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New perturbative 
methods

▪ To reach a new frontier in higher order calculations 

▪ But also to better understand the structure of Quantum Field TheorypQFT without Feynman diagrams
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G. Passarino, M. Veltman 

One-loop corrections for e+e− annihilation 
into μ+μ− in the Weinberg model

Nucl. Phys. B160 (1979) 151-207

G. 't Hooft, M. Veltman

Scalar one-loop integrals

Nucl. Phys. B153 (1979) 365-401

One-loop amplitudes

Calculation of   
one-loop scalar 
integrals

Reduction of 
tensor one-loop 
integrals to scalar 
integrals

• The classical paradigm for the calculation of 
one-loop diagrams was established in 1979
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G. Passarino, M. Veltman 

One-loop corrections for e+e− annihilation 
into μ+μ− in the Weinberg model

Nucl. Phys. B160 (1979) 151-207

G. 't Hooft, M. Veltman

Scalar one-loop integrals

Nucl. Phys. B153 (1979) 365-401

• Not adequate for                                                                 
processes beyond 2→2                                                          
(Gramm determinants+large number of Feynman diagrams)

One-loop amplitudes

Calculation of   
one-loop scalar 
integrals

Reduction of 
tensor one-loop 
integrals to scalar 
integrals

• The classical paradigm for the calculation of 
one-loop diagrams was established in 1979
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▶ Analyticity: scattering amplitudes 

are determined by their singularities
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Properties of the S-Matrix
▶ Analyticity: scattering amplitudes 

are determined by their singularities

▶ Unitarity: the residues at singular points 
are products of scattering amplitudes with 
lower number of legs and/or less loops

▶ recycling: using scattering 
amplitudes to calculate other 
scattering amplitudes



Germán Rodrigo – QCD                                                                                                                                                                 TAE 2019

 Recursion relations and unitarity methods

Properties of the S-Matrix

Here are the words of some enthusiast: “One of the most remarkable 
discoveries in elementary particle physics has been that of the 
existence of the complex plane”,  “... the theory of functions of 
complex variables plays the role not of a mathematical tool, but of a 
fundamental description of nature  inseparable from physics … .” 
J. Schwinger,  Particles, Sources, and  Fields, Vol.1, p.36

▶ Analyticity: scattering amplitudes 
are determined by their singularities

▶ Unitarity: the residues at singular points 
are products of scattering amplitudes with 
lower number of legs and/or less loops

▶ recycling: using scattering 
amplitudes to calculate other 
scattering amplitudes
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 Helicity basis + colour decomposition

Expressions simplify by using “right variables”

for ! -gluons at tree levelN

color ordered factor
colour ordered subamplitude:  
• Depends on the momenta and helicities 
• gauge-invariant 
• fixed cyclic order of external legs

n # diagrams
4 4 3
5 25 10
6 220 36
7 2485 133
8 34300 501
9 559405 1991

10 10525900 7225

# colour-ord diagrams
[Cvitanovic, Lauwers, Scharbach, 
Berends, Giele, Mangano, Parke,  
Xu,Bern,Kosower, Lee, Nair]
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ℳN({pi, hi, ai}) = ∑
P(1,…,N)

Tr(ta1ta2⋯taN) 𝒜N({pi, hi})

sum over permutations
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  Spinors
 

[Xu,Zhang,Chang, 
Berends, Kleiss, De Causmaeker, 
Gastmans, Wu,Gunion, Kunzst]
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  Spinors
● spinor identities 

[Xu,Zhang,Chang, 
Berends, Kleiss, De Causmaeker, 
Gastmans, Wu,Gunion, Kunzst]
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 MHV amplitudes

Multi-gluonic amplitudes at tree level: Amplitude for all gluons of 
positive helicity or one single gluon of negative helicity vanishes    

▶  two negative helicities (Maximal Helicity Violating Amplitude ) 
     rather simple [Parke-Taylor, 1986] 

proven via recursion relations [Berends-Giele, Mangano-Parke-Xu,1988]  

next-to-MHV 
does contain both          and              [Kosower,1990] 
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 Off-shell recursion relations [Berends, Giele]

• Define Off-shell current: amplitude with one off-shell leg, building block for 
the off-shell current with higher multiplicity 

• the gluonic current particularly simple for some helicity configurations 

!  

• on-shell amplitude by setting on-shell the off-shell leg

Jμ(i+, …, j+) =
⟨ξ |γμp/i, j |ξ⟩

2⟨ξi⟩⟨i(i + 1)⟩⋯⟨ jξ⟩
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 On-shell recursion relations at tree-level: BCFW 
[Britto, Cachazo, Feng, Witten]
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 in practice

 

☑ use only on-shell amplitudes  

☑ rather compact expressions       

☒ generates spurious poles at  

    while physical IR divergences at  
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Exercises: 

Proof by induction that the Maximal Helicity Violating (MHV) 
amplitude for gluons is given by the expression   

Calculate by using BCFW the six-gluon amplitude 
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  Generalized Unitarity: the one-loop basis
A dimensionally regulated n-point one-loop integral (scattering amplitude) is a linear 
combination of boxes, triangles, bubbles and tadpoles with rational coefficients 

▪ Pentagons and higher n-point functions can be reduced to lower point integrals 
and higher dimensional polygons that only contribute at O(ε) [Bern, Dixon, Kosower] 

▪ The task is reduced to determining the coefficients: by applying multiple cuts at 
both sides of the equation [Brito, Cachazo, Feng] 

▪ R is a finite piece that is entirely rational: can not be detected by four-dimensional 
cuts  

∑=
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 Generalized Unitarity

The discontinuity across the leading 
singularity is unique  

Four on-shell constrains                            
 freeze the loop momenta

Quadruple cut

A1

A2A3

A4

K1

K2K3

K4

)4(
iC=

K1

K2K3

K4

4321
)4( AAAACi ×××=
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singularity is unique  
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Triple cut

A1

A2

A3

)3(
iC= ∑+ )4(

jC

Only three on-shell  
constrains           one free 
component of the loop 
momentum

  

And so on for double and single cuts 
▪ OPP [Ossola, Pittau, Papadopoulos]: a systematic way to extract the coefficients
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 Generalized Unitarity

The discontinuity across the leading 
singularity is unique  

Four on-shell constrains                            
 freeze the loop momenta

Quadruple cut

A1

A2A3

A4

K1

K2K3

K4

)4(
iC=

K1

K2K3

K4

4321
)4( AAAACi ×××=

  

Triple cut

A1

A2

A3

)3(
iC= ∑+ )4(

jC

Only three on-shell  
constrains           one free 
component of the loop 
momentum

  

And so on for double and single cuts 
▪ OPP [Ossola, Pittau, Papadopoulos]: a systematic way to extract the coefficients
Rational terms
d-dimensional cuts, recursion relations (BCFW), Feynman rules …
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The collinear limit 
of QCD
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Relevance of the collinear limit in QCD
⦿ evaluate IR finite cross-sections ! subtraction terms

⦿ IR properties of amplitudes exploited to compute 
logarithmic enhanced perturbative terms ! resummations 

⦿ improve physics content of Monte Carlo event generators 
! parton showers 

⦿ Evolution of PDF´s and fragmentation functions

⦿ beyond QCD: hints on the structure of highly symmetric 
gauge theories (e.g. N=4 super-Yang-Mills)

⦿ Factorization theorems: pQCD for hard processes
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Factorisation in hadronic collisions

• Factorise physics into long 
distance (hadronic! ) 
and short distance 
(partonic ! ) 

• factorisation violation is 
power suppressed 
!

∼ Mhad

Q ≫ Mhad

∼ 𝒪(Mhad /Q)q

Parton densities

PDF

Hard scattering 
cross-section

Factorization and renormalization scales
Higher 
twistPartonic cms energy

σ = ∑
a,b

∫ dx1 dx2 fa(x1, μF) fb(x2, μF) ̂σ ab(x1pA, x2pB; μF, μR) + 𝒪 ( 1
Q )

̂s = x1 x2 s

beam remnant

colliding

protons
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pQCD for hard-scattering 
processes based on 
universality:


▪ the sole uncancelled IR 
divergences are due to 
partonic states whose 
momenta are collinear to the 
collider partons


▪ removed by redefinition of 
bare parton densities

▪ Offen assumed that partonic 
scattering amplitudes 
factorize: fixed order and 
resummations 

▪ Monte Carlo event 
generators are based on 
factorization 

▪ In neither of these cases 
factorization is guaranteed.

Collinear factorisation 
theorem proven for 
sufficiently inclusive 
observables in the final 
state of the scattering of 
colorless hadrons            

[Collins, Soper, Sterman]
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 Collinear factorisation at tree-level
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• Momenta !  of �  partons become collinear 
• Sub-energies !  of the same order and vanish simultaneously 

• leading singular behaviour !  with !

p1, …, pm m
sij = (pi + pj)2

( s1,m)1−m p1,m = p1 + … + pm

  Collinear limit
• Most singular behaviour 

captured by universal 
(process independent) 
splitting amplitudes: the 
same for e+e-, DIS and 
hadron collisions 

• The splitting amplitude 
depends on the collinear 
partons only 

• Space-like and time-like 
related by crossing 

• Process dependence in the 
reduced matrix element

tim
e 

- l
ik

e
fra

gm
en

ta
tio

n

|M(0)(p1, …, pn)⟩

= Sp(0)(p1, ⋯, pm; P̃) |M(0)(P̃; pm+1, …, pn)⟩ + 𝒪(( s1,m)3−m)
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At two loops
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At two loops

?
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Qualitative interpretation: two collinear partons

 Tree level:

• two-scale problem: collinear sub-energy any other sub-energy 
(large- vs short-distance interactions)

s12 ≪
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Qualitative interpretation: two collinear partons

 Tree level:

• two-scale problem: collinear sub-energy any other sub-energy 
(large- vs short-distance interactions)

s12 ≪

 Loops: 

• gauge interactions are long-range

• Interactions separately spoil factorisation, but  and 
: colour coherence restores factorisation, 

the parton  sees the two collinear partons as a single one. 

θj1 ≃ θj2 ≃ θjP̃
Tj ⋅ (T1 + T2) = Tj ⋅ TP̃

j
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Qualitative interpretation: two collinear partons

 Tree level:

• two-scale problem: collinear sub-energy any other sub-energy 
(large- vs short-distance interactions)

s12 ≪

 Loops: 

• gauge interactions are long-range

• Interactions separately spoil factorisation, but  and 
: colour coherence restores factorisation, 

the parton  sees the two collinear partons as a single one. 

θj1 ≃ θj2 ≃ θjP̃
Tj ⋅ (T1 + T2) = Tj ⋅ TP̃

j
• Both collinear partons in the final- or initial-state, otherwise colour 

coherence is limited by causality
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The collinear projection
• The projection over the collinear limit is obtained by setting the 

parent parton at on-shell momenta 

!  

! : collinear direction 
! : describes how the collinear limit is approached !  
!  : longitudinal momentu fraction !

P̃μ = pμ
1,m −

s1,m nμ

2n ⋅ P̃
P̃μ

nμ P̃2 = 0, n2 = 0
zi =

n ⋅ pi

n ⋅ P̃ ∑ zi = 1

• Factorisation holds in any arbitrary gauge, however, it is more evident in 
the axial gauge (physical polarisations): only diagrams where the parent 
parton emitted and absorbed collinear radiation 

!
1

p/12
=

1
s12

p/12 =
1

s12 (P̃/ +
s12

2n ⋅ P̃
n/) ≃

1
s12

u(P̃)ū(P̃) + …

dμν(k, n) = dμν(P̃, n) + … ≃ ϵμ(P̃)ϵ*ν (P̃) + …
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 Splitting functions
The square of the splitting amplitude, summed over final-state colours and 
spins, and averaged over colours and spins of the parent parton, defines 
the ! -parton (unpolarised) splitting function 

!  

which is a generalisation of the customary (i.e. with ! )             
Altarelli-Parisi splitting function

m

⟨P⟩ = ( s1,m

2μ2ϵ )
m−1

|Sp |2

m = 2
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• Probability to emit futher radiation with a given longitudinal momenta, 

from the leading singular behaviour
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 Splitting functions
The square of the splitting amplitude, summed over final-state colours and 
spins, and averaged over colours and spins of the parent parton, defines 
the ! -parton (unpolarised) splitting function 

!  

which is a generalisation of the customary (i.e. with ! )             
Altarelli-Parisi splitting function

m

⟨P⟩ = ( s1,m

2μ2ϵ )
m−1

|Sp |2

m = 2

• Perturbarive expansion P = P(0) + P(1) + P(2) + …
• Probability to emit futher radiation with a given longitudinal momenta, 

from the leading singular behaviour

• Universal (process independent): the same fro e+e-, DIS or hadron 
collisions
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Exercise:  

• Proof that ! , and test other flavour 
combinations 

• Calculate the splitting functions for the collinear processes 
!  and !  by using the helicity method 

Hint:  

!  

!  

• Compare with 

!

Tj ⋅ (Tq + Tq̄) = Tj ⋅ Tg

q → qg, g → qq̄ g → gg

Sp(0)
q→q1g2

= Ta2
1

s12
ū(p1)ε/(p2)v(P̃)

P(0)
q→q1g2

= CF
1 + z2

1 − z
z = z1 =

n ⋅ p1

n ⋅ P̃
z2 = 1 − z

ℳ(0)
qq̄g ≃ (−ıeq) (ıgS) Ta ū(p1) γμ v(p2) ( p1 ⋅ ε

p1 ⋅ k
−

p2 ⋅ ε
p2 ⋅ k )


