$\pi^{\pm},\pi^{0}$$

Chiral Symmetry Breaking

Goldstone theorem:

$$\langle 0|A^a_\mu(x)|\pi^a(p)\rangle = ip_\mu F_\pi e^{-ipx}, \quad A^a_\mu = \bar{Q}\gamma_\mu\gamma_5 T^a Q$$

 $\langle \partial_{\mu} A^{a}_{\mu}(x) P^{a}(y) \rangle = \langle \bar{Q}(x) \{ M, T^{a} \} \gamma_{5} Q(x) P^{a}(y) \rangle - \delta(x-y) \langle \delta^{a} P^{a}(y) \rangle$

$$M_{\pi}^{2} = (m_{u} + m_{d}) |\langle 0| (\bar{u}u + \bar{d}d) |0\rangle| \frac{1}{F_{\pi}^{2}}$$

[Gell-Mann, Oakes, Renner]

Light pseudoscalar mesons are very sensitive to light quark masses, the latter can be extracted from the former

Anomalous Chiral Symmetry Breaking

For $m_u = m_d = o$ the symmetry group at the classical level also contains

$$U(1)_L \times U(1)_R \to U(1)_V$$

However: there is no fourth goldstone boson:

 $m_{\eta'} \sim m_{\rm proton}$

 η'

 $U(1)_A$ broken by the anomaly:

[t'Hooft; Witten; Veneziano]

$$\partial_{\mu}A^{\mu} = \frac{g^2}{32\pi^2}G^a_{\mu\nu}\tilde{G}^a_{\mu\nu}$$

The term on the right-hand side has no effect in perturbation theory, but configurations exist that make this non vanishing beyond perturbation theory

Asymptotic freedom versus Landau Poles/Triviality

$$\beta(\bar{q}) = \frac{\partial \bar{g}(q)}{\partial \ln q} = \beta_0 \bar{g}^3 + \mathcal{O}(\bar{g}^5)$$

 β_0 <0 Asymptotic Freedom

 β_0 >0 Triviality and Landau Pole

$$[\alpha(q)]_{\text{QCD}} \equiv \frac{\bar{g}(q)^2}{4\pi} \sim_{q \to \infty} \frac{c}{\ln(\frac{q}{\Lambda})}$$

$$(Q_{\text{Landau Pole}})_{QED} = m_e \exp\left(\frac{1}{\beta_0 \bar{g}(m_e)^2}\right)$$

The need to go beyond perturbation theory

The Standard Model at arbitrary high energy ?

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 \qquad U_Y(1)$$

1. Landau poles (perturbative) <-> triviality (non-perturbative)

$$\Lambda \to \infty : \lambda_R(\mu) = 0, g_{1R}(\mu) = 0$$

2. Stability of the higgs potential <-> $\lambda_R(\mu) > 0$

Intriguing correlation between SM pararameters: m_t , m_h , α_s !

The Standard Model is borderline OK up to the Planck scale but not beyond

The (B)SM puzzles

• If there is new physics, there is a hierarchy problem

 $\theta F^a_{\mu\nu} \tilde{F}^{a\mu\nu}$

Solutions involve strong interactions: SUSY breaking, Technicolor, etc

• Flavoured new physics (e.g. FCNC) more strongly constrained than unflavoured ones:

$$\frac{\Lambda}{\sqrt{c}} \ge [10^2 - 10^5] \text{ TeV}$$

Flavoured new physics in the quark sector involve strong interactions

• Strong CP problem...if CP is broken why not by QCD ? Term irrelevant in the perturbation theory

Beyond PTh: Lattice Quantum Field Theory

Basic idea due to K. Wilson: convert the path-integral formulation of a QFT into a statistical system by discretizing space-time

QCD and asymptotically free renormalizable theories are benchmarks

Lehman-Symanzik-Zimmerman Reduction Formula

Cross sections, decay widths <-> Field Correlation functions

From Minkowski to Euclidean via a Wick rotation

$$W_n(t_1, \mathbf{x_1}; ..., t_n, \mathbf{x_n}) = \langle 0 | \hat{\phi}(t_1, \mathbf{x_1}) ... \hat{\phi}(t_n, \mathbf{x_n}) | 0 \rangle, \quad t_1 \ge t_2 ... \ge t_n$$

$$S_n(x_1, ..., x_n) = W_n(-ix_1^0, \mathbf{x}_1; ... - ix_n^0, \mathbf{x}_n),$$

From quantum to classical variables: path integral representation

$$S_n = \frac{\int_{PBC} \mathcal{D}\phi \ e^{-S[\phi]}\phi(\mathbf{x}_1, t_1)....\phi(\mathbf{x}_n, t_n)}{\int_{PBC} \mathcal{D}\phi \ e^{-S[\phi]}} \equiv \langle \phi(x_1)....\phi(x_n) \rangle$$

Characterization of asymptotic states (Z, m):

KL Spectral decomposition of the propagator in energy and momentum eigenstates $|\alpha\rangle$

$$\langle \phi(x)\phi(0)\rangle = \sum_{\alpha} \int \frac{d^3p}{(2\pi)^3 2E_{\mathbf{p}}(\alpha)} |Z_{\alpha}|^2 e^{-E_{\mathbf{p}}(\alpha)x_0} e^{i\mathbf{p}\cdot\mathbf{x}}$$

$$Z_{\alpha} \equiv \langle 0|\phi(0)|\alpha(\mathbf{0})\rangle \qquad \quad E_{\alpha}^{2}(\mathbf{p}) = m_{\alpha}^{2} + \mathbf{p}^{2}$$

Dominated by the lowest energy states: one particle states

$$\lim_{x_0 \to \infty} \int d^3x \, \left\langle \phi(x)\phi(0) \right\rangle \propto e^{-m_\alpha x_0}$$

From functional integrals to multidimensional ordinary integrals via discretization of space-time

From functional integrals to multidimensional ordinary integrals via discretization of space-time

Any lattice derivative involves high dimension operators

$$\hat{\partial}_{\mu}\phi = \partial_{\mu}\phi + \frac{1}{2}a\partial_{\mu}\partial_{\mu}\phi + \mathcal{O}(a^{2}) \qquad \frac{1}{2}\left(\hat{\partial}_{\mu} + \hat{\partial}_{\mu}^{*}\right)\phi = \partial_{\mu}\phi + \mathcal{O}(a^{2})$$

Perturbative renormalizability: generic 1PI diagram in scalar $\lambda \phi^4$

$$\Gamma^{(N)}(p_1, ..., p_N) \sim \int \prod_{l=1}^{\Lambda} d^4 q_l \prod_{i=1}^{I} \frac{1}{k_i (q_l, p_j)^2 + m^2} \propto \Lambda^{\omega}$$

 ω = superficial degree of divergence = 4L - 2I

Using: 4V = N + 2IL = I - V + 1 $\omega = 4 - N$

Only N=2, 4 can be divergent $\Gamma^{(2)} = A \ \partial_{\mu}\phi\partial_{\mu}\phi + B\phi^{2}$ $\Gamma^{(4)} = C\phi^{4}$

Divergences in A, B, C can be reabsorbed in Z, m, λ (proof to all others difficult!)

d>4 interactions

$$V^{(1)}[\phi] = g_V(\partial)^{N_\partial}(\phi)^{N_\phi} \qquad [g_V] = 4 - N_\phi - N_\partial$$

$$\omega = 4 - N - [g_V]V_{\rm s}$$

As more vertices of this type are included in a diagram higher N is necessary to absorb the divergence

Г

Perturbative renormalizability:

$$[g_V] > 0$$

 $[g_V] = 0$
 $[g_V] < 0$

Superrenormalizable Renormalizable Non renormalizable

The lattice formulation is not renormalizable in this sense...

Consider a QFT with a fundamental cutoff

$$S_{\Lambda}[\phi] = \int_{x} \frac{1}{2} \partial_{\mu} \phi \partial_{\mu} \phi + \frac{m^{2}}{2} \phi^{2} + \frac{\lambda}{4!} \phi^{4} + \frac{\lambda'}{\Lambda^{2}} \phi^{6} + \frac{c_{2}}{\Lambda^{2}} \phi \partial^{4} \phi + \dots$$

 ω counts the powers of Λ

Exercise: show that

$$\omega = 4 - N$$

There is nothing special about a theory that is perturbatively renormalizable!

Renormalizability is an emergent phenomenon in a theory with a fundamental cutoff (such as a lattice QFT $\Lambda = a^{-1}$)

Renormalizability <-> existence of a continuum limit (criticality)

$$\langle \phi(x)\phi(0) \rangle \propto e^{-x/\xi}$$

 $\xi = m^{-1} \gg a$

Continuum limit: a > 0, keeping ξ fixed

$$\frac{\xi}{a} \to \infty \iff ma \to 0$$

Empirical fact: many systems near critical points behave similarly (universality class)

$$a \ge a_1 \ge a_2 \dots \ge a_n = (1 - \epsilon)^n a, \quad \epsilon \ll 1$$

At each step we integrate the modes

$$[a_{n-1}^{-1}, a_n^{-1}]$$

$$S^{(n)}(a) = \sum_{i,x} g_i^{(n)} O_i(x)$$

$$S^{(n+1)}(a) = \sum_{i,x} g_i^{(n+1)} O_i(x)$$

 $g_i^{(n+1)} = R_i^{(n)}(g^{(n)})$

Renormalization group transformation

At each step we integrate the modes $[a_{n-1}^{-1}, a_n^{-1}]$ to match to a theory with the same cutoff

$$S(a_1) \rightarrow S^{(1)}(a) = \sum_{\alpha} g^{(1)}_{\alpha}(a) \sum_{x} O_{\alpha}(\phi(x), a)$$
$$S(a_2) \rightarrow S^{(1)}(a_1) \rightarrow S^{(2)}(a) = \sum_{\alpha} g^{(2)}_{\alpha}(a) \sum_{x} O_{\alpha}(\phi(x), a)$$
$$\dots$$

$$S(a_n) \rightarrow \dots \sum_{\alpha} g_{\alpha}^{(n)}(a) \sum_{x} O_{\alpha}(\phi(x), a)$$

Fixed Point of RG $g_i^* = R_i(g^*)$

$$m_{\alpha}(g^*) = \text{fixed} \to m_{\alpha}(g^*)a \to 0$$

Renormalizability <-> Universality \implies Fixed Point of RG

$$g_i^{(n+1)} = R_i^{(n)}(g^{(n)})$$

Near a FP:
$$g_{\alpha}^{(n+1)} - g_{\alpha}^{*} = \frac{\partial R_{\alpha}}{\partial g_{\beta}} \Big|_{g^{*}} (g_{\beta}^{(n)} - g_{\beta}^{*}),$$
$$\Delta g_{\alpha}^{(n+1)} = M_{\alpha\beta} \Delta g_{\beta}^{(n)}, \quad M_{\alpha\beta} \equiv \frac{\partial R_{\alpha}}{\partial g_{\beta}} \Big|_{g^{*}}$$

Different situations depending on eigenvalues of M

$$\begin{array}{ll} \lambda > 1 & \Delta g_{\alpha}^{(n)} \text{ increases as } n \to \infty & \alpha \text{ is a relevant direction} \\ \lambda = 1 & \Delta g_{\alpha}^{(n)} \text{ stays the same as } n \to \infty & \alpha \text{ is a marginal direction} \\ \lambda < 1 & \Delta g_{\alpha}^{(n)} \text{ decreases as } n \to \infty & \alpha \text{ is an irrelevant direction} \end{array}$$

of relevant directions is usually small: universality & renormalizability

Exercise: convince yourself that a free massless scalar is a fixed point (gaussian fixed point)

Start with a generic lattice action quadratic in the fields but otherwise arbitrary

$$S(a) = \int_{BZ(a)} \frac{d^4p}{(2\pi)^4} \frac{1}{2} \phi(-p) \left(p^2 + m_0^2 \frac{1}{a^2} + g_1 a^2 p^4 + \dots \right) \phi(p)$$

(i) Construct the effective action $S^{(1)}(a)$ $a_1 = (1 - \epsilon)a$

(ii) Construct the matrix M from this one step and find the relevant, irrelevant and marginal directions

Critical Regions ↔ Effective QFT Fixed Points ↔ Renormalizable QFT: continuum limit

Universality \leftrightarrow small number of relevant directions

Any local action with the same degrees of freedom and symmetries lead to the same continuum limit (via the tuning of a small set of relevant parameters)

Asymptotic freedom ensures the existence of FP in perturbation theory

QCD has the (marginally) relevant couplings: g_o, m_u, m_d, m_s, m_c, ...

$$g_{0}$$
 ->0 , m_{q} a -> 0

Caveat: a discretization that breaks any of the symmetries in general requires more relevant couplings

Lattice Scalar Fields

From functional integrals to multidimensional ordinary integrals via discretization of space-time

Lattice Scalar Fields

As in the continuum, the limit $\lambda = 0$ is solvable

$$S^{(0)}[\phi] = a^4 \sum_{x} \left\{ \frac{1}{2} \hat{\partial}_{\mu} \phi \hat{\partial}_{\mu} \phi + \frac{m_0^2}{2} \phi^2 \right\} = \frac{a^4}{2} \sum_{x,y} \phi(x) K_{xy} \phi(y),$$

$$K_{xy} \equiv -\frac{1}{a^2} \sum_{\hat{\mu}=0}^{3} \left(\delta_{x+a\hat{\mu}y} + \delta_{x-a\hat{\mu}y} - 2\delta_{xy} \right) + m_0^2 \delta_{xy}$$

$$Z^{(0)}[J] = e^{\frac{a^4}{2}\sum_{x,y}J_x(K^{-1})_{xy}J_y} \det\left(a^4K\right)^{-1}$$

$$\langle \phi(x)\phi(y) \rangle = a^{-4}K_{xy}^{-1} = \int \frac{d^4p}{(2\pi)^4} \frac{e^{ip \cdot (x-y)}}{\hat{p}^2 + m_0^2}$$
$$\hat{p}_{\mu} \equiv \frac{2}{a} \sin\left(\frac{p_{\mu}a}{2}\right) \quad \hat{p}^2 \equiv \sum_{\mu} \hat{p}_{\mu}^2.$$
Lattice Scalar Fields

Particle interpretation ? Continuum limit ?

Exercise:
$$\langle \phi(x)\phi(0)\rangle = \int_A (...) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2\bar{\omega}(\mathbf{p})} e^{-\omega(\mathbf{p})x_0} e^{i\mathbf{p}\cdot\mathbf{x}}$$

$$Z = \sqrt{\frac{\omega(\mathbf{p})}{\bar{\omega}(\mathbf{p})}} \to 1 + \mathcal{O}(a^2)$$

Euclidean fermions :

$$S_{\text{cont}} = \int \mathrm{d}^4 x \, \bar{\psi}(x) \left[\gamma_\mu \partial_\mu + m \right] \psi(x) \, ; \qquad \{ \gamma_\mu, \gamma_\nu \} = 2\delta_{\mu\nu} \, , \quad \gamma^\dagger_\mu = \gamma_\mu$$

One particle states (KL representation):

$$\langle 0|\psi(x)\bar{\psi}(0)|0\rangle_F\big|_{x_0>0} = \sum_{\alpha} \int \frac{d^3p}{(2\pi)^3} |Z_{\alpha}|^2 \left. \frac{i\gamma_{\mu}p_{\mu} - m_{\alpha}}{2ip_0} \right|_{p_0 = iE_{\mathbf{p}}(\alpha)} e^{-E_{\mathbf{p}}(\alpha)x_0} e^{i\mathbf{p}\mathbf{x}}$$

Chiral symmetry m -> 0: $\psi(x) \rightarrow e^{i\alpha\gamma_5}\psi(x)$

Naïve discretization:

$$S_{\text{latt}} = a^4 \sum_x \bar{\psi}(x) \left\{ \frac{1}{2} \left[\gamma_\mu (\partial^*_\mu + \partial_\mu) \right] + m \right\} \psi(x)$$

KL representation: one particle states ?

$$\langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(0)\rangle_{F} = \int \frac{d^{3}p}{(2\pi)^{3}} \frac{e^{i\mathbf{p}\mathbf{x}}e^{-\omega_{\mathbf{p}}x_{0}}}{\sinh(2\omega_{\mathbf{p}}a)} \left[\left(\gamma_{0}\sinh\omega_{\mathbf{p}}a - i\sum_{k}\gamma_{k}\sin p_{k}a + ma \right) \right] + (-1)^{x_{0}/a} \left(-\gamma_{0}\sinh\omega_{\mathbf{p}}a - i\sum_{k}\gamma_{k}\sin p_{k}a + ma \right) \right].$$

- Two poles with same energy $\omega_{\mathbf{p}}$ with different residues
- Minimum of the energy @ $p_k = \bar{p}_k \equiv n_k \frac{\pi}{a}$ $n_k = 0, 1$

$$\lim_{a \to 0} \left. \omega_{\mathbf{p}} \right|_{p_k = n_k \pi/a} = m$$

$$p_j = \bar{p}_j^{(i)} + k_j, \quad k_j a \ll 1 \quad j = 1, ..., 2^3$$
$$\bar{p}_\mu^{(\alpha)} = (n_0^{(\alpha)}, n_1^{(\alpha)}, n_2^{(\alpha)}, n_3^{(\alpha)}) \frac{\pi}{a}, \quad n_\mu^{(\alpha)} = 0, 1$$

$$\langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(0)\rangle_{F} = \sum_{\alpha=1}^{16} e^{i\bar{p}^{(\alpha)}x} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{e^{i\mathbf{k}\mathbf{x}}e^{-\omega_{\mathbf{p}}t}}{2k_{0}} S_{\alpha} \left[\left(\gamma_{0}k_{0} - i\sum_{k}\gamma_{k}k_{k} + m\right) \right] S_{\alpha}^{-1} S_{\alpha} = \prod_{\mu} (i\gamma_{\mu}\gamma_{5})^{n_{\mu}^{(\alpha)}}$$

Doubling Problem: 2^d massive fields in the continuum limit and not one !

Deep connection between doubling problem and chirality Naive chiral fermion:

$$(1 - \gamma_5) \sum_{\alpha=1}^{16} e^{i\bar{p}^{(\alpha)}x} \int \frac{d^3k}{(2\pi)^3} \frac{e^{i\mathbf{k}\mathbf{x}} e^{-\omega_{\mathbf{p}}t}}{2k_0} S_{\alpha} \left[\left(\gamma_0 k_0 - i\sum_k \gamma_k k_k + m \right) \right] S_{\alpha}^{-1} (1 + \gamma_5) \left((1 - \gamma_5) S_{\alpha} = S_{\alpha} (1 - (-1)^{\sum_{\mu} n_{\mu}^{(\alpha)}} \gamma_5) \right) \right]$$

8 right-movers + 8 left-movers: vector-like theory !

Deep connection between doubling problem and chirality

Nielsen-Ninomiya no-go theorem: doubling problema is common to any fermion action that satisfies

- Invariant under space-time translations
- Quadratic in fermions & hermitian
- Local (smooth kernel in Fourier space)
- Chirally symmetric

Wilson discretization:

$$S_{\text{latt}} = a^4 \sum_x \bar{\psi}(x) \left\{ \frac{1}{2} \left[\gamma_\mu (\partial^*_\mu + \partial_\mu) - a \partial^*_\mu \partial_\mu + m \right\} \psi(x) \right\}$$

Vanishes in the naïve continuum limit, but breaks chiral symmetry!

$$\langle \psi_{\alpha}(x)\bar{\psi}_{\beta}(y)\rangle_{F} = \int_{BZ} \frac{d^{4}p}{(2\pi)^{4}} \frac{e^{ip(x-y)}}{\sum_{\mu} i\gamma_{\mu}\frac{\sin(p_{\mu}a)}{a} + m + \frac{r}{a}\sum_{\mu} (1 - \cos p_{\mu}a)}$$

- Only one pole in the p_o
- Minimum energy unique

$$\omega_{\mathbf{p}}^{(\alpha)} = \frac{1}{a} \log \left(1 + ma + 2\sum_{k} n_{k}^{(\alpha)} \right)$$

The breaking of chiral symmetry brings many complications:

- bare quark masses become relevant (instead of marginally relevant)
- cutoff effects are O(a) (instead of O(a^2))
- operator mixing and renormalization much more complicated
- in the context of chiral gauge theories: breaking of gauge symmetry

Alternatively discretizations to tame chiral symmetry breaking

- Staggered fermions (Kogut-Susskind)
- Twisted mass Wilson
- Ginsparg-Wilson (overlap fermions, domain-wall,...)

SU(N) gauge theory in the continuum: e.g. a charged fermion + gauge connection

$$\psi^{i}(x)$$
 $i = 1, ..., N$ $A_{\mu}(x) = A^{a}_{\mu}(x)T^{a}$ $a = 1, ..., N^{2} - 1$

Gauge Symmetry:

$$\psi(x) \to \psi'(x) = \Omega(x)\psi(x), \quad \Omega(x) \in SU(N)$$

 $A_{\mu}(x) \to A'_{\mu}(x) = \Omega(x)A_{\mu}(x)\Omega(x)^{\dagger} + i\Omega(x)\partial_{\mu}\Omega(x)^{\dagger}$

Action: start with the free fermion action ($A_{\mu}=0$) and do a gauge transformation

$$\bar{\psi}\gamma_{\mu}\partial_{\mu}\psi \to \bar{\psi}'\gamma_{\mu}D_{\mu}\psi'$$

$$D_{\mu}\psi' \equiv \left(\partial_{\mu} + \Omega \ \partial_{\mu}\Omega^{+}\right)\psi' = \left(\partial_{\mu} - iA'_{\mu}\right)\psi'$$

SU(N) gauge theory in the continuum: e.g. a charged fermion + gauge connection

$$\psi^{i}(x)$$
 $i = 1, ..., N$ $A_{\mu}(x) = A^{a}_{\mu}(x)T^{a}$ $a = 1, ..., N^{2} - 1$

Gauge Symmetry:

$$\psi(x) \to \psi'(x) = \Omega(x)\psi(x), \quad \Omega(x) \in SU(N)$$

 $A_{\mu}(x) \to A'_{\mu}(x) = \Omega(x)A_{\mu}(x)\Omega(x)^{\dagger} + i\Omega(x)\partial_{\mu}\Omega(x)^{\dagger}$

Action: start with the free fermion action ($A_{\mu}=0$) and do a gauge transformation

$$\bar{\psi}\gamma_{\mu}\partial_{\mu}\psi \to \bar{\psi}'\gamma_{\mu}D_{\mu}\psi'$$

$$D_{\mu}\psi' \equiv \left(\partial_{\mu} + \Omega \ \partial_{\mu}\Omega^{+}\right)\psi' = \left(\partial_{\mu} - iA'_{\mu}\right)\psi'$$

Gauge action in terms of the field strength

$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) - i[A_{\mu}(x), A_{\nu}(x)]$$

$$S_{\rm cont}[\phi, A_{\mu}] = -\frac{1}{2g^2} \operatorname{Tr}\left[F_{\mu\nu}F^{\mu\nu}\right] + \bar{\psi}\gamma_{\mu}D_{\mu}\psi$$

How do we discretize this, maintaining gauge symmetry ?

Free fermion in two different gauges to get the lattice covariant derivative:

$$\bar{\psi}\gamma_{\mu}\hat{\partial}_{\mu}\psi \to \bar{\psi}'\gamma_{\mu}\hat{\nabla}_{\mu}\psi'$$

 $\hat{\nabla}_{\mu}\psi(x) = \Omega(x)^{\dagger}\Omega(x+a\hat{\mu})\psi(x+a\hat{\mu}) - \psi(x) \equiv U_{\mu}(x)\psi(x+a\hat{\mu}) - \psi(x)$

The basic variable on the lattice is the link variable

$$U_{\mu}(x) \in SU(N)$$

It is a parallel transporter

$$U_{\mu}(x) \to \Omega(x)U_{\mu}(x)\Omega(x+a\hat{\mu})^{\dagger}$$

Lattice Gauge Fields

We still need the pure gauge action...

Wilson lines: path ordered product of links (y-> x)

 $P(x, y; \text{path}) \to \Omega(x) P(x, y; \text{path}) \Omega(y)^{\dagger}$

Wilson loops: products of link variables forming a closed loop

W = Tr[P(x,x;path)] Gauge invariant!

Plaquette: smallest Wilson loop

$$U_{\mu\nu}(x) \equiv U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}(x+a\hat{\nu})^{\dagger}U_{\nu}(x)^{\dagger}$$

Lattice Gauge Fields

Discretized Gauge Action ? Local, real, lattice rotation and gauge invariant

Continuum Limit?

$$U_{\mu}(x) = \operatorname{P} \exp\left\{ia \int_{0}^{1} \mathrm{d}t \, A_{\mu}(x + (1 - t)a\hat{\mu})\right\}$$
$$= \mathbf{1} + ia A_{\mu}(x) + \mathcal{O}(a^{2})$$

$$\lim_{a \to 0} S_W[U] = \frac{1}{2g_0^2} a^4 \sum_x \operatorname{Tr}[F_{\mu\nu}(x)F^{\mu\nu}(x)] + \mathcal{O}(a^6)$$

Strong Coupling Expansion: mass gap

An Taylor expansion in $\beta \equiv \frac{2N}{g_0^2}$

- each power of β brings down a plaquette

•
$$\int dU \ U_{\alpha\beta} = 0$$
 each link must appear more than once

Glueball spectrum: the large time behaviour of any local operator with the right quantum numbers

Mass gap, but no continuum limit...

Strong Coupling Expansion: confinement

Static potential: potential energy between two infinitely heavy quark/antiquark separated a distance R

 $C_{qq}(T) \propto \langle$

$$\mathcal{O}(t) = \phi^{\dagger}(\mathbf{y}, t) U(\mathbf{y}, t; \mathbf{x}, t) \phi(\mathbf{x}, t)$$
$$C_{q\bar{q}}(T) \equiv \langle \mathcal{O}^{\dagger}(T) \mathcal{O}(0) \rangle_{\phi, U}$$
$$C_{q\bar{q}}(T) \sim \exp(-E(R)T), \quad E(R) = E_0 + V(R)$$

$$\lim_{\beta \to 0} V(R) = \frac{R}{a^2} \log\left(\frac{2N^2}{\beta}\right) + \dots = \sigma R + \dots$$

String tension but no continuum limit!

$$\lim_{\beta \to 0} \sigma = \frac{1}{a^2} \log \left(\frac{2N^2}{\beta} \right)$$

Lattice QCD

$$\begin{aligned} \mathcal{Z} &= \int D[U]e^{-S_W[U]} \int D[\psi]D[\bar{\psi}] \quad e^{-S_{WF}[U,\psi,\bar{\psi}]} \\ S_W[U] &= \frac{2}{g_0^2} \sum_x \sum_{\mu < \nu} \operatorname{Tr} \left[1 - \frac{1}{2} (U_{\mu\nu}(x) + U_{\mu\nu}^{\dagger}(x)) \right] \\ S_{WF}[U,\psi,\bar{\psi}] &= a^4 \sum_{x,a} \bar{\psi}_a(x) (D_W + M_a) \psi_a \\ D_W &= \frac{1}{2} \left[(\nabla_\mu + \nabla_\mu^*) \gamma_\mu - a \nabla_\mu \nabla_\mu^* \right] \\ D[U] &= \prod_{x,\mu} dU_\mu(x), \quad D[\psi] = \prod_x d\psi(x) \\ \text{Haar measure} \end{aligned}$$

Integration over fermion variables can be done analytically:

$$\mathcal{Z}_F \equiv \int D[\psi] D[\bar{\psi}] \ e^{-S_{WF}[U,\psi,\bar{\psi}]} = \prod_a \det(D_W + M_a)$$

Lattice QCD

$$\mathcal{Z} = \int D[U] \quad \prod_{q} \det(D_W + m_q) \ e^{-S_W[U]}$$

- Integrals over link variables are compact: no need to fix the gauge
- Integrand is positive definite: Monte Carlo methods can be used

$$\langle \phi_1(x_1) \cdots \phi_n(x_n) \rangle = \frac{1}{\mathcal{Z}} \int D[U] \langle \phi_1(x_1) \cdots \phi_n(x_n) \rangle_{\mathrm{F}} \times \prod_{q=1}^{N_f} \det[D_{\mathrm{w}}(U) + m_q] e^{-S_{\mathrm{G}}[U]}$$

 $\langle \psi_1(x_1)...\psi_n(x_n)\bar{\psi}_1(y_1)...\bar{\psi}_n(y_n)\rangle_F = \text{Tr}[\text{ Product of quark propagators }]$ $\langle \psi(x)\bar{\psi}(y)\rangle_F = S(x,y;U) \qquad (D_w+M)\,S(x,y;U) = a^{-4}\delta_{xy}$

Lattice QCD

Example: pion propagator

$$\langle (\bar{u}\gamma_5 d)(x)(\bar{d}\gamma_5 u)(y)\rangle_{\mathrm{F}} = -\mathrm{tr}\left\{\gamma_5 \,S(x,y;U)_d\,\gamma_5 \,S(y,x;U)_u\right\} \quad x \bullet y$$

$$\langle \pi(x)\pi(y)\rangle = -\mathcal{Z}^{-1}\int D[U] \ tr[\gamma_5 S_d(x,y;U)\gamma_5 S_u(y,x;U)] \prod_q \det(D_W + m_q) \ e^{-S_W[U]}$$

$$\lim_{x_0 \to \infty} a^3 \sum_{\mathbf{x}} \langle \pi(x) \pi(0) \rangle \propto e^{-m_{\pi} x_0}$$

Lattice QCD: continuum limit ?

Is there a fixed point: $m_{
m phys}a
ightarrow 0$

How to approach this continuum limit: how many couplings do we have to tune ?

Asymptotic freedom ensures the existence of FP in perturbation theory

$$\beta(g_0) \equiv -a \left. \frac{\partial g_0}{\partial a} \right|_{g_R \text{ fixed}} = -\beta_0 g_0^3 - \beta_1 g_0^5 + \dots \quad \beta_0 = \frac{N_c}{16\pi^2} \frac{11}{3} > 0$$
$$\Rightarrow \quad g_0^2 \sim \frac{1}{a \to 0} \frac{1}{b_0 \ln(a\mu)} + \dots$$

 $g_0 = 0$ UV fixed point

QCD has the relevant couplings: $g_0, m_u, m_d, m_s, m_c, ...$

Continuum Limit

 $N_f=2+1$ three parameters: g_0 , $m_u=m_d$, m_s

e.g. we measure three quantities and predict everything else

$$a^{\rm phys} \to M_p a / M_p^{\rm phys}, \ m_u a = m_d a \to M_\pi a / a^{\rm phys} = M_\pi^{\rm phys},$$

 $m_s a \to M_K a / a^{\rm phys} = M_K^{\rm phys}$

 $a \to a' < a$ (L/a, increase) increasing $\beta \propto \frac{1}{g_0^2}$ so that

so that physics remains constant

$$M_p a' = M_p a\left(\frac{a'}{a}\right) = M_p a\left(\frac{L}{a}\frac{a'}{L}\right)$$

Plan

Part I: Functional Formulation of QFT, renormalization, Wilson RG Part II: Lattice Formulation of scalar, fermion and gauge QFT

Part III: Lattice QCD: numerical methods and applications

Well defined problem for finite a and volume but:

$$N_f = 2 + 1 + 1$$
, $(L/a)^3 \times (T/a) = 64^3 \times 128$
 $\Rightarrow D_w = (1.6 \times 10^9)^2$ complex matrix

Monte Carlo integration mandatory

$$I = \int_0^1 dx_0 \int_0^1 dx_1 \cdots \int_0^1 dx_{K-1} P(\mathbf{x}) f(\mathbf{x})$$

Generate N random K-vectors $\{\mathbf{x}^{[i]}\}$ distributed according to P(x) (normalized)

$$I(N) = \frac{1}{N} \sum_{i=1,..N} f[\mathbf{x}^{[i]}]$$

Convergence guarantied by central limit theorem:

$$\lim_{N \to \infty} I(N) = I + \mathcal{O}(1/\sqrt{N})$$

Numerical Aspects of Lattice QCD

$$\mathbf{x} \to U_{\mu}(x), \qquad P(\mathbf{x}) \to \frac{e^{-S[U]}}{\mathcal{Z}}$$

Markov Chains: a procedure to get the required samples $\{\mathbf{x}^{[i]}\}$

Stocastic process to get one configuration from the previous one via a

Transition Probability
$$T(\mathbf{x}
ightarrow \mathbf{x'})$$

With the following properties guarantied to get the right distribution (asymptotically):

1)
$$T(\mathbf{x} \to \mathbf{x}') \ge 0$$
 $\sum_{\mathbf{x}'} T(\mathbf{x} \to \mathbf{x}') = 1$ 2) $\sum_{\mathbf{x}} P(\mathbf{x})T(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x}')$

3) ergodicity

Numerical Aspects of Lattice QCD What $T(\mathbf{x} \rightarrow \mathbf{x}')$?

Metropolis-Hastings algorithm

$$T(\mathbf{x} \to \mathbf{x}') = \begin{cases} \min(1, P(\mathbf{x}')/P(\mathbf{x})) & \mathbf{x}' \neq \mathbf{x} \\ 1 - \sum_{\mathbf{x}'} \min(1, P(\mathbf{x}')/P(\mathbf{x})) & \mathbf{x}' = \mathbf{x} \end{cases}$$

Not very efficient when the domain is much larger than the region where P(x) is significant: small acceptance rate...

1) Starting with some gaussian random momenta, Hamilton equation is solved (approximately) with Hamiltonian and new state in the chain is the solution

$$\begin{array}{c} H(x,p) = S(x) + \Delta S(p) \\ \mathbf{x}(0) = \mathbf{x}, \mathbf{p}(0) = \mathbf{p}, \end{array} \right\} \quad \mathbf{x'} = \mathbf{x}(\tau)$$

2) Ergodicity is achieved by the change in positions from random gaussian momentum updates

3) A MH accept-reject step because the solution to Hamilton eqs. is not exact

Systematic errors:

- Continuum limit: $Ma \ll 1$ $a \rightarrow 0$
- Infinite volume limit: $ML \gg 1$

Challenge: multiscale problem

Need for HPC and smart algorithms!

Slowly getting there...

[G. Herdoiza]

Confinement

 $C_{q\bar{q}}(T) \sim \exp(-E(R)T), \quad E(R) = E_0 + V(R)$ 2 N_f=0 $_{-}$ 3-loop RG α_{qq} $_{-}$ 2-loop RG α_{qq} $_{-}$ 3-loop RG $\alpha_{\overline{v}}$ 1 $\sigma \approx (0.4 \text{ GeV})^2$ $\left[V(r) \!-\! V(r_{\rm c}) \right] \!\cdot\! r_0$ 0 • continuum limit $_{\Box}\beta = 6.92$ -1 $\beta = 6.4$ R -2 0.5 1.5 0 1 r/r_0 [Necco, Sommer 2001]

 $\mathcal{O}(t) = \phi^{\dagger}(\mathbf{y}, t) U(\mathbf{y}, t; \mathbf{x}, t) \phi(\mathbf{x}, t) \qquad C_{q\bar{q}}(T) \equiv \langle \mathcal{O}^{\dagger}(T) \mathcal{O}(0) \rangle_{\phi, U}$

Running coupling

Define a coupling at finite box size: g(L)

 $[\alpha_{s}(M_{z})]_{PDG18} = 0.1174(16) \longrightarrow [\alpha_{s}(M_{z})]_{MS} = 0.11852(84)$

Hadron spectrum

Choose an operator with the right quantum numbers O(x):

 $M^{a}(x) \equiv \bar{\psi}_{\alpha ic}(x)\Gamma_{\alpha\beta}T^{a}_{ij}\psi_{\beta jc}(x), \qquad B^{abc}_{\alpha\beta\gamma} = \psi(x)_{\alpha} \equiv \epsilon_{c_{1}c_{2}c_{3}}\psi_{\alpha ac_{1}}\psi_{\beta bc_{2}}\psi_{\gamma cc_{3}}$ $\lim_{x_0 \to \infty} \int d^3x \, \langle O(x)O(0) \rangle \propto e^{-M_{\text{lightest}}x_0}$ ► m = 0.02 → m = 0.05 10-10 m = 0.10m = 0.20 $C(n_t)$ 10° 10^{-4} 10^{-6} Pion propagator 10 15 20 25 30 5 n

Hadron spectrum

Choose an operator with the right quantum numbers O(x):

 $M^{a}(x) \equiv \bar{\psi}_{\alpha i c}(x) \Gamma_{\alpha \beta} T^{a}_{ij} \psi_{\beta j c}(x), \qquad B^{abc}_{\alpha \beta \gamma} = \psi(x)_{\alpha} \equiv \epsilon_{c_{1}c_{2}c_{3}} \psi_{\alpha ac_{1}} \psi_{\beta bc_{2}} \psi_{\gamma cc_{3}}$

$$\lim_{x_0 \to \infty} \int d^3x \, \langle O(x)O(0) \rangle \propto e^{-M_{\text{lightest}}x_0}$$

[BMW Collaboration 2008]

Averages of quanities of phenomenological interest:

Quark masses
Vud and Vus
Low-energy constants
Kaon mixing
D-meson decay constants and form factors
B-meson decay constants, mixing parameters, and form factors
The strong coupling αs
Nucleon matrix elements

Chiral Symmetry Breaking

Spontaneous Chiral Symmetry Breaking takes place in QCD via a quark condensate:

Fundamental Parameters in the SM

Light quark masses from pion and kaon masses

Heavy quark masses from D mesons and B mesons

Fundamental Parameters in the SM

CKM mixing matrix from leptonic and semileptonic decays

Rate = $|V_{CKM}|^2 x$ Wilson coefficients x Form factors

4-fermion operators

Fundamental Parameters in the SM

Leptonic and semileptonic form factors:

$$K_{\ell 3} \Rightarrow |V_{us}|f_{+}(0) = 0.2165(4) \Rightarrow |V_{us}| = 0.2231(7)$$

$$K_{\mu2}/\pi_{\mu2} \implies \left| \frac{V_{us}}{V_{ud}} \right| \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) \implies \left| \frac{V_{us}}{V_{ud}} \right| = 0.2313(7)$$

Precision tests of the SM

CKM unitarity:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9998(5)$$

Precision tests of the SM

Still very uncertain quantities...hard for lattice QCD

Ex: K -> $\pi\pi$

14

The $\Delta = 1/2$ rule: one of the most misterious hierarchies in QCD:

$$\frac{\Gamma(K_S^0 \to \pi\pi)}{\Gamma(K^+ \to \pi\pi)} \approx 330 \qquad T\left(K^0 \to \pi\pi|_{I=\alpha}\right) = A_\alpha e^{i\delta_\alpha} \qquad \frac{A_0}{A_2} = 22.1$$

QCD @ finite T and density

Asymptotic freedom predicts that the theory should approach a perturbative regime as T -> ∞ relevant for the Early Universe, heavy ion collisions

Quark-Gluon plasma: deconfined phase, chiral symmetry breaking restored

Perturbation theory has proved not good enough for the regimes accesible to Experiment. Finite T straightforward on the lattice, finite ρ has sign problem

 $(g-2)_{\mu}$ anomaly $a_{\mu}^{\rm SM} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm had},$ γ γ

$$a_{\mu}^{\text{E821}} - a_{\mu}^{\text{SM}} = 27.4 \underbrace{(2.7)}_{\text{HVP}} \underbrace{(2.6)}_{\text{HLbL}} \underbrace{(0.1)}_{\text{other}} \underbrace{(6.3)}_{\text{E821}} \times 10^{-10}$$

Beyond SM: Alternative to SM Higgs ?

Old Technicolor paradigm: condensate of techniquarks plays the role of the Higgs

$$\langle \bar{Q}Q \rangle \neq 0: SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$

Three GB: W⁺⁻,Z

Generically FCNC (Λ_{TC} > 5TeV): but now there is a light Higgs!

Beyond SM: Alternative to SM Higgs ?

Modern Technicolor paradigms

▶ Dilatonic Higgs: TC with approximate conformal symmetry: N_f large enough

Higgs -> Pseudo-Goldstone boson of this symmetry

Examples: SU(2) N_f=8 fund; SU(2) N_f=1,2 adj; SU(3) N_f=2 sextet

➤ Composite Higgs: TC breaking pattern leads to (W⁺⁻, Z, H) goldstone bosons

Higgs potential from EW corrections

Whether these models are viable alternatives to the SM will rely ultimately on lattice methods...

Conclusions

- Lattice QFT is a first-principles non-perturbative method to solve asymptotically free QFTs such as QCD
- Lattice QCD has demonstrated quark confinement, a mass gap, spontaneous chiral symmetry breaking
- It has provided precise determination of hadron masses and form factors needed to infer quark masses and mixings from experiment
- Present and future precision tests of the flavour sector of the SM rely on lattice input
- Still more progress is needed: heavy quarks, multi-hadron states, finite density, chiral gauge theories...
- Open problems in particle physics might require non-perturbative physics BSM (eg. composite higgs models)

Chiral Symmetry Breaking

Chiral symmetry dictates the dynamics of pions and kaons

Low-energy couplings can be obtained from lattice QCD

Chiral Symmetry Breaking

0.04

[BMW col.]

am^{PCAC}

0.01

0.005