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Introduction
The Standard Model of particle physics has been tested sub % to be the theory
describing microscopic particles and their interactions

SU(3)⇥ SU(2)⇥ U(1)Y

Elementary particle dynamics are accurately described by Quantum Field Theory
(QFT).

LEP ⊕ flavour factories have established the Standard Model at 1% or better:
SM is a renormalizable QFT

LSM = Lgauge + Lmatter + LSSB

Lgauge = −
1

4g2U(1)

BµνBµν −
1

4g2SU(2)

WµνWµν −
1

4g2SU(3)

GµνGµν

Lmatter =
∑

a

Ψ̄ai ̸DΨa

LSSB =
∑

ab

Ψ̄aYabΦΨ
b + h.c.+ L(Φ)

2

Gauge principle
Lepton<-> quark (anomaly cancellation)
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Table 1: Irreducible fermionic representations in the Standard Model: (dSU(3)

, dSU(2)

)Y

2 Neutrinos in the Standard Model
The Standard Model (SM) is a gauge theory based on the gauge group SU(3) ⇥ SU(2) ⇥ UY (1). All
elementary particles arrange in irreducible representations of this gauge group. The quantum numbers
of the fermions (dSU(3)

, dSU(2)

)Y are listed in table 1.
Under gauge transformations neutrinos transform as doublets of SU(2), they are singlets under

SU(3) and their hypercharge is �1/2. The electric charge, given by Q = T
3

+ Y , vanishes. They are
therefore the only particles in the SM that carry no conserved charge.

The two most intriguing features of table 1 are its left-right or chiral asymmetry, and the three-fold
repetition of family structures. Neutrinos have been essential in establishing both features.

2.1 Chiral structure of the weak interactions
The left and right entries in table 1 have well defined chirality, negative and positive respectively.
They are two-component spinors or Weyl fermions, that is the smallest irreducible representation of
the Lorentz group representing spin 1/2 particles. Only fields with negative chirality (i.e. eigenvalue of
�

5

minus one) carry the SU(2) charge. For free fermions moving at the speed of light (i.e., massless), it
is easy to see that the chiral projectors are equivalent to the projectors on helicity components:

PR,L ⌘ 1 ± �
5

2
=

1

2

✓
1 ± s · p

|p|

◆
+ O

⇣mi

E

⌘
, (6)

where the helicity operator ⌃ = s·p
|p| measures the component of the spin in the direction of the momen-

tum. Therefore for massless fermions only the left-handed states (with the spin pointing in the opposite
direction to the momentum) carry SU(2) charge. This is not inconsistent with Lorentz invariance, since
for a fermion travelling at the speed of light, the helicity is the same in any reference frame. In other
words, the helicity operator commutes with the Hamiltonian for a massless fermion and is thus a good
quantum number.

The discrete symmetry under CPT (charge conjugation, parity, and time reversal), which is a basic
building block of any Lorentz invariant and unitary quantum field theory (QFT), requires that for any
left-handed particle, there exists a right-handed antiparticle, with opposite charge, but the right-handed
particle state may not exist. A Weyl fermion field represents therefore a particle of negative helicity and
an antiparticle with positive one.

Parity however transforms left and right fields into each other, thus the left-handedness of the weak
interactions implies that parity is maximally broken in the SM. The breaking is nowhere more obvious

4

Family

Parity Violation

Introduction Introduction to Weak Decays Goldstone Bosons Abelian Higgs Model SU(2)×U(1)

Goldstone Bosons – Continuous Symmetries Cont.

V

! The existence of Goldstone Bosons can be understood in terms of zero
modes.

! O(N) has N(N−1)/2 generators and the residual symmetry O(N−1)
has (N−1)(N−2)/2 generators.

! The number of Broken Symmetries is therefore
1
2
{N(N−1)− (N−1)(N−2)} = N−1

which is the number of Goldstone Bosons .

Standard Model SUSSP61, Lecture 1, 9th August 2006
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Introduction
The Standard Model interactions imply a # of free parameters and accidental 
symmetries:Most of the ugly/intriguing features of the SM are related to the SSB flavour
sector that will be soon tested at the LHC:

Sector Free Param. Discrete Sym. Flavour Sym.

Gauge 3 C,P, T
Gauge+matter 3 T,C/, P/ U(Nf)
Gauge+matter+SSB 22-24 C/, P/, T/ U(1)B−L or none

Most of what we can predict accurately in this model has been obtained in
perturbation theory (PT)

3

+ A non-accidental “symmetry”: strong CP 

LSM � ✓̄
↵s

8⇡
GG̃ ✓̄  10�10

Most of what we know is derived from perturbation theory and is not enough! 



The need to go beyond perturbation theory

SU(3) interactions weak at large energies become strong at low energies

Growth of the coupling at low energies:   Confinement 
Generation of a mass gap
Chiral symmetry breaking 

Asymptotic freedom



FU

Static potential (potential between infinitely heavy quarks) grows with r:

Confinement
We do not observe asymptotic states with net color charge, only hadrons
which are color singlets

V (r) ⇠ �r

Proton

Neutron string tension



FU

Mass gap

Light hadron masses (except pions) are dominated by the strong binding energy 

m
proton

2mu +md
⇠ 100

The mass of ordinary matter is mostly color binding energy!

One of the 6 Millennium Prize Problems still to be solved (1M$ prize!)

Yang–Mills Existence and Mass Gap. Prove that for any compact simple gauge 
group G, a non-trivial quantum Yang–Mills theory exists on R4 and has a mass gap 
∆ > 0. Existence includes establishing axiomatic properties at least as strong as 
those cited in [45, 35]. 



FU

Spontaneous Chiral Symmetry Breaking

The lightest pseudoscalar mesons are significantly lighter than the mass gap 
because they are Nambu-Goldstone bosons of chiral symmetry breaking

In the limit mu =md = 0, there is a chiral global symmetry in QCD  

Due to the strong interactions a quark condensate forms:

Spontaneous symmetry breaking:

hūui = hd̄di = ⌃ �ij

✓
u
d
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! UL
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d
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R

! UR
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u
d
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R

SU(2)L ⇥ SU(2)R ! SU(2)V

Three goldstone bosons: ⇡±,⇡0



FU

Chiral Symmetry Breaking

Goldstone theorem: hadron physics at low energies

Chiral symmetry of QCD spontaneously broken.

Hidden symmetryM⇡ ⌧M
nucleon

M2
⇡ = (mu + md)|h0|(ūu + d̄d)|0i| 1

F 2
⇡

Corrections due to non-vanishing Goldstone boson momenta and masses can be 
treated systematically through an effective description: Chiral Perturbation Theory.

expansion in
p2

⇤2
�

L� = L(2)
� + L(4)

� + . . .

L(2)
� =

F 2

4
Tr

⇥
@µU†@µU

⇤
� ⌃

2
Tr

h
ei✓/Nf MU + h.c.

i

L(4)
� =

X

i

CiOi

[Nambu, Goldstone 1960-1]

[Gell-Mann, Oakes, Renner 1968] 

[Weinberg 1979; Gasser, Leutwyler 1984-5]

[Gell-Mann, Oakes, Renner]

h0|Aa

µ

(x)|⇡a(p)i = ip

µ

F

⇡

e

�ipx

, A

a

µ

= Q̄�

µ

�5T
a

Q

Light pseudoscalar mesons are very sensitive to light quark masses, the latter
can be extracted from the former



FU

Anomalous Chiral Symmetry Breaking

For mu =md = 0 the symmetry group at the classical level also contains

However: there is no fourth  goldstone boson: ⌘0

m⌘0 ⇠ m
proton

@µA
µ =

g2

32⇡2
Ga

µ⌫G̃
a
µ⌫

The term on the right-hand side has no effect in perturbation theory, but
configurations exist that make this non vanishing beyond perturbation theory

U(1)A broken by the anomaly: [t’Hooft; Witten; Veneziano]
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)2(QQEDα

asymptotic
→freedom   

↑
Landau
  pole

→) 2large momentum transfer (Q

→probing small distance scales (x) 

Asymptotic freedom versus Landau Poles/Triviality

[↵(q)]QCD ⌘ ḡ(q)2

4⇡
⇠q!1

c

ln( q
⇤ )

(Q
Landau Pole

)QED = me exp

✓
1

�
0

ḡ(me)
2

◆

b0<0  Asymptotic Freedom b0>0   Triviality and Landau Pole

�(q̄) =
@ḡ(q)

@ ln q
= �0ḡ

3 +O(ḡ5)



The Standard Model at arbitrary high energy ?

1. Landau poles (perturbative)  <->  triviality (non-perturbative)   

2. Stability of the higgs potential <-> 

⇤ ! 1 : �R(µ) = 0, g1R(µ) = 0

V (�) = �µ2�†�+ �(�†�)2

�R(µ) > 0

The need to go beyond perturbation theory
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Figure 2. Different regions in the (Mh,Mt) plane concerning the structure of the Higgs potential at high field values:

stable (up to MPl) in the green area; unstable in the yellow (red) areas above, with a lifetime of the EW vacuum longer

(shorter) than the age of the Universe. In the sideband red region labelled “Non-perturbativity” in the left plot, the running

� hits a Landau pole below MPl. Also shown are the 1-3 � experimental ellipses, with Mh = 125.15± 0.4 GeV and

Mt = 173.34± 0.76± 0.3 GeV. The left plot is from [3] and the right zoomed version from [4].

of interfering BSM physics) the EW vacuum would most likely be metastable, but with absolute
stability excluded only at the 2-3 � level,4 a result dubbed near-criticality. Fig. 3 shows the SM
“phase diagram” with different experimental ellipses: for different measurements of Mt, from
ATLAS, CMS and the Tevatron (left plot) and for different combinations with updated data (right
plot). Although the most realistic determination of the error in Mt is still under debate (see e.g. [22]
for a review on the issues of the top mass determination), it will not change near-criticality.

Obviously, BSM physics can interfere with the running of the Higgs quartic coupling,
disrupting the near-criticality shown in Fig. 2. This can happen even if the BSM physics is much
heavier that the instability scale, provided the effect it has on the potential is to make it more
unstable (pushing down the stability line in Fig. 2). A well-motivated example of this effect
is heavy right-handed seesaw neutrinos with sizeable Yukawa couplings [6]; a less motivated
example that has been widely discussed in the literature [23] is that Planckian physics might
introduce additional sources of potential destabilization. (For a more detailed discussion of this,
see [24]). In this respect, the hint of near-criticality might be compared with the hint of gauge
coupling unification: both are easy to disrupt by new physics thresholds (in which case they are
simply coincidences) but might be real hints pointing to some deeper and more fundamental
theory.

This intriguing near-criticality has led to many theoretical speculations about its significance
[4,8,25]. Is somehow �(MPl)' 0 connected to the fact that we also are very close to the phase
boundary between the EW broken and unbroken phases? This second boundary is associated
to the extreme smallness of the mass parameter of the Higgs potential, m2, in Planck units:
m2/M2

Pl ⇠ 0. From this point of view, it seems that the Higgs potential has a remarkable
behaviour at the Planck scale, with � and m2 being both very small. Moreover, also �� has a
special value ' 0 not very far from MPl. Is there a deep reason why EW parameters take such
intriguing values at MPl, an scale related to gravitational physics rather than to EW physics? It is
fair to say that no compelling theoretical explanation has been advanced so far.

4In Ref. [8], this number is reduced to ⇠ 1.3�. However, comparison between the NNLO stability line of [3,4] and the refined
result of [8] shows nearly perfect agreement. The discrepancy is simply due to the different choice of mass parameters in [8],
namely Mt = 173.21 ± 0.87 GeV and, especially, Mh = 125.7 ± 0.4 GeV, see Fig. 3, right plot.

The Standard Model is borderline OK up to the Planck scale but not beyond

Degrassi et al ‘12

Intriguing correlation between SM pararameters: mt, mh, as !

⇤SM < MP

Inconsistent theory



The (B)SM puzzles

i

• If there is new physics, there is a hierarchy problem

Solutions involve strong interactions: SUSY breaking, Technicolor, etc

• Flavoured new physics (e.g. FCNC) more strongly constrained than 
unflavoured ones:

Flavoured new physics in the quark sector involve strong interactions

• Strong CP problem…if CP is broken why not by QCD ?

H H
X

�M2
H / M2

X log

0 s

✓F a
µ⌫ F̃

aµ⌫

Term irrelevant in the perturbation theory

⇤p
c
� [102 � 105] TeV



Beyond PTh: Lattice Quantum Field Theory
Lecture I: Functional formulation of Euclidean QFT,

Regularization and Wilson RG

7

Basic idea due to K. Wilson: convert the path-integral formulation of a QFT 
into a statistical system by discretizing space-time  

QCD and asymptotically free renormalizable theories are benchmarks



Lattice Quantum Field Theory

Lehman-Symanzik-Zimmerman Reduction Formula

Cross sections, decay widths <-> Field Correlation functions

Lehman-Symanzik-Zimmerman Reduction Formula

Physical observables (cross sections, decay widths) ↔ Field correlation functions

!"#$%&'()"*
%&"+$*

!",-#&#$-* ./#,-#&#$-*

n
∏

i=1

∫

d4xie
ipi·xi

k
∏

j=1

∫

d4yje
−iqj·yi⟨0|T

(

φ̂(x1)...φ̂(xn)φ̂(y1)....φ̂(yk)
)

|0⟩

≃p0i→Epi,q
0
j→Eqj

n
∏

i=1

(

i
√
Z

p2
i − m2 + iϵ

)

k
∏

j=1

(

i
√
Z

q2
j − m2 + iϵ

)

⟨p1, ...., pn, out|q1, ..., qk; in⟩,

Z, m one-particle field renormalization constant and mass ?

9

In-states Out-states

Interaction region



Lattice Quantum Field Theory
From Minkowski to Euclidean via a Wick rotation

Wick rotation

Time-ordered correlation functions contain all the physical information of the
theory

Wn(t1,x1; ...., tn,xn) = ⟨0|φ̂(t1,x1)...φ̂(tn,xn)|0⟩, t1 ≥ t2..... ≥ tn,

Can be continuously extended to analytic functions in the complex plane for

Imt1 ≤ Im t2 ≤ .... ≤ Im tn

The Schwinger functions or Euclidean correlation functions are defined as:

Sn(x1, ..., xn) = Wn(−ix0
1,x1; ...− ix0

n,xn),

where the Euclidean times are x0
i = it0i and

x0
1 ≥ x0

2.... ≥ xn
0 .

11
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From quantum to classical variables: path integral representation



Lattice Quantum Field Theory

Characterization of asymptotic states (Z, m):

KL Spectral decomposition of the propagator in energy and momentum eigenstates |a>

Dominated by the lowest energy states: one particle states 

lim
x0!1

Z
d

3
x h�(x)�(0)i / e

�m↵x0





Lattice Quantum Field Theory
From functional integrals to multidimensional ordinary integrals via
discretization of space-time

Lattice Scalar QFT

A scalar field in a discretized space-time, such as a cubic lattice:

φ(x) x = na n = (n0, n1, n2, n3) ni ∈ Z4.

∫

dxi → a
∑

ni∈Z

∫

d4x → a4
∑

x

≡ a4
∑

n∈Z4

.

Any F (na) has a Fourier series periodic in the Brillouin zone (BZ):

F̃ (p) = a4
∑

n

e−ipnaF (na) F̃ (p) = F̃

(

p+
2π

a
m

)

, m ∈ Z4

and

∫ π/a

−π/a

d4p

(2π)4
eipnaF̃ (p) = F (na).

41
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Lattice Quantum Field Theory
From functional integrals to multidimensional ordinary integrals via discretization 
of space-time

@µ�(x) ! @̂µ�(x) ⌘
1

a

(�(x+ aµ̂)� �(x))

@̂

⇤
µ�(x) ⌘

1

a

(�(x)� �(x� aµ̂))

Any lattice derivative involves high dimension operators

@̂µ� = @µ�+
1

2
a@µ@µ�+O(a2)



Lattice Quantum Field Theory

Perturbative renormalizability: generic 1PI diagram in scalar lf4

Perturbative renormalizability

The contribution of a 1PI diagram with I internal lines (i.e. propagators linking
two vertices) and L loops is generically of the form:

Γ(N)(p1, ..., pN) ∼
∫ L
∏

l=1

d4ql

I
∏

i=1

1

ki(ql, pj)2 +m2
.

Superficial degree of divergence: if qi ∼ Λ → Γ(N) ∼ Λω

ω ≡ 4L− 2I,

Negative ω is necessary for UV finiteness but not sufficient!

Topological relation between I , the number of vertices V and external legs N of
the diagram:

2I +N = 4V,

24

! = superficial degree of divergence = 4L� 2I

4V = N + 2I

L = I � V + 1

Using: ! = 4�N

Only N=2, 4 can be divergent �(2) = A @µ�@µ�+B�2

�(4) = C�4

Divergences in A, B, C can be reabsorbed in  Z, m, l (proof to all others difficult!)



Lattice Quantum Field Theory

d>4 interactions

As more vertices of this type are included in a diagram higher N is necessary
to absorb the divergence

More generically, we can consider a theory where S(1) has other interactions such
as

V (1)[φ] = gV (∂)N∂ (φ)Nφ

ω = 4−N − [gV ]V, [gV ] = 4−Nφ −N∂

A very different behaviour as the order of the perturbative expansion grows
depending on the sign of [gV ]:

[gV ] > 0 diagrams become less divergent with V : superrenormalizable theory
[gV ] = 0 the divergence does not depend on V : renormalizable theory
[gV ] < 0 divergences for larger N as V grows: non-renormalizable theory

The lattice formulation of any lattice field theory is not renormalizable in this
sense....

26
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Superrenormalizable
Renormalizable

Non renormalizable

The lattice formulation is not renormalizable in this sense…



Wilsonian Renormalization

Consider a QFT with a fundamental cutoff

S⇤[�] =

Z

x

1

2
@
µ

�@
µ

�+
m2

2
�2 +

�

4!
�4 +

�0

⇤2
�6 +

c2
⇤2

�@4�+ ...

Z ⇤

�⇤
dp

! = 4�N

w counts the powers of L

Exercise: show that

There is nothing special about a theory that is perturbatively renormalizable!



Wilsonian Renormalization

Renormalizability <-> existence of a continuum limit (criticality)                     

Continuum limit: a->0, keeping x fixed

⇠ = m�1 � a

h�(x)�(0)i / e

�x/⇠

Renormalizability is an emergent phenomenon in a  theory with a fundamental cutoff
(such as a lattice QFT                    )⇤ = a�1

⇠

a
! 1 , ma ! 0

Empirical fact: many systems near critical points behave similarly (universality class)



Wilsonian Renormalization

Wilsonian Renormalizability:

S(n)(a) =
∑

i,x g
(n)
i Oi(x) S(n+1)(a) =

∑

i,x g
(n+1)
i Oi(x)

g(n+1)
i = R(n)

i (g(n))

Fixed-points of RG: g∗i = Ri(g∗)

mα(g
∗) = fixed → mα(g∗)a → 0
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Renormalization group transformation

Renormalization group transformations

Let us suppose that we have a lattice scalar theory on a lattice of spacing a which
describes physics scales m ≪ a−1.

The most general local theory:

S(a) =
∑

α

gα(a)
∑

x

Oα(φ(x), a)

where Oα are Lorentz invariant and local operators with arbitrary dimension
constructed by powers of ∂µφ, φ and a.

Take the limit a → 0 in little steps:

a ≥ a1 ≥ a2... ≥ an = (1− ϵ)na, ϵ≪ 1

At each step we can integrate the modes between a−1
n−1 and a−1

n to obtain an effective

29

At each step we integrate the modes [a�1
n�1, a

�1
n ]



Wilsonian Renormalization

At each step we integrate the modes to match to a theory
with the same cutoff

[a�1
n�1, a

�1
n ]

theory at a lower scale:

S(a1) → S(1)(a) =
∑

α

g(1)α (a)
∑

x

Oα(φ(x), a)

S(a2) → S(1)(a1) → S(2)(a) =
∑

α

g(2)α (a)
∑

x

Oα(φ(x), a)

....

S(an) → ....
∑

α

g(n)α (a)
∑

x

Oα(φ(x), a)

The operators at scale a are all the same because we included all possible

Renormalization group (RG) transformation, the function that defines the
change in the couplings:

Rα : g(n)α → g(n+1)
α g(n+1)

α = Rα(g
(n))

For a continuous transformation there is a RG flow of the coupling constants

30

Fixed Point of RG

Wilsonian Renormalizability:
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Wilsonian Renormalization

Renormalizability  <-> Universality                      Fixed Point of RG

Near a FP:

Near a fixed-point the evolution of the couplings reads at linear order

g(n+1)
α − g∗α =

∂Rα
∂gβ

∣

∣

∣

∣

g∗
(g(n)β − g∗β),

so the distance to the fixed-point ∆g(n) changes according to the following equation:

∆g(n+1)
α = Mαβ∆g(n)β , Mαβ ≡

∂Rα
∂gβ

∣

∣

∣

∣

g∗
.

We can find different situations depending on the eigenvalues, λ, of the matrix M :

λ > 1 ∆g(n)α increases as n → ∞ α is a relevant direction

λ = 1 ∆g(n)α stays the same as n → ∞ α is a marginal direction

λ < 1 ∆g(n)α decreases as n → ∞ α is an irrelevant direction
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Different situations depending on eigenvalues of M
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# of relevant directions is usually small: universality & renormalizability

Wilsonian Renormalizability:
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Exercise: convince yourself that a free massless scalar is a fixed point
(gaussian fixed point)

Start with a generic lattice action quadratic in the fields but otherwise arbitrary

Case 2: We start with an arbitrary lattice action that is quadratic in the fields,
but including all terms that are Lorentz invariant.

S(a) =

∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)

(

p2 +m2
0
1

a2
+ g1a

2p4 + ...

)

φ(p)

[m0] = [α] = ... = 0.

the integration over the momentum modes in a slice of momenta in BZ(a1) and out
of BZ(a) can be done as before

S(1)(a) =

∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)

(

p2 +

(

a

a1

)2 1

a2
m2

0 + g1
(a1
a

)2
a2p4 + ...

)

φ(p),

35

(i) Construct the effective action

Case 2: We start with an arbitrary lattice action that is quadratic in the fields,
but including all terms that are Lorentz invariant.
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(2π)4
1

2
φ(−p)
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p2 +m2
0
1

a2
+ g1a

2p4 + ...
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the integration over the momentum modes in a slice of momenta in BZ(a1) and out
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∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)

(

p2 +

(

a

a1

)2 1

a2
m2

0 + g1
(a1
a

)2
a2p4 + ...

)

φ(p),

35

(ii) Construct the matrix M from this one step and find the relevant, irrelevant and 
marginal directions

The fact that the number of relevant directions is finite and usually small is behind
the two related properties: universality of the fixed-point and the renormalizability of
the corresponding QFT.

Example: Gaussian Fixed Point

Case 1: the free massless point of a scalar theory is a fixed-point:

S(a) =

∫

BZ(a)

d4p

(2π)4
1

2
φ(−p)p2φ(p),

where BZ(a) is the Brillouin zone [−π/a,π/a] in each mometum direction.

When we do the first RG transformation we start with the same action but in a
lattice of spacing a1 = (1−ϵ)a. Since the fields at different momenta are independent
variables, we can integrate over those at momenta π/a ≤ |pµ| ≤ π/a1 so that the

33



Wilsonian Renormalization

Any local action with the same degrees of freedom and symmetries lead to
the same continuum limit (via the tuning of a small set of relevant parameters)

Asymptotic freedom ensures the existence of FP in perturbation theory

QCD has the (marginally) relevant couplings: g0, mu ,md ,ms ,mc ,…

Wilsonian Renormalizability:

Critical Regions ↔ Effective QFT

Fixed Points ↔ Renormalizable QFT: continuum limit

Universality ↔ small number of relevant directions

Universality of the FP ensures that any discretization leads to the same
continuum limit if the same properties concerning

• degrees of freedom

• locality

• symmetries

In asymptotically-free theories (QCD) the existence of a FP is warrantied by
asymptotic freedom: can be proven in lattice perturbation theory!

Unitarity can be warrantied by the property of reflection positivity
Osterwalder, Seiler

8

g0 ->0 , mq a -> 0 

Caveat: a discretization that breaks any of the symmetries in general requires
more relevant couplings



Lattice Scalar Fields

From functional integrals to multidimensional ordinary integrals via
discretization of space-time

@µ�(x) ! @̂µ�(x) ⌘
1

a

(�(x+ aµ̂)� �(x))

@̂

⇤
µ�(x) ⌘

1

a

(�(x)� �(x� aµ̂))



Lattice Scalar Fields

As in the continuum, the limit                 is solvable

As in the continuum we can obtain the correlation functions from the generating
functional

Z[J ] ≡
∫

∏

x

dφ(x)e−S[φ]+a4
∑

x J(x)φ(x)/Z .

Free Theory (λ = 0)

S(0)[φ] = a4
∑

x

{

1

2
∂̂µφ∂̂µφ+

m2
0

2
φ2
}

=
a4

2

∑

x,y

φ(x)Kxyφ(y),

Kxy ≡ −
1

a2

3
∑

µ̂=0

(δx+aµ̂y + δx−aµ̂y − 2δxy) +m2
0δxy

44
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Z(0)[J ] = e
a4
2
∑

x,y Jx(K
−1)xyJy det

(

a4K
)−1

,

The propagator: ⟨φ(x)φ(y)⟩0 = 1
a8
∂Z(0)[J]
∂Jx∂Jy

∣

∣

∣

J=0
= 1

a4
K−1

xy

In Fourier space:

K̃pq = a8
∑

xy

e−ipxe−iqyKxy = a4(2π)4δP (p+ q)

⎧

⎨

⎩

m2
0 +

∑

µ

p̂2µ

⎫

⎬

⎭

,

p̂µ ≡
2

a
sin
(pµa

2

)

p̂2 ≡
∑

µ

p̂2µ.

⟨φ(x)φ(y)⟩ = a−4K−1
xy =

∫

d4p

(2π)4
eip·(x−y)

p̂2 +m2
0

.

45

Z(0)[J ] = e
a4
2
∑

x,y Jx(K
−1)xyJy det

(

a4K
)−1

,

The propagator: ⟨φ(x)φ(y)⟩0 = 1
a8
∂Z(0)[J]
∂Jx∂Jy

∣

∣

∣

J=0
= 1

a4
K−1

xy

In Fourier space:

K̃pq = a8
∑

xy

e−ipxe−iqyKxy = a4(2π)4δP (p+ q)

⎧

⎨

⎩

m2
0 +

∑

µ

p̂2µ

⎫

⎬

⎭

,

p̂µ ≡
2

a
sin
(pµa

2

)

p̂2 ≡
∑

µ

p̂2µ.

⟨φ(x)φ(y)⟩ = a−4K−1
xy =

∫

d4p

(2π)4
eip·(x−y)

p̂2 +m2
0

.

45

Z(0)[J ] = e
a4
2
∑

x,y Jx(K
−1)xyJy det

(

a4K
)−1

,

The propagator: ⟨φ(x)φ(y)⟩0 = 1
a8
∂Z(0)[J]
∂Jx∂Jy

∣

∣

∣

J=0
= 1

a4
K−1

xy

In Fourier space:

K̃pq = a8
∑

xy

e−ipxe−iqyKxy = a4(2π)4δP (p+ q)

⎧

⎨

⎩

m2
0 +

∑

µ

p̂2µ

⎫

⎬

⎭

,

p̂µ ≡
2

a
sin
(pµa

2

)

p̂2 ≡
∑

µ

p̂2µ.

⟨φ(x)φ(y)⟩ = a−4K−1
xy =

∫

d4p

(2π)4
eip·(x−y)

p̂2 +m2
0

.

45



Lattice Scalar Fields
Particle interpretation ? Continuum limit ?

Exercise:
We can perform the integral over p0 ∈

[

−π
a ,
π
a

]

(contour A):

✲

✻

❄

A

C

BD

p0π/a−π/a

×

∫

A
(...) +

∫

B
(...) +

∫

C
(...) +

∫

D
(...) = 2πi

∑

poles

Residues.

47
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There is only one solution within the closed contour with residue

Residue[p0 = +iω(p)] =
1

2ω̄(p)
, ω̄(p) ≡

1

a
sinh (ω(p)a)

⟨φ(x)φ(0)⟩ =
∫

A
(...) =

∫

d3p

(2π)3
1

2ω̄(p)
e−ω(p)x0eip·x.

This is the expected behaviour if we identify the one-particle energies Ep(α) → ω(p)
and

|⟨0|φ̂(0)|α⟩| →

√

ω(p)

ω̄(p)
.

The continuum limit a → 0 can be readily obtained:

lim
a→0

ω(p) = lim
a→0

ω̄(p) =
√

m2
0 + p2 +O(a2)

49

By periodicity of the function in the BZ, we have
∫

B
(...) +

∫

D
(...) = 0,

while for x0 > 0, the integral over C vanishes,
∫

C(...) = 0:

∫

A
(...) = 2πi

∑

poles

Residues.

Single poles occur at the solutions of the equation:

p̂2 +m2 = 0 ⇒ p0 = ±iω(p)

(

mod
2π

a

)

,

which are purely complex in the BZ. ω(p) is a real number satisfying:

coshω(p)a = 1 +
a2

2

(

m2
0 +

4

a2

3
∑

i=1

sin2
pia

2

)

.
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One particle state of mass m0

0

One pole:



Euclidean fermions :

free matter fields on a lattice

action for a free (Dirac) fermion field:

S

cont

=
Z

d4

x  ̄(x) [�µ@µ + m] (x) ; {�µ, �⌫} = 2�µ⌫ , �

†
µ = �µ

Slatt = a

4
X

x

 ̄(x)
�

1
2

⇥
�

µ

(@⇤
µ

+ @

µ

)
⇤
+ m

 
 (x)

One particle states (KL representation):

Chiral symmetry m -> 0:   

Lattice Fermion Fields



Lattice Fermion Fields

Naïve discretization:

KL representation: one particle states ?



Lattice Fermion Fields
We can perform the integral over p0 ∈
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⟨ψα(x)ψ̄β(0)⟩F =

∫

d3p

(2π)3
eipxe−ωpx0

sinh(2 ωpa)

[(

γ0 sinhωpa− i
∑

k

γk sin pka+ma

)

+ (−1)x0/a

(

−γ0 sinhωpa− i
∑

k

γk sin pka+ma

)]

.

Two new features appear with respect to the scalar case:

• there are two terms in the sum with the same energy, ωp, but different residue

• the energy, ωp, has minima at pk = p̄k ≡ nk
π
a nk = 0, 1.

!Π
!

Π

2
Π

2
Π

p
x
a

0.2

0.4

0.6

0.8

1
Ωp a

m
lim
a→0

ωp|pk=nkπ/a
= m.

67

K̃αβ
pq = a4

⎡

⎣

∑

µ

i

a
γµ sin(qµa) +m

⎤

⎦

αβ

(2π)4δP (p+ q),

⟨ψα(x)ψ̄β(y)⟩F =

∫

BZ

d4p

(2π)4
eip(x−y)

∑

µ iγµ
sin(pµa)

a +m
.

The integral over p0 as a sum of residues of single poles in the band |Rep0| ≤ π/a
and Imp0 ≥ 0:

eip0a = ±e−ωpa ≡ ±
(√

1 +M2
p −Mp

)

M2
p ≡ m2a2 +

3
∑

k=1

sin(pka)
2.

66

• Two poles with same energy with different residues

• Minimum of the energy @
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x

Two poles:



Lattice Fermion Fields

Doubling Problem: 2d massive fields in the continuum limit and not one ! 

Near the continuum limit, it is justified to consider the contribution near these
minima

pj = p̄(i)j + kj, kja ≪ 1 j = 1, ..., 23

⟨ψα(x)ψ̄β(0)⟩F

=
16
∑

α=1

eip̄
(α)x

∫

d3k

(2π)3
eikxe−ωpt

2k0

⎡

⎣γ0 cos(p̄
(α)
0 a)k0 − i

∑

j

γj cos(p̄
(α)
j a)kj +m

⎤

⎦ ,

16 terms: p̄(α)µ = (n(α)
0 , n(α)

1 , n(α)
2 , n(α)

3 )πa , n(α)
µ = 0, 1

Define unitary operators

Sα ≡
∏

µ

(iγµγ5)
n
(α)
µ SαγµS

†
α = γµ cos(p̄

(α)
µ a)
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The propagator is then

16
∑

α=1

eip̄
(α)x

∫

d3k

(2π)3
eikxe−ωpt

2k0
Sα

[(

γ0k0 − i
∑

k

γkkk +m

)]

S−1
α

Each term is the contribution of a relativistic fermion in the continuum, since Sα is
just a similarity transformation: an equivalent representation of the γ matrices.

16 (2d) relativistic free fermions instead of 1.... this is the famous doubling
problem
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Lattice Fermion Fields

The propagator is then
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∑
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just a similarity transformation: an equivalent representation of the γ matrices.

16 (2d) relativistic free fermions instead of 1.... this is the famous doubling
problem
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Deep connection between doubling problem and chirality

(1� �5) (1 + �5)

Naive chiral fermion:

(1� �5)S↵ = S↵(1� (�1)
P

µ n(↵)
µ �5)

8 right-movers + 8 left-movers: vector-like theory !



Lattice Fermion Fields

Deep connection between doubling problem and chirality

Nielsen-Ninomiya no-go theorem: doubling problema is common to any fermion
action that satisfies

• Invariant under space-time translations

• Quadratic in fermions & hermitian

• Local (smooth kernel in Fourier space)

• Chirally symmetric



Lattice Fermion Fields
Wilson discretization:

Vanishes in the naïve continuum limit, but breaks chiral symmetry!

Wilson fermions

K. Wilson proposed to add to the naive action the following term

∆WS = −a4
∑

x

ψ̄(x)
ra

2
∂̂∗µ∂̂µψ(x)

where r is some arbitrary constant of O(1). It is easy to see that the propagator in
momentum space is modified to

⟨ψα(x)ψ̄β(y)⟩F =

∫

BZ

d4p

(2π)4
eip(x−y)

∑

µ iγµ
sin(pµa)

a +m+ r
a

∑

µ(1− cos pµa)

As before the integration over p0 can be performed as a sum of residues of the
solutions, in the region Im p0 > 0, −π < Re p0 < π, of

∑

µ

sin2 pµ +

⎛

⎝m+
r

a

∑

µ

(1− cos pµa)

⎞

⎠

2

= 0
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• Only one pole in the p0 

• Minimum energy unique

However

0
p = (p1,0 ,0)

εp

π /a−π /a

Wilson

w/o Wilson

) w/o Wilson term there are additional states with energy � �/a

) wrong continuum limit!

Benasque, 13.–25. July 2008 Wilson term 17/17

For r = 1 (Wilson’s choice) the only solution is at p0 = iωp satisfying

coshωp =
1 +

∑

k sin
2 pka+ (ma+ 1 +

∑

k(1− cos pka))2

2(ma+ 1 +
∑

k(1− cos pka)

The energy at p̄(α)k = n(α)
k

π
a

ω(α)
p =

1

a
log

(

1 +ma+ 2
∑

k

n(α)
k

)

,

the only pole that survives in the continuum limit (i.e. lima→0 aωp = m) corresponds

to n(α)
k = 0 for all k. The others have energies ∼ a−1
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Lattice Fermion Fields

Alternatively discretizations to tame chiral symmetry breaking

Ø Staggered fermions (Kogut-Susskind)
Ø Twisted mass Wilson
Ø Ginsparg-Wilson (overlap fermions, domain-wall,…)

The breaking of chiral symmetry brings many complications: 

• bare quark masses become relevant (instead of marginally relevant)

• cutoff effects are O(a) (instead of O(a^2))

• operator mixing and renormalization much more complicated

• in the context of chiral gauge theories: breaking of gauge symmetry



Lattice Gauge Theory
SU(N) gauge theory in the continuum:  e.g. a charged fermion + gauge connection 

Non-abelian case

The vector gauge potential Aµ(x) in a SU(N) Yang-Mills theory takes values in
the Lie algebra of the gauge group:

Aµ(x) = Aa
µ(x)T

a,

where the coefficients Aa
µ(x) are real and T a = (T a)† are the hermitian generators of

the algebra.

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− i[Aµ(x), Aν(x)],

is also an element of the algebra.

A gauge transformation is:

Aµ(x) → Ω(x)Aµ(x)Ω(x)
−1 + iΩ(x)∂µΩ(x)

−1,

where Ω(x) ∈ SU(N).
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Gauge Symmetry: 

a = 1, .., N2 � 1

Action: start with the free fermion action (Aµ=0) and do a gauge transformation

Dµ 
0 ⌘

�
@µ + ⌦ @µ⌦

+
�
 0 = (@µ � iA0

µ) 
0

 ̄�µ@µ !  ̄0�µDµ 
0

 (x) !  

0(x) = ⌦(x) (x), ⌦(x) 2 SU(N)

Aµ(x) ! A

0
µ(x) = ⌦(x)Aµ(x)⌦(x)

† + i⌦(x)@µ⌦(x)
†

 

i(x) i = 1, .., N
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Lattice Gauge Theory

Gauge action in terms of the field strength

Non-abelian case

The vector gauge potential Aµ(x) in a SU(N) Yang-Mills theory takes values in
the Lie algebra of the gauge group:

Aµ(x) = Aa
µ(x)T

a,

where the coefficients Aa
µ(x) are real and T a = (T a)† are the hermitian generators of

the algebra.

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− i[Aµ(x), Aν(x)],

is also an element of the algebra.

A gauge transformation is:
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−1,

where Ω(x) ∈ SU(N).

97

How do we discretize this, maintaining gauge symmetry ?

S
cont

[�, Aµ] = � 1

2g2
Tr [Fµ⌫F

µ⌫ ] +  ̄�µDµ 



Lattice Gauge Theory
Free fermion in two different gauges to get the lattice covariant derivative: 

 ̄�µ@̂µ !  ̄0�µr̂µ 
0

The basic variable on the lattice is the link variable

Uµ(x) 2 SU(N)

It is a parallel transporter

Uµ(x) ! ⌦(x)Uµ(x)⌦(x+ aµ̂)†



Lattice Gauge Fields

Wilson loops: products of link variables forming a closed loop

Plaquette: smallest Wilson loop

We still need the pure gauge action…

Wilson lines: path ordered product of links (y-> x)

More generally, for any lattice curve C

U(x, y; C) = ordered product of U ’s

U(x, y; C)� �(x)U(x, y; C)�(y)�1

y

x

In particular, for any closed curve, the Wilson loop

W (C) = tr{U(x, x; C)}

is gauge-invariant and independent of x

Benasque, 13.–25. July 2008 Wilson lines 6/19

P (x, y; path) ! ⌦(x)P (x, y; path)⌦(y)†

W = Tr[P(x,x;path)] Gauge invariant!



Lattice Gauge Fields

Discretized Gauge Action ?  Local, real, lattice rotation and gauge invariant  

gauge fields on a lattice

classical continuum limit: how can we ...

connect link variables to continuum gauge potential?

construct an action that reduces to the correct classical Yang-Mills 
theory in the continuum limit?

links = continuum Wilson lines (parallel transport) along corresponding paths

Similarly

⌃⇥µ ⇤(x) =
1
a

�
⇤(x)� U(x� aµ̂, µ)�1⇤(x� aµ̂)

⇥

� gauge-covariant Wilson–Dirac operator

Dw =
3⇤

µ=0

1
2 {�µ(⌃⇥µ +⌃µ )� a⌃⇥µ⌃µ}

An SU(3) lattice gauge field is an assignment of a matrix

U(x, µ) ⇤ SU(3)

to every link (x, x + aµ̂) on the lattice

µ̂x x+a

Benasque, 13.–25. July 2008 SU(3) lattice gauge fields 4/19

Uµ(x) = P exp

⇢
ia

Z 1

0
dt Aµ(x + (1� t)aµ̂)

�

= 1 + iaAµ(x) +O(a

2
)

mapping             uniquely defined, gauge covariantA! U

Continuum Limit ?



Strong Coupling Expansion: mass gap

Glueball spectrum: the large time behaviour of any local operator with the right
quantum numbers

An Taylor expansion in 

Strong Coupling Expansion

The strong coupling expansion is an expansion in inverse powers of the coupling
g0, which by the structure of the path integral is equivalent to a large temperature
expansion of the statistical system:

Z = C

∫

∏

l

dUle
− β

2N

∑

p[Tr[Up]+Tr[U†
p]]

where β ≡ 2N
g20

The large g0 expansion is a Taylor expansion in β (large temperature):

Z =

∫

∏

l

dUl

∏

p

∑

n

1

n!

(

β

2N

)n

(χ(Up) + χ(Up)
∗)n
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Plaquette-Plaquette correlator and mass gap

Correlation functions of spatial plaquettes describe the propagation and scattering
of physical particles: glueballs. Mass gap shows up in the correlator of spatial
plaquettes at large time separation.

⟨ ⟩
!
!
!
!!

!
!

!
!!

!
!
!
! !

!
!

!

!
!
!
! !

!
!

!

!
!
!
!!

!
!

!
!!

! ! !

< >
T

Each internal plaquette brings a factor β/2N , each integral over two paired links
brings in a factor 1/N and each vertex gives a factor of N :

Cpp(T ) ∼
(

β

2N

)Np( 1

N

)Ni

NNv
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• each power of b brings down a plaquette

Leading order

• Has the lowest number of plaquettes.

• All link variables must be shared by at least two plaquettes, since

∫

dU Uαβ = 0

For the two examples following the only non-trivial integral is that of two links

∫

dU UαβU
†
γδ =

1

N
δαδδβγ

109

• each link must appear more than once

lim
x0!1

a

3
X

x

hTr[U
ij

(x)]Tr[U
ij

(0)]i / e

�mglueballx0Np = #plaquettes = 4T/a

Ni = #integrals = #links/2 = 2(Np + 2)

Nv = #vertices = Nv = 4(T/a+ 1)

Cpp(T ) ∼
(

β

2N2

)4T/a

= exp

(

−
4

a
log

(

2N2

β

)

T

)

the correlator decays exponentially in time as expected in a theory with a finite mass
gap !

m ∼
4

a
log

(

2N2

β

)

Unfortunately no continuum limit can be reached in the strong coupling expansion
since lima→0ma = finite.
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Np = #plaquettes = 4T/a

Ni = #integrals = #links/2 = 2(Np + 2)

Nv = #vertices = Nv = 4(T/a+ 1)

Cpp(T ) ∼
(

β

2N2

)4T/a

= exp
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−
4

a
log
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2N2

β

)

T

)

the correlator decays exponentially in time as expected in a theory with a finite mass
gap !

m ∼
4

a
log

(

2N2

β

)

Unfortunately no continuum limit can be reached in the strong coupling expansion
since lima→0ma = finite.
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Mass gap, but no continuum limit…



Strong Coupling Expansion: confinement

Static potential: potential energy between two infinitely heavy quark/antiquark
separated a distance R

!"#$%&#'$

!"($%)&('$

*$

!

!

+$ ,$

*$-$

Integrating over the scalar fields first

Cqq̄(T ) =
〈

Tr
[

U†(y, T ; x, T )⟨φ(y, T )φ†(y, 0)⟩φU(y, 0; x, 0)⟨φ(x, 0)φ†(x, T )⟩φ
]〉

U
∼ ⟨WRT⟩,

neglecting R independent factors.
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The simplest gauge-invariant operator representing a qq̄ pair separated by some
spatial distance |y − x| = R at time t is

O(t) = φ†(y, t)U(y, t;x, t)φ(x, t)

The correlator at large times T → ∞,

Cqq̄(T ) ≡ ⟨O†(T )O(0)⟩φ,U

represents a qq̄ pair separated by a distance R that are created at time x0 = 0 and
evolve until time T .

The exponential decay in time of Cqq̄ gives us information about the energy of
this system

Cqq̄(T ) ∼ exp(−E(R)T ), E(R) = E0 + V (R)
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analytical tools: strong coupling expansion

 ! a�2m�1/2
0  ,  ̄ ! a�2m�1/2

0  ̄

S =
X

x

(
 ̄(x) (x) +

1
m0

 ̄(x)Dw (x) +
1
g

2
0

X

µ⌫

Pµ⌫(x)

)

⇒ simple expansion around
1

m0
,

1
g2
0

! 0

⇒ simple picture of confinement at m0 !1
At m0 =⌅, for example,

⇤
�
1/g2

0

⇥Nplaq = exp{�� ⇥ area}

� quark confinement

However, this limit is unphysical since

� =
1
a2

ln(g2
0) + . . .

M� = O(1/a), Mp = O(1/a), etc.

Benasque, 13.–25. July 2008 Principal tools in LQCD 7/19

⇠ (1/g2
0)

Nplaq
= exp{�� ⇥ area}

N.B.: not really physical — recall continuum theory is realised as g0 ! 0

Cqq(T ) /

lim
β→0

V (R) =
R

a2
log

(

2N2

β

)

+ ... = σR+ ...

This linear behaviour is a criterium for confinement, because the potential energy
grows without bound when the quark and the antiquark are pulled apart.

σ is called the string tension:

lim
β→0

σ =
1

a2
log

(

2N2

β

)

But no continuum limit: lima→0 a2σ = finite

The strong coupling analysis gets all the qualitative behaviour right, but there is
no continuum limit in this approximation.

The existence of a continuum limit can be shown in the opposite limit of small
coupling.
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String tension but no continuum limit!

R



Lattice QCD

DW =
1

2

⇥�
rµ +r⇤

µ

�
�µ � arµr⇤

µ

⇤

Z =

Z
D[U ]e�SW [U ]

Z
D[ ]D[ ̄] e�SWF [U, , ̄]

D[U ] =
Y

x,µ

dU

µ

(x), D[ ] =
Y

x

d (x)

Integration over fermion variables can be done analytically:

S

WF

[U, ,  ̄] = a

4
X

x,a

 ̄

a

(x)(D
W

+M

a

) 
a

Z
D[ ]D[ ̄] e�SWF [U, , ̄] =

Y

a

det(DW +Ma)

Grassman variablesHaar measure

ZF ⌘



Lattice QCD

Z =

Z
D[U ]

Y

q

det(DW +mq) e
�SW [U ]

• Integrals over link variables are compact: no need to fix the gauge

• Integrand is positive definite: Monte Carlo methods can be used

Monte Carlo integration

in practice: computational needs determined by inversion of lattice Dirac operator

h�1(x1) · · ·�n(xn)i =
1
Z

Z
D[U ]h�1(x1) · · ·�n(xn)iF ⇥

⇥
NfY

q=1

det[Dw(U) + mq]e�SG[U ]

h(ū�5d)(x)(d̄�5u)(y)iF = �tr {�5 S(x, y;U)d �5 S(y, x;U)u} x y

quark propagators

computation of the determinant

cost of computation ⟷ condition number of lattice Dirac operator

= Tr[ Product of quark propagators ]h 1(x1)... n(xn) ̄1(y1)... ̄n(yn)iF

h (x) ̄(y)iF = S(x, y;U) (Dw + M) S(x, y;U) = a

�4
�

xy



Lattice QCD

Monte Carlo integration

in practice: computational needs determined by inversion of lattice Dirac operator

h�1(x1) · · ·�n(xn)i =
1
Z

Z
D[U ]h�1(x1) · · ·�n(xn)iF ⇥

⇥
NfY

q=1

det[Dw(U) + mq]e�SG[U ]

h(ū�5d)(x)(d̄�5u)(y)iF = �tr {�5 S(x, y;U)d �5 S(y, x;U)u} x y

quark propagators

computation of the determinant

cost of computation ⟷ condition number of lattice Dirac operator

Example: pion propagator

h⇡(x)⇡(y)i = �Z�1

Z
D[U ] tr[�5Sd(x, y;U)�5Su(y, x;U)]

Y

q

det(DW +mq) e
�SW [U ]

lim
x0!1

a

3
X

x

h⇡(x)⇡(0)i / e

�m⇡x0



Lattice QCD: continuum limit ?

Is there a fixed point: mphysa ! 0

How to approach this continuum limit: how many couplings do we have to tune ?

Asymptotic freedom ensures the existence of FP in perturbation theory

QCD has the relevant couplings: g0, mu ,md ,ms ,mc ,…

Callan-Symanzik equations in the momentum subtraction scheme:

Γ(2)(k)|k2=µ2 = tree− level

Γ(4)(k1, k2, k3)|kikj=1
2(3δij−1)µ2 = tree− level,

where µa ≪ 1.

g2R(µ) = g20

(

1−
g20

16π2

11Nc

3
(log(a2µ2) + c′)

)

β(g0) ≡ −a
∂g0
∂a

∣

∣

∣

∣

gR fixed

= −β0g30 − β1g
5
0 + ... β0 =

Nc

16π2

11

3
> 0

121

g0 = 0 UV fixed point

) g2
0 ⇠

a!0

1
b0 ln(aµ)

+ . . .



Continuum Limit
Nf=2+1

e.g.

(L/a, increase)  increasing sot that

so that physics remains constant

three parameters: g0, mu=md, ms

we measure three quantities and predict everything else



Plan

Part I: Functional Formulation of QFT, renormalization, Wilson RG 

Part II: Lattice Formulation of scalar, fermion and gauge QFT

Part III: Lattice QCD: numerical methods and applications



Numerical Aspects of Lattice QCD

numerical simulations

employ path integral formalism: Euclidean correlation function of n gauge-invariant 
fields given by

h�1(x1) · · ·�n(xn)i =
1
Z

Z
D[U ]

Z
D[ ]D[ ̄]e�S[U, ̄, ]

�1(x1) · · ·�n(xn)

indep. variables in Euclidean qft ,  ̄

crucial: on a lattice, this is a standard integral (over a very large number of variables)

untractable analytically: use numerical techniques to compute correlation functions

Nf = 2 + 1 + 1 , (L/a)3 ⇥ (T/a) = 643 ⇥ 128

) Dw = (1.6⇥ 109)2 complex matrix

Well defined problem for finite a and volume but:

Monte Carlo integration mandatory

I =
Z 1

0
dx0

Z 1

0
dx1 · · ·

Z 1

0
dxK�1 P (x) f(x)

Generate N random K-vectors distributed according to P(x) (normalized) {x[i]}

Convergence guarantied by central limit theorem:  

lim
N!1

I(N) = I+O(1/
p
N)



Markov Chains: a procedure to get the required samples

Numerical Aspects of Lattice QCD

{x[i]}

x ! Uµ(x), P (x) ! e

�S[U ]

Z

Stocastic process to get one configuration from the previous one via a 

Transition Probability

With the following properties guarantied to get the right distribution
(asymptotically):    

T (x ! x

0) � 0

T (x ! x

0)

X

x

0

T (x ! x

0) = 11) 

3)   ergodicity

2)



Numerical Aspects of Lattice QCD
T (x ! x

0)What ?

Metropolis-Hastings algorithm

T (x ! x

0) =

⇢
min(1, P (x0)/P (x)) x

0 6= x

1�
P

x

0 min(1, P (x0)/P (x)) x

0 = x

Not very efficient when the domain is much larger than the region where
P(x) is significant: small acceptance rate…



Numerical Aspects of Lattice QCD

Hybrid Monte Carlo (HMC) algorithm [Duane et al ‘87]

Molecular dynamics:

1) Starting with some gaussian random momenta, Hamilton equation is solved
(approximately) with Hamiltonian and new state in the chain is the solution

2) Ergodicity is achieved by the change in positions from random gaussian
momentum updates

3) A MH accept-reject step because the solution to Hamilton eqs. is not exact



Numerical Aspects of Lattice QCD

Systematic errors:

• Continuum limit:  

• Infinite volume limit:  ML � 1

Ma ⌧ 1

reach of modern lattice QCD computations

Lattice QCD

� � � �mtmbmcmsmdmu

10 102 103 104 105 MeV

Fig. 6.1 Quark masses.

• It would allow to study QCD in di�erent conditions, such as high density or
temperature, as took place in the early universe or in very dense systems such as
neutron stars

• QCD is in some sense a model field theory for many extensions of the SM, as
well as for the lattice approach. In QCD we know where the UV fixed point lies
so we know where the continuum limit is and how to approach it. The lattice
method might be necessary to study other field theories, such as those in models
of technicolor or dynamical gauge symmetry breaking, where things might not be
so easy. Clearly having solved QCD is a benchmark to guide future investigations.

Giving the spread of quark masses that span six orders of magnitude, dealing with
all quarks in a lattice simulation is very di⌅cult since approaching the continuum limit
in controlled conditions would require

amq ⇥ 1, (6.7)

and therefore extremely fine lattices. This brute force approach is not practical. Fortu-
nately, when we try to describe the low energy regime, the e�ect of the heavy quarks
can be accurately described by an e�ective theory that results from integrating them
out. It is a consequence of the decoupling theorem (Appelquist and Carazzone, 1975)
(which is another scenification of Wilsonian renormalization group), that the e�ects of
the heavy quarks in the low-energy dynamics are well represented by local operators
of the light fields only (gluons and the lighter quarks), where the e�ect of the heavy
scales is reabsorbed in the couplings. This implies that in order to study hadron pro-
cesses at energies much lower than the heavy quark mass scale, we can simply ignore
the heavy quarks.

We are also interested however in processes involving heavy hadrons. An e⌅cient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this e�ective theory as an e⌅cient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, �̄,�] = S[U ] + SW [U, �̄,�] (6.8)

⇤QCD

L�1 ⌧ µ⌧ a�1

Challenge: multiscale problem

Finite L Finite a

a ! 0



Numerical Aspects of Lattice QCD

Need for HPC and smart algorithms!
reach of modern lattice QCD computations
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We are also interested however in processes involving heavy hadrons. An e⌅cient
way to do this is to consider them as static sources, as is done in the heavy quark ef-
fective theory. I refer to R. Sommer’s lectures (Sommer, 2009) for a detailed discussion
of this e�ective theory as an e⌅cient tool to study heavy flavours on the lattice.

6.1 Wilson formulation of Lattice QCD

By now, it should be clear how to discretize this action following for example the
Wilson approach

SQCD[U, �̄,�] = S[U ] + SW [U, �̄,�] (6.8)

⇤QCD

main cost factor: reiterated inversion of lattice Dirac operator on fixed gauge field

L�1 ⌧ µ⌧ a�1

Simulations of lattice QCD with light sea quarks turn out to be much less
“expensive” than previously estimated

No of operations [in Tflops�year] required for an ensemble of 100 gauge fields�

5
�
20 MeV

m

⇥3 �
L

3 fm

⇥5 �
0.1 fm

a

⇥7

Ukawa, Berlin 2001

0.05
�
20 MeV

m

⇥1 �
L

3 fm

⇥5 �
0.1 fm

a

⇥6

Giusti, Tucson 2006

�Two-flavour QCD, O(a) improved Wilson quarks, quark mass m, 2L� L3 lattice, spacing a

Niels Bohr Institute, 16.–18. August 2006 Numerical Lattice QCD 3/31• Wilson fermions, Hybrid Monte Carlo Algorithm:

L >⇥ 2.5 fm, a <⇥ 0.1 fm, mmin
�

<⇥ 250 MeV

⇤ Computer must sustain several TFlops/s

7

[Ukawa 2001]

[Giusti 2006]

numerical simulations

I-2



expt
JLQCD/CP-PACS (2001) Nf = 2

ETMC Nf = 2 + 1 + 1
MILC Nf = 2 + 1 + 1
MILC Nf = 2 + 1

(IDSDR) RBC-UKQCD Nf = 2 + 1
RBC-UKQCD Nf = 2 + 1

JLQCD Nf = 2 + 1
QCDSF Nf = 2 + 1

PACS-CS Nf = 2 + 1
HSC Nf = 2 + 1

(stout) BMW Nf = 2 + 1
(HEX) BMW Nf = 2 + 1

(Iwa) TWQCD Nf = 2
(plaq) TWQCD Nf = 2

JLQCD Nf = 2
BGR Nf = 2

QCDSF Nf = 2
ETMC Nf = 2

CLS Nf = 2
a[fm]

mPS [MeV]

0.20

0.15

0.10

0.05

0.00
600500400300200100

Slowly getting there…

Numerical Aspects of Lattice QCD

[G. Herdoiza]



Confinement 

[Necco, Sommer 2001]

The simplest gauge-invariant operator representing a qq̄ pair separated by some
spatial distance |y − x| = R at time t is

O(t) = φ†(y, t)U(y, t;x, t)φ(x, t)

The correlator at large times T → ∞,

Cqq̄(T ) ≡ ⟨O†(T )O(0)⟩φ,U

represents a qq̄ pair separated by a distance R that are created at time x0 = 0 and
evolve until time T .

The exponential decay in time of Cqq̄ gives us information about the energy of
this system

Cqq̄(T ) ∼ exp(−E(R)T ), E(R) = E0 + V (R)
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analytical tools: strong coupling expansion

 ! a�2m�1/2
0  ,  ̄ ! a�2m�1/2

0  ̄

S =
X

x

(
 ̄(x) (x) +

1
m0

 ̄(x)Dw (x) +
1
g

2
0

X

µ⌫

Pµ⌫(x)

)

⇒ simple expansion around
1

m0
,

1
g2
0

! 0

⇒ simple picture of confinement at m0 !1
At m0 =⌅, for example,

⇤
�
1/g2

0

⇥Nplaq = exp{�� ⇥ area}

� quark confinement

However, this limit is unphysical since

� =
1
a2

ln(g2
0) + . . .

M� = O(1/a), Mp = O(1/a), etc.

Benasque, 13.–25. July 2008 Principal tools in LQCD 7/19

⇠ (1/g2
0)

Nplaq
= exp{�� ⇥ area}

N.B.: not really physical — recall continuum theory is realised as g0 ! 0R

T

Nf=0



Running coupling
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FIG. 2. Running couplings of N
f

= 3 QCD from in-
tegrating the nonperturbative �-functions in the SF and
GF schemes [13, 14]. They are matched nonperturbatively
by defining ḡ2

SF

(µ
0

) = 2.012 and computing ḡ2
GF

(µ
0

/2) =
2.6723(64).

Monte Carlo methods, this coupling has a statistical un-
certainty that scales as �

stat

ḡ

2

SF

⇠ ḡ

4

SF

, leading to good
precision at high energies. Moreover, its �-function is
known to NNLO [24, 25]. These two properties make it
an ideal choice to match with the asymptotic perturba-
tive regime of QCD.

Second, one can use the gradient flow (GF) to define
renormalized couplings [26]. The flow field Bµ(t, x) is the
solution of the gradient flow equation

@tBµ(t, x) = D⌫G⌫µ(t, x) ,

Gµ⌫(t, x) = @µB⌫ � @⌫Bµ + [Bµ, B⌫ ] ,
(9)

with the initial value Bµ(0, x) given by the original gauge
field. In infinite volume a renormalized coupling is de-
fined by

ḡ

2

1(µ) =
16⇡2

3
⇥ t

2hE(t)i
���
µ=1/

p
8t

, (10)

using the action density at positive flow time [26],
E(t) = 1

4

G

a
µ⌫(t, x)G

a
µ⌫(t, x). In finite volume the cou-

pling ḡ

2

GF

(µ) is defined by imposing a fixed relation,p
8t = cL, between the flow time and the volume [21, 27].

Details can be found in the original work [14]. Since
the statistical precision is generally good and scales as
�

stat

ḡ

2

GF

⇠ ḡ

2

GF

, this coupling is well suited at low ener-
gies.

In order to exploit the advantages of both finite-volume
schemes, we use the GF scheme at low energies, between
µ

had

and µ

0

. There we switch nonperturbatively to the
SF scheme (see Figure 2). Then we run up to µ

PT

. In
this way, we connected hadronic scales to µ

PT

[13, 14],
cf. Table I.

TABLE II. Scale ratios and values of the coupling determined
from nonperturbative running from µ

had

to µ
0

/2 in the GF
and from µ

0

to µ
PT

in the SF scheme.

ḡ2
GF

(µ
had

) ḡ2
SF

(µ
PT

) µ
PT

/µ
had

⇤(3)

MS

/µ
had

11.31 1.193(5) 349.7(6.8) 1.729(57)
10.20 1.193(5) 322.2(6.3) 1.593(53)

In Table II we show our intermediate results for
ḡ

2

SF

(µ
PT

) and µ

PT

/µ

had

for two choices1 of a typical
hadronic scale µ

had

of a few hundred MeV. In addition,

we give ⇤(3)

MS

/µ

had

, obtained by the NNLO perturbative

asymptotic relation and the exact conversion to the MS
scheme. We have verified that the systematic uncertainty
⇠ ↵

2(µ
PT

) and power corrections ⇠ (⇤/µ
PT

)k from this
limited use of perturbation theory at scales above µ

PT

are negligible compared to our statistical uncertainties
[13, 28].

CONNECTION TO THE HADRONIC WORLD

The second key element is the nonperturbative deter-
mination of µ

had

in units of the experimentally accessible
f⇡K. Our determination is based on CLS ensembles [29]
of N

f

= 3 QCD with m

u

= m

d

⌘ bm in large volume. It
is convenient to define a scale µ

ref

by the condition2

ḡ

2

1(µ
ref

) = 1.6⇡2 ⇡ 15.8 , (11)

and trajectories in the (bare) quark mass plane (bm,m

s

)
by keeping the dimensionless ratio

�

4

= (m2

K

+m

2

⇡/2) / µ
2

ref

(12)

constant. Moreover, we define a reference scale µ

?
ref

at
the symmetric point (m

u

= m

d

= m

s

) by

µ

?
ref

⌘ µ

ref

���
�4=1.11,mu=md=ms

. (13)

The requirement that the �

4

=constant trajectory passes
through the physical point, defined by

m

2

⇡/f
2

⇡K = 0.8341, m

2

K

/f

2

⇡K = 11.21 , (14)

results in �

4

= 1.11(2) in the continuum limit [30] and
motivates the particular choice in eq. (13).

1 In [14] only µ
had,1 was considered. Here we extend the analysis

to µ
had,2 in order to have an additional check of our connection

of large and small volume physics.
2 Note that µ

ref

is defined ensemble by ensemble, and therefore it
is a function of the quark masses. Instead of µ

ref

, it is customary
in the lattice literature to quote

p
8t

0

= 1/µ
ref

[26].

[Bruno et al, 2017]

[as(MZ)]MS =  0.11852(84)

Define a coupling at finite box size:  g(L)

[ αs(MZ ) ]PDG18= 0.1174(16) 



Hadron spectrum
Choose an operator with the right quantum numbers O(x):
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Fig. 6.2 Connected and disconnected contribution to a meson correlator

6.2.1 Mesons

The simplest operators that are used to compute meson correlation functions are of
the form:

Ma(x) ≡ ψ̄αic(x)ΓαβT
a
ijψβjc(x), (6.43)

where

Γ = {1, γ5, γµ, γµγ5, ...} (6.44)

for the scalar, axial, vector and axial vector...T a is a matrix in flavour space and the
color indices are summed over since a meson is a singlet of colour. The proper choice
of the matrix T a ensures the right flavour composition or isospin (or SU(3)) flavour
quantum numbers. In order to improve the signal it is common practice to project on
the zero spatial momentum states by computing the correlator

CM (x0) =
∑

x

⟨Ma(x0,x)M
a(0,0)⟩. (6.45)

As usual the Grassmann integrations can be readily performed and the result is

CM (x0) =
1

Z[0]

∫
DUe−Sg[U ] det(DW +M)

∑

x{
−Tr[(DW +M)−1

0,x(Γ⊗ T a)(DW +M)−1
x,0(Γ⊗ T b)]

+ Tr[(DW +M)−1
0,0(Γ⊗ T a)]Tr[(DW +M)−1

x,x(Γ⊗ T b)]
}
. (6.46)

The two terms correspond to the connected and disconnected contributions, shown in
Fig. 6.2. The latter are much harder to compute numerically because the sum over x
would require the inversion of the Dirac operator as many times as there are spatial
points, while the connected contribution can be obtained with a single inversion per
spin and colour.

6.2.2 Baryons

Baryons are qqq color singlets. We can take the following operators:

Babc
αβγ = ψ(x)α ≡ ϵc1c2c3ψαac1ψβbc2ψγcc3, (6.48)

where a, b, c are the flavour indices and α,β, γ the spinor ones. The contraction of this
three-quark object with appropriate tensors of both set of indices will ensure the right
flavour and spin respectively.
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where

Γ = {1, γ5, γµ, γµγ5, ...} (6.44)

for the scalar, axial, vector and axial vector...T a is a matrix in flavour space and the
color indices are summed over since a meson is a singlet of colour. The proper choice
of the matrix T a ensures the right flavour composition or isospin (or SU(3)) flavour
quantum numbers. In order to improve the signal it is common practice to project on
the zero spatial momentum states by computing the correlator

CM (x0) =
∑
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As usual the Grassmann integrations can be readily performed and the result is

CM (x0) =
1

Z[0]

∫
DUe−Sg[U ] det(DW +M)

∑

x{
−Tr[(DW +M)−1

0,x(Γ⊗ T a)(DW +M)−1
x,0(Γ⊗ T b)]

+ Tr[(DW +M)−1
0,0(Γ⊗ T a)]Tr[(DW +M)−1

x,x(Γ⊗ T b)]
}
. (6.46)

The two terms correspond to the connected and disconnected contributions, shown in
Fig. 6.2. The latter are much harder to compute numerically because the sum over x
would require the inversion of the Dirac operator as many times as there are spatial
points, while the connected contribution can be obtained with a single inversion per
spin and colour.

6.2.2 Baryons

Baryons are qqq color singlets. We can take the following operators:

Babc
αβγ = ψ(x)α ≡ ϵc1c2c3ψαac1ψβbc2ψγcc3, (6.48)

where a, b, c are the flavour indices and α,β, γ the spinor ones. The contraction of this
three-quark object with appropriate tensors of both set of indices will ensure the right
flavour and spin respectively.

lim
x0!1

Z
d3x hO(x)O(0)i / e�Mlightestx0

Measuring the femtoverse

Resonances

How to ...

Hadron masses

......determine hadron masses

Measure correlation functions like

Cπ(t) ∝ ⟨πt π̄0⟩ ∼ exp(−a mπ t) + exp(−a mπ (T − t))

Result of a Monte Carlo simulation on a 163 × 32 lattice at lattice spacing a ≈ 0.15 fm.

L.h.s.: log-plot for the pion correlation function; r.h.s.: effective mass plot (in lattice units).

The different sets correspond to different values of the dimensionless quark mass

parameter.

Christian B. Lang Lattice QCD for Pedestrians

Pion propagator



Hadron spectrum

light hadron spectrum

[BMW Collaboration 2008]
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points, while the connected contribution can be obtained with a single inversion per
spin and colour.
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The simplest operators that are used to compute meson correlation functions are of
the form:

Ma(x) ≡ ψ̄αic(x)ΓαβT
a
ijψβjc(x), (6.43)

where

Γ = {1, γ5, γµ, γµγ5, ...} (6.44)

for the scalar, axial, vector and axial vector...T a is a matrix in flavour space and the
color indices are summed over since a meson is a singlet of colour. The proper choice
of the matrix T a ensures the right flavour composition or isospin (or SU(3)) flavour
quantum numbers. In order to improve the signal it is common practice to project on
the zero spatial momentum states by computing the correlator

CM (x0) =
∑

x

⟨Ma(x0,x)M
a(0,0)⟩. (6.45)

As usual the Grassmann integrations can be readily performed and the result is

CM (x0) =
1

Z[0]

∫
DUe−Sg[U ] det(DW +M)

∑

x{
−Tr[(DW +M)−1

0,x(Γ⊗ T a)(DW +M)−1
x,0(Γ⊗ T b)]

+ Tr[(DW +M)−1
0,0(Γ⊗ T a)]Tr[(DW +M)−1

x,x(Γ⊗ T b)]
}
. (6.46)

The two terms correspond to the connected and disconnected contributions, shown in
Fig. 6.2. The latter are much harder to compute numerically because the sum over x
would require the inversion of the Dirac operator as many times as there are spatial
points, while the connected contribution can be obtained with a single inversion per
spin and colour.

6.2.2 Baryons

Baryons are qqq color singlets. We can take the following operators:

Babc
αβγ = ψ(x)α ≡ ϵc1c2c3ψαac1ψβbc2ψγcc3, (6.48)

where a, b, c are the flavour indices and α,β, γ the spinor ones. The contraction of this
three-quark object with appropriate tensors of both set of indices will ensure the right
flavour and spin respectively.lim

x0!1

Z
d3x hO(x)O(0)i / e�Mlightestx0



Averages of quanities of phenomenological interest: 

•Quark masses
•Vud and Vus
•Low-energy constants
•Kaon mixing
•D-meson decay constants and form factors
•B-meson decay constants, mixing parameters, and form factors
•The strong coupling αs
•Nucleon matrix elements

http://flag.unibe.ch/2019/Quark%20masses
http://flag.unibe.ch/2019/V%28ud%29%20and%20V%28us%29
http://flag.unibe.ch/2019/Low-energy%20constants
http://flag.unibe.ch/2019/Kaon%20mixing
http://flag.unibe.ch/2019/D-meson%20decay%20constants%20and%20form%20factors
http://flag.unibe.ch/2019/B-meson%20decay%20constants%2C%20mixing%20parameters%2C%20and%20form%20factors
http://flag.unibe.ch/2019/The%20strong%20coupling%20alpha_s
http://flag.unibe.ch/2019/Nucleon%20matrix%20elements


Chiral Symmetry Breaking
Spontaneous Chiral Symmetry Breaking takes place in QCD via a quark 
condensate:



Fundamental Parameters in the SM
Light quark masses from pion and kaon masses 

Heavy quark masses from D mesons and  B mesons



Fundamental Parameters in the SM
CKM mixing matrix from leptonic and semileptonic decays

Rate = |VCKM |2 x Wilson coefficients  x Form factors  

38

K0 $ K0 K0 $ K0

Experiment = known factors⇥ VCKM ⇥Hadronic matrix element

Lattice QCDPerturbative SM

Measure to determine this

Need for non-perturbative QCD
Lattice Kaon physics

Evaluate the hadronic matrix elements in Kaon physics

Lattice QCD is powerful for “standard” hadronic matrix elements with

s̄

u

W
ℓ+

νℓ

K+

K`2 → f
K

W
ℓ+

νℓ

K+ π0

K`3 → f+(0)
K0

K0

K 0-K 0 mixing → B
K

� single local operator insertion

� only single stable hadron or vacuum in the initial/final state

� spatial momenta carried by particles need to be small compared to 1�a
(not a problem for Kaon physics, but essential for B decays)
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results are discussed in Sect. 7, and in Sect. 8 we present our conclusions. In several
appendices we provide further information on the SU(4) classification of operators, the
transformation properties of four-quark operators in the lattice theory, the perturbative
renormalisation of four-quark operators using overlap fermions, as well as details of the
calculations performed in finite-volume ChPT.

2 The effective weak interactions with an active charm quark

In this section we collect some basic facts and definitions regarding the ∆S = 1 ef-
fective weak interaction, focusing on the less familiar case of an active charm quark.
Throughout this paper we work in Euclidean space-time.

2.1 Operator product expansion and global symmetries

The decay of a (neutral or charged) kaon into two pions is induced by charged-current
weak interactions, mediated via the exchange of a W -boson. It can be described in
terms of an effective V − A current-current interaction, i.e.

Sw = 1
2g2

w

∑

q=u,c,t

(Vqs)
∗Vqd

∫
d4xd4y (sγµP−q)(x)Dµν(x − y) (qγνP−d)(y), (2.1)

where g2
w = 4

√
2GFM2

W , Vqs, Vqd denote elements of the CKM matrix, P− = 1
2(1− γ5),

and Dµν is the propagator of the W -boson. Contributions from the top-quark are
suppressed by three orders of magnitude relative to those from the up-quark and can
thus be safely neglected. At this level of accuracy one has (Vus)∗Vud = −(Vcs)∗Vcd, so
that

Sw = 1
2g2

w(Vus)
∗Vud

∫
d4xd4y

×
{
(sγµP−u)(x)Dµν(x − y) (uγνP−d)(y) − (u → c)

}
. (2.2)

The dominant contribution to Sw comes from the region x ≈ y, so that the integral can
be evaluated using the operator product expansion:

Sw ≈
∫

d4xHw(x), Hw(x) =
g2
w

4M2
W

(Vus)
∗Vud

∑

n

knQn(x), (2.3)

where the coefficients kn depend on the W -boson mass, MW , and the renormalisation
scheme used to define Qn. In order to classify the operators that can occur in the sum,
we now discuss the global symmetries that must be respected.

To this end we consider QCD for two generations and write its action as

S = SG +
∫

d4xψ(x)
(
D + MP+ + M †P−

)
ψ(x), (2.4)

where SG denotes the gauge action, D the massless Dirac operator, M the quark mass
matrix, and ψ the four-flavour quark field, with flavour components u, d, s, c. The action

3

4-fermion operators



Fundamental Parameters in the SM
Leptonic and semileptonic form factors:

“standard” quantities in Kaon physics: f
K

±�f⇡± and f+(0)
Flavor Lattice Averaging Group (FLAG) average, updated in Nov. 2016

f K⇡+ (0) = 0.9706(27) ⇒ 0.28% error

f
K

±�f⇡± = 1.1933(29) ⇒ 0.25% error

Experimental information [arXiv:1411.5252, 1509.02220]

K`3 ⇒ �V
us

�f+(0) = 0.2165(4) ⇒ �V
us

� = 0.2231(7)
Kµ2�⇡µ2 ⇒ �Vus

V
ud

� fK±
f⇡±
= 0.2760(4) ⇒ �Vus

V
ud

� = 0.2313(7)
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Precision tests of the SM

CKM unitarity:

Test the CKM unitarity

[S. Aoki et. al., FLAG report updated in Nov. 2016]

Most stringent test of CKM unitarity is given by the first row condition�V
u

�2 ≡ �V
ud

�2 + �V
us

�2 + �V
ub

�2 = 1
Use �V

us

� for K`3 + �V
us

�V
ud

� for K`2�⇡`2 as input�V
u

�2 = 0.9798(82) ⇒ 2.5� deviation from 1

Most precise value of �V
ud

� = 0.97417(21) is from superallowed nuclear � decay

Use �V
us

� for K`3 + �V
ud

� for � decay�V
u

�2 = 0.9988(5) ⇒ sharpen the test, still 2.4� deviation

Use �V
us

�V
ud

� for K`2�⇡`2 + �V
ud

� for � decay�V
u

�2 = 0.9998(5) ⇒ confirm CKM unitarity

Interesting to reduce the uncertainty from f+(0) and explore the > 2� deviation
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Precision tests of the SM

Still very uncertain quantities…hard for lattice QCDGo beyond “standard” quantities in lattice Kaon physics

K → ⇡⇡ decays and direct CP violation

us̄

d̄

ūu

u

K+

π+

π0

HW s̄
HW

d

u

u

u

K0

π0

π0

Final state involves ⇡⇡ (multi-hadron system)

Long-distance contributions to flavor changing processes

� �M
K

and ✏
K

d̄s̄

sd
W W

ū, c̄, t̄

K0 K0

� Rare kaon decays: K → ⇡⌫⌫̄ and K → ⇡`+`−

d̄s̄

uu
W

Z

ū, c̄, t̄

ν

ν̄

K+ π+
d̄s̄

uu
W

γ

ū, c̄, t̄

ℓ+

ℓ−

K+ π+

Hadronic matrix element for bilocal operators

� d4x �f �T [Q
1

(x)Q
2

(0)]�i�
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Ex: K -> pp

The D=1/2 rule:  one of the most misterious hierarchies in QCD:

Beyond “gold plated”

• Processes involving two hadrons are now 
beginning to be accessible

• E.g.  K→ππ decays

• Does the SM reproduce the ΔI=1/2 rule?

• Does the SM reproduce direct CP-violation in K→ππ?

�(KL ! ⇡0⇡0)

�(KS ! ⇡0⇡0)

�(KS ! ⇡+⇡�)

�(KL ! ⇡+⇡�)
⇡ 1� 6Re(✏0/✏)
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ε’/ε = 1.63(0.26) 10-3

�(K0
S ! ⇡⇡)

�(K+ ! ⇡⇡)
⇡ 330

The �I = 1/2 rule

One of the most striking hierarchies in low-energy QCD remains to be understood:

T (K+ ! ⇡+⇡0
) =

p
3

2

A2 ei�2

T (K0 ! ⇡+⇡�) =

1p
6

A2 ei�2
+

1p
3

A0 ei�0

T (K0 ! ⇡0⇡0
) =

p
2p
3

A2 ei�2 � 1p
3

A0 ei�0

T
�
K0 ! ⇡⇡|I=↵

�
= A↵ei�↵

A0

A2
= 22.1

2



QCD @ finite T and density

Figure 2 – Left: QCD phase diagram in the plane temperature T as a function of the baryon chemical potential
µB or the net baryon density (image adapted from Ref.4 with Universe path from Ref. 10). Full red line represents
first order phase transitions with a critical point. Blue lines show expected condition in neutron star, but also
evolution in the early Universe and in heavy-ion collisions. Right: evolution of energy density ✏, pressure P and
entropy density s as a function of temperature T as predicted by lQCD at µB = 0 (color bands) and comparison
to the Hadron Relativistic Gas (HRG) 12. Upper right dotted line shows also the non-interacting gas limit of the
deconfined state.

called Quark-Gluon Plasma (QGP) 8, but also a superdense color state expected in the core
of neutron stars 9. The modern picture of the QCD phase diagram as predicted by lQCD is
presented in Fig. 2 (left) with a first order phase starting from high baryon chemical potential
µB (i.e. high net baryon density) and ending in a critical point. At µB = 0, lQCD calculations
shown in Fig. 2 (right) indicates that the behaviour of energy density ✏ and pressure P as a
function of temperature T is such that: (i) the phase transition is of cross-over type, (ii) 3P

T 4 6= ✏
T 4

leading to the conclusion that the QCD Equation of State (EoS) does not correspond to the
radiation EoS. The recent extrapolation of lQCD calculation to the continuum limit at µB = 0
gives for the temperature transition 11: TQCD = (154 ± 9) MeV ⇡ 1.8 ⇥ 1012 K (temperature
usually named critical temperature TC in heavy-ion physics community), corresponding to a
critical energy density 12 ✏QCD = (0.18� 0.50) GeV/fm3.

The QCD phase transition is accompagnied by the spontaneous breaking of chiral symmetry
leading to generation of QCD quark mass in addition to the EW mass term 13, i.e. current free
quarks are transformed in constituent confined quarks in hadrons. We can also note that, in a
thermalized medium, the hadrons produced are mainly pions (⇡± and ⇡0) which are the only
hadrons with a mass slightly below the QCD temperature transition, and they decay in a short
time scale: ⌧⇡0 ⇡ 10�16 s and ⌧⇡± ⇡ 10�8 s.

2.3 Heavy-ion collisions

The study of the QCD phase diagram can be achieved experimentally by conducting collisions of
heavy-ions accelerated at relativitic energies. Such a world wide program is at work since more
than four decades. After a serie of experiments in a fixed target mode, limiting the energy density
which can be reached, the collider mode was explored from 2000 by the Relativistic Heavy-Ion
Collider (RHIC) at BNL and from 2010 by the Large Hadron Collider (LHC) at CERN (see
Ref. 15 for the history of heavy-ion physics at CERN). On one side, the RHIC is able to perform
a beam energy scan with the goal to search for the critical point. The range explored up to now
was

p
sNN = 7.7� 200 GeV c in Au-Au collisions, corresponding to µB = 20� 400 MeV 14. On

the other side, the LHC reaches the frontier energy with
p
sNN = 2.76 TeV during the run 1

and
p
sNN = 5.5 TeV as ultimate goal in Pb-Pb collisions.

cIn heavy-ion collisions, when two nuclei collide, the relevant energy is the nucleon-nucleon centre-of-mass
energy

p
sNN.

Asymptotic freedom predicts that the theory should approach a perturbative
regime as T ->          relevant for the Early Universe, heavy ion collisions

Quark-Gluon plasma: deconfined phase, chiral symmetry breaking restored

Perturbation theory has proved not good enough for the regimes accesible to 
Experiment. Finite T straightforward on the lattice, finite r has sign problem

1



(g-2)µ anomaly

HVP HLBL



Beyond SM: Alternative to SM Higgs ?
Old Technicolor paradigm:  condensate of techniquarks plays the role of the 
Higgs

hQ̄Qi 6= 0 : SU(2)L ⇥ SU(2)R ! SU(2)V

Generically FCNC  (LTC> 5TeV):  but now there is a light Higgs!

In QCD s particle: 

ms = O(LQCD)

ms/Gs = O(1)

The SM H particle: 

mH <<  O(LTC)

mH/GH ~ O(30)

Three GB: W+-,Z 



Modern Technicolor paradigms

Ø Dilatonic Higgs: TC with approximate conformal symmetry: Nf large enough

Higgs  -> Pseudo-Goldstone boson of this symmetry

Ø Composite Higgs: TC  breaking pattern leads to   (W+-,  Z, H) goldstone bosons

Examples: SU(2) Nf=8 fund;  SU(2) Nf=1,2 adj; SU(3) Nf=2 sextet 

Higgs potential from EW corrections

Whether these models are viable alternatives to the SM will rely ultimately on 
lattice methods…

Beyond SM: Alternative to SM Higgs ?



Conclusions

• Lattice QFT is a first-principles non-perturbative method to solve 
asymptotically free QFTs such as QCD

• Lattice QCD has demonstrated quark confinement, a mass gap, 
spontaneous chiral symmetry breaking

• It has provided precise determination of hadron masses and form factors 
needed to infer quark masses and mixings from experiment 

• Present and future precision tests of the flavour sector of the SM rely on 
lattice input

• Still more progress is needed: heavy quarks, multi-hadron states, finite 
density, chiral gauge theories…

• Open problems in particle physics might require non-perturbative 
physics BSM (eg. composite higgs models)



Chiral Symmetry Breaking

Chiral symmetry dictates the dynamics of pions and kaons

LQCD

Mp

hadron physics at low energies

Chiral symmetry of QCD spontaneously broken.

Hidden symmetryM⇡ ⌧M
nucleon

M2
⇡ = (mu + md)|h0|(ūu + d̄d)|0i| 1

F 2
⇡

Corrections due to non-vanishing Goldstone boson momenta and masses can be 
treated systematically through an effective description: Chiral Perturbation Theory.

expansion in
p2

⇤2
�

L� = L(2)
� + L(4)

� + . . .

L(2)
� =

F 2

4
Tr

⇥
@µU†@µU

⇤
� ⌃

2
Tr

h
ei✓/Nf MU + h.c.

i

L(4)
� =

X

i

CiOi

[Nambu, Goldstone 1960-1]

[Gell-Mann, Oakes, Renner 1968] 

[Weinberg 1979; Gasser, Leutwyler 1984-5]

Effective theory of pion dynamics: Chiral Perturbation Theory

[Weinberg; Gasser and Leutwyler]

Low-energy couplings can be obtained from lattice QCD



Chiral Symmetry Breaking
hadron physics at low energies
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example computation: pion mass and decay constant

determine dependence with quark mass, volume, lattice spacing and extra/
interpolate to physical point
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π ignored in final analysis
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π
L=4M
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Figure 7: Dedicated finite-volume analysis at β=3.31, with Mπ≃250MeV (lower set of data)
and Mπ≃300MeV (upper set). Results are compared to the prediction from Chiral Perturbation
Theory. The fit to (42) is shown by solid red curves and the prediction of ChPT [3] is the green
set of dashed curves. The steep dotted lines indicate the boundaries MπL=3 and MπL=4.

0.15 fm), with a slight preference for O(a2) over O(αa) scaling, and this suggests that our tree-
level value of cSW (see Sec. 2 for the definition and details) is close to the nonperturbative value
(which is not known for our action). This finding is in accordance with the results of [8]. Next,
the continuum extrapolated values shown in Fig. 6 are in perfect agreement with the continuum
extrapolated baryon masses found in [9] with a different action. Last but not least, the slope
in either panel of Fig. 6 is small1, and an action which shows generically a flat slope in scaling
quantities is useful for obtaining precise predictions in the continuum.

In summary we find that both the 6stout action used in [2, 9] and the 2HEX action used in
the present work exhibit small cut-off effects on standard hadron masses over a broad range of
lattice spacings.

9 Finite volume corrections
For a fixed set of bare parameters, β, mud, ms, energies and matrix elements of hadronic states
depend on the spatial size L of the lattice. Typically, the finite volume tends to increase the

1The deviation of the result on the coarsest lattice from the continuum is 2.0% at most [∆ with O(αa) ansatz].
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Figure 8: M2
π/m

PCAC
ud (left) and Fπ (right) versusmPCAC

ud (cf. Sec. 11) for our 4 lightest ensem-
bles at β = 3.5, at fixed ams =−0.006, which is close to mphys

s . A joint fit to the NLO chiral
ansatz (45, 46) yields reasonable values of the low-energy constants. Error bars are statistical.

These results confirm our rule of thumb that simulations with MπL ≥ 4 and/or L>∼5 fm
yield infinite-volume masses within statistical accuracy. An overview of the expected size of
RMπ

in our simulations is given in Fig. 1. In all of these points the mass correction is less than
about 5 permil, and for points close toMphys

π (which dominate our analysis) it is even smaller.
Nevertheless, we include these (tiny) shifts into our global analysis (cf. Sec. 14).

10 Chiral behavior of pion mass and decay constant
To illustrate the quality of our results obtained in lattice QCD calculations with physical or
larger than physical values of the quark mass mud = (mu+md)/2, we briefly investigate here
whether the mud dependence of the pion mass and decay constant can be described by ChPT
[37, 38] in this range of quark masses.

To this end we compare our results forM2
π and Fπ versusmud at fixed (nearly physical)ms

(cf. Tab. 1) to the NLO predictions of the SU(2) framework. The latter read [37]

M2
π = M2

[

1 +
1

2
x log(

M2

Λ2
3

)
]

(45)

Fπ = F
[

1− x log(
M2

Λ2
4

)
]

(46)

with x =M2/(4πF )2 and M2 = 2Bmud a shorthand expression for the light quark mass (up
to the factor 2B, with B = Σ/F 2). The NNLO expressions can be found in [39]. In all of
these expressions F,Σ, B refer to the pion decay constant, the absolute value of the quark
condensate and the condensate parameter in the 2-flavor chiral limit mud → 0 with ms held
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