
Lectures on Machine Learning

Lecture 2: from non-linear models to hyperparameter tune

Stefano Carrazza

TAE2019, 8-21 September 2019

University of Milan and INFN Milan (UNIMI)

PDFN 3
Machine Learning • PDFs • QCD



Outline

Lecture 1 (yesterday)

• Artificial intelligence

• Machine learning

• Model representation

• Metrics

• Parameter learning

Lecture 2 (today)

• Non-linear models

• Beyond neural networks

• Clustering

• Cross-validation

• Hyperparameter tune

1



Artificial neural networks



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.

2



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.

2



Limitations of linear models

Why not linear models everywhere?

Example: consider 1 image from the MNIST database:

Each image has 28x28 pixels = 785 features (x3 if including RGB colors).

If consider quadratic function O(n2) so linear models are impractical.

Solution: use non-linear models.

2



Non-linear models timeline

1943
Neural Nets

1958
Perceptron

1980
Neocogitron
SOMs

1974
Backpropagation

1940 1950 1960 1970 1980 1990 2000 2010

1982
Hopfield 
Networks

1985
Boltzmann 
Machine

1986
Multilayer Perceptron
Restricted BMs, RNNs

1990
LeNet

1997
LSTMs
BRNNs

2006
Deep BMs
Deep Belief NNs

2014
GANs

2012
Dropout

2017
RTBMs

2020

3



Neural networks

Artificial neural networks are computer systems inspired by the biological

neural networks in the brain.

Currently the state-of-the-art technique for several ML applications. 4



Neuron model

We can imagine the following data communication pattern:

Dendrite

Soma

Nucleus

Axon

Myelin sheath

Node of
Ranvier

Axion
terminal

Schwann cell

Input Output

Logical Unit

5



Neuron model

Schematically:

where

• each node has an associate weights and bias w and inputs x,

• the output is modulated by an activation function, g.

Some examples of activation functions: sigmoid, tanh, linear, ...

gw(x) =
1

1 + e−wT x
, tanh(wTx), x.

6



Neural networks

In practice, we simplify the bias term with x0 = 1.

Neural network → connecting multiple units together.

where

• a(l)i is the activation of unit i in layer l,

• w(l)
ij is the weight between nodes i, j from layers l, l + 1 respectively.

7



Neural networks

• a(2)1 = g(w
(1)
10 + w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3)

• a(2)2 = g(w
(1)
20 + w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3)

• a(2)3 = g(w
(1)
30 + w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3)

• Output → a
(3)
1 = g(w

(2)
10 + w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 )

8



Neural networks

Some useful names:

• Feedforward neural network: no cyclic connections between nodes

from the same layer (previous example).

• Multilayer perceptron (MLP): is a feedforward neural network with

at least 3 layers.

• Deep neural networks: term referring to neural networks with more

than one hidden layer.

9



Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function

gradient with respect to parameters w
(l)
ij :

w
(l)
ij := w

(l)
ij − η∇

(l)
ij J → ∇(l)

ij J =
∂

∂w
(l)
ij

J(w)

Use the backpropagation algorithm to compute the gradient of a NN.

• can be used with any gradient-based optimizer, including

quasi-Newton methods.

• reduces the large amount of computations thanks to chain rule

• requires the derivative of the cost function with respect to the

output layer w
(l)
ij with l = output.

10



Training neural networks

The training NNs is usually performed with gradient descent methods.

Following the previous section, we have to compute the cost function

gradient with respect to parameters w
(l)
ij :

w
(l)
ij := w

(l)
ij − η∇

(l)
ij J → ∇(l)

ij J =
∂

∂w
(l)
ij

J(w)

Use the backpropagation algorithm to compute the gradient of a NN.

• can be used with any gradient-based optimizer, including

quasi-Newton methods.

• reduces the large amount of computations thanks to chain rule

• requires the derivative of the cost function with respect to the

output layer w
(l)
ij with l = output.

10



Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i )

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

11



Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i )

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

11



Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i )

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

11



Backpropagation algorithm

The backpropagation steps:

1: perform a forward propagation (calculate a
(l)
i )

2: perform a backward propagation: evaluate for each node a

“prediction error”:

δ
(l)
j = “error” of node j in layer l.

3: calculate ∇(l)
ij J using erros δ

(l)
i and a

(l)
i .

4: perform weight updates, ∆w
(l)
ij , via gradient descent using ∇(l)

ij J .

11



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

12



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

12



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

12



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

12



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

12



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

12



Backpropagation algorithm

Suppose we have a MLP and one training example (x,y).

Step 1: We first perform a forward propagation pass:

• a(1) = x

• z(2) = w(1)a(1)

• a(2) = g(z(2))

• z(3) = w(2)a(2)

• a(3) = g(z(3))

• z(4) = w(3)a(3)

• Output a(4) = g(z(4))

At this step we know the output of the current MLP setup.

12



Backpropagation algorithm

2. evaluate for each node the error δ
(k)
j for k = 2, 3, . . . , L.

Some remarks:

It is possible to proof using derivative chain rules that:

∇(l)
ij J =

∂J

∂z
(l+1)
i

a
(l)
j ≡ δ

(l+1)
i a

(l)
j ,

for l = 1, . . . , L− 1.

The recursive relation for the error is:

δ
(l)
i =

∑
k

w
(l)
ki δ

(l+1)
k · g′(z(l)i )

and at l = L, i.e. the highest l index:

δ
(L)
i =

∂J

∂a
(L)
i

· g′(z(L)
i )

where g′(z
(l)
i ) = a

(l)
i (1− a(l)i ) if g is the sigmoid function.

13



Backpropagation algorithm

2. evaluate for each node the error δ
(k)
j for k = 2, 3, . . . , L.

Some remarks:

It is possible to proof using derivative chain rules that:

∇(l)
ij J =

∂J

∂z
(l+1)
i

a
(l)
j ≡ δ

(l+1)
i a

(l)
j ,

for l = 1, . . . , L− 1.

The recursive relation for the error is:

δ
(l)
i =

∑
k

w
(l)
ki δ

(l+1)
k · g′(z(l)i )

and at l = L, i.e. the highest l index:

δ
(L)
i =

∂J

∂a
(L)
i

· g′(z(L)
i )

where g′(z
(l)
i ) = a

(l)
i (1− a(l)i ) if g is the sigmoid function.

13



Backpropagation algorithm

Example: evaluating error δ
(l)
j for a MLP with sigmoids in the hidden

layers and linear activation function in the output layer:

• δ(4) = a(4) − y
• δ(3) = (w(3))T δ(4) · (a(3)(1− a(3)))

• δ(2) = (w(2))T δ(3) · (a(2)(1− a(2)))

14



Backpropagation algorithm summary

Data: training set (x(i),y(i)) with i = 1, . . . ,m examples.

Result: the trained neural network

Initialize network weights;

while stopping criterion is not satisfied do

Set all ∆w
(l)
ij = 0.

for k = 1 to m do

Perform forward pass and compute a(l) for l = 1, 2, 3, . . . , L;

Perform backward pass and compute δ(l) for l = 2, . . . , L;

∆w
(l)
ij := ∆w

(l)
ij + aljδ

(l+1)
i

end

Update network weights using gradient descent;

end

15



Training neural networks

Some remarks and example of neural network initialization:

• zero: all weights are set to zero so all neurons perform the same

calculation. The complexity of the neural network is equivalent to a

single neuron.

• random: breaks parameter symmetry.

• glorot/xavier: initialize each weight with a small Gaussian value with

mean zero and variance based on the in/out size of the weight.

• he: avoid activation function saturation. Weights are random

initialized considering the size of the previous layer.

16



Artificial neural networks architectures

Some examples of neural network popular architectures:

• Recurrent neural networks: neural networks where connections

between nodes form a directed cycle.

• built-in internal state memory

• built-in notion of time ordering for a time sequence

17



Artificial neural networks architectures

• Recursive neural networks: a variation of recurrent neural network

where pairs of layers or nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural

networks composed by custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.

18



Artificial neural networks architectures

• Recursive neural networks: a variation of recurrent neural network

where pairs of layers or nodes are merged recursively.

• successful applications on natural language processing.

• some recent applications for model inference.

• Long short-term memory: another variation of recurrent neural

networks composed by custom units cells:

• LSTM cells have an input gate, an output gate and a forget gate.

• powerful when making predictions based on time series data.

18



Artificial neural networks architectures

• Boltzmann Machines: is a generative stochastic recursive artificial

neural network.

• comes with energy-based model features and advantages.

• generalizations like RTBMs can be used for pdf estimate, filtering,

regression, classification and sampling.

The system energy for given state vectors (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

19



Artificial neural networks architectures

• Convolutional neural networks: multilayer perceptron designed to

require minimal preprocessing, i.e. space invariant architecture.

• the hidden layers consist of convolutional layers, pooling layer, fully

connected layers and normalization layers

• great successful applications in image and video recognition.

20



Artificial neural networks architectures

• Generative adversarial network: unsupervised machine learning

system of two neural networks contesting with each other.

• one network generate candidates while the other discriminates.

21



Beyond neural networks



Beyond neural networks

Even if neural networks are the most popular architecture nowadays

employed in ML and Deep Learning, there are other models and

techniques that are used frequently with great success in HEP-EXP

Supervised learning examples:

• Decision tree

• Ensemble models (random forest, bagging, boosting)

• Support Vector Machines (SVM)

• k-nearest neighbors algorithm (k-NN)

22



Clustering

Unsupervised learning examples:

• k-means

• Mean-shift

• Hierarchical

• Gaussian mixture models

• Density-based spatial

• Affinity propagation

23



Others

Dimensionality reduction:

• Principal component analysis (PCA)

• Linear discriminant analysis (LDA)

Anomaly detection:

• GMM density estimate

• Kernel density estimate

• Restricted boltzmann machines

• k-NN

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.2

0.4
P(v1)

0.00 0.25 0.50
P(v2)

−6 −4 −2 0 2 4 6
v1

−6

−4

−2

0

2

4

6

v2

0.0

0.1

0.2

P(v1)

0.0 0.2
P(v2) 24



Hyperparameter tune



Outline

Model

Optimizer

Cost function Best modelCross-validationTraining

Data

25



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Hyperparameters summary

So far we have encountered the following hyperparameters:

• Model related:

• model architecture / size

• if NN: layers, nodes, activation functions

• Regularization techniques (to avoid overfitting):

• weight decay (parameter λ)

• if SGD: early stopping techniques

• if NN: dropout, artificial data, stochastic pooling, etc...

• Training:

• the SGD learning parameters η

• other SGD parameters depending on the gradient descent scheme

26



Other regularization techniques

Example: early stopping techniques are applied when the optimization is

performed in an iterative procedure, .e.g. via gradient descent.

Iteration

J(w) training

J(w) validation

Stop

These techniques monitor the cost function for the validation set and

stop when this quantity has stopped improving:

• look at the variation in a moving window

• stop at the minimum of the validation set (lookback method),

27



Other regularization techniques

Example: early stopping techniques are applied when the optimization is

performed in an iterative procedure, .e.g. via gradient descent.

Iteration

J(w) training

J(w) validation

Stop

These techniques monitor the cost function for the validation set and

stop when this quantity has stopped improving:

• look at the variation in a moving window

• stop at the minimum of the validation set (lookback method), 27



Other regularization techniques

Example: neural network dropout

At each training stage:

• individual nodes and related incoming and outgoing edges are

dropped-out of the neural network with a fixed probability.

• the reduced NN is trained on the data.

• the removed nodes are reinserted in the NN with their original

weights.

28



Other regularization techniques

How should we proceed with hyperparameter tune?

Possible solutions:

• grid search: exhaustive searching through a manually subset range of

hyperparameter space

• random search: specially powerful with small number of

hyperparameters affects the final performance of the ML algorithm.

Other useful methods:

• bayesian optimization

• gradient-based optimization

• evolutionary optimization

29



Other regularization techniques

How should we proceed with hyperparameter tune?

Possible solutions:

• grid search: exhaustive searching through a manually subset range of

hyperparameter space

• random search: specially powerful with small number of

hyperparameters affects the final performance of the ML algorithm.

Other useful methods:

• bayesian optimization

• gradient-based optimization

• evolutionary optimization

29



Other regularization techniques

How should we proceed with hyperparameter tune?

Possible solutions:

• grid search: exhaustive searching through a manually subset range of

hyperparameter space

• random search: specially powerful with small number of

hyperparameters affects the final performance of the ML algorithm.

Other useful methods:

• bayesian optimization

• gradient-based optimization

• evolutionary optimization 29



Cross-validation



Cross-validation

The hyperparameter tune procedure still requires the

training/validation/test split to choose for the best model.

Training Set Test Set

Total number of examples

Validation Set

Problems:

• how to perform the data split when the available data set is small?

• how to define a suitable split?

Solution:

Use cross-validation algorithms to access the quality of your model +

hyperparameter choice.

30



Cross-validation

The hyperparameter tune procedure still requires the

training/validation/test split to choose for the best model.

Training Set Test Set

Total number of examples

Validation Set

Problems:

• how to perform the data split when the available data set is small?

• how to define a suitable split?

Solution:

Use cross-validation algorithms to access the quality of your model +

hyperparameter choice.

30



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Cross-validation

Cross-validation performs a rotation estimation by:

1. partitioning data into training/validation subsets

2. multiple rounds of cross-validation using different partitions

3. results are averaged over the rounds to give an estimate of the

model performance

Common approaches to cross-validation:

• Exhaustive cross-validation: test all possible ways to divide the

original sample into a training and a validation set.

• Leave-p-out: uses p observations as validation set.

• Leave-one-out: set p = 1.

• Non-exhaustive cross-validation: do not test all possible ways to

divide the original sample but use discrete subsamples.

• k-fold cross-validation.

31



Example k-fold cross-validation

k-fold cross-validation:

1. the original data is randomly partitioned into k equal sized

subsamples.

2. from the k subsamples, a single subsample is used as validation data

and the remaining k − 1 subsamples are used as training data.

3. repeat the process k times by changing the validation and training

partitions.

4. compute the average over the k results.

Example of k-fold with k = 4:

32



Complete recipe

Perform hyperparameter tune coupled to cross-validation:

Best solution

Grid/random search

Cross-validation Test set

Cross-validation Test set

Cross-validation Test set

... ...

Run I

Run II

Run n

Easy parallelization at search and cross-validation stages.

33



Closure testing



Closure tests

Validation and optimization of fitting strategy performed on closure test

with known underlying law.

New fitting methodology

Define Underlying Law

Generate pseudo-data

Validate results by comparing to law

Perform Training

Fit real data
Fails OK

34



ML in practice



Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.

Why use public codes? → builtin models and automatic differentiation

35



Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.

Why use public codes? → builtin models and automatic differentiation

35



Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.

Why use public codes? → builtin models and automatic differentiation

35



Most popular public ML frameworks

For experimental HEP:

• TMVA: ROOT’s builtin machine learning package.

For ML applications:

• Keras: a Python deep learning library.

• Theano: a Python library for optimization.

• PyTorch: a DL framework for fast, flexible experimentation.

• Caffe: speed oriented deep learning framework.

• MXNet: deep learning frameowrk for neural networks.

• CNTK: Microsoft Cognitive Toolkit.

For ML and beyond:

• TensorFlow: libray for numerical computation with data flow graphs.

• scikit-learn: general machine learning package.

Why use public codes? → builtin models and automatic differentiation

35



Keras

Keras is a high-level deep learning framework in Python which runs on

top of TensorFlow, CNTK or Theano.

Pros:

• fast prototyping, user friendly, common code for multiple backends.

• support several NN architectures out-of-the-box.

• runs seamlessly on CPU and GPU.

Cons:

• more tricky to extend when custom ML setups are required

• runs only in Python

36



Keras

Keras is a high-level deep learning framework in Python which runs on

top of TensorFlow, CNTK or Theano.

Pros:

• fast prototyping, user friendly, common code for multiple backends.

• support several NN architectures out-of-the-box.

• runs seamlessly on CPU and GPU.

Cons:

• more tricky to extend when custom ML setups are required

• runs only in Python

36



Keras

Keras is a high-level deep learning framework in Python which runs on

top of TensorFlow, CNTK or Theano.

Pros:

• fast prototyping, user friendly, common code for multiple backends.

• support several NN architectures out-of-the-box.

• runs seamlessly on CPU and GPU.

Cons:

• more tricky to extend when custom ML setups are required

• runs only in Python

36



Example of code using Keras:

1 model = Sequential() # allocate an empty model (MLP)

2

3 # append feed-forward layers 2-5-3-1

4 model.add(Dense(units=5, activation='sigmoid', input_dim=2))

5 model.add(Dense(units=3, activation='sigmoid', input_dim=5))

6 model.add(Dense(units=1, activation='linear', input_dim=3))

7

8 model.compile(loss='mse', optimizer='sgd') # compile the model

9

10 # train the model

11 model.fit(x_train, y_train, epochs=1000, batch_size=32)

12

13 # measure performance

14 loss_and_metrics = model.evaluate(x_test, y_test)

15

16 # generate predictions

17 classes = model.predict(x_test)

37



TensorFlow

TensorFlow is a library for high performance numerical computation.

Pros:

• solves optimization problems with

automatic differentiation.

• can be extended in python and c/c++.

• runs seamlessly on CPU and GPU, and

can uses JIT technology.

Cons:

• do not provides builtin models from the

core framework

• less automation for cross-validation

and hyperparameter tune

38



TensorFlow

TensorFlow is a library for high performance numerical computation.

Pros:

• solves optimization problems with

automatic differentiation.

• can be extended in python and c/c++.

• runs seamlessly on CPU and GPU, and

can uses JIT technology.

Cons:

• do not provides builtin models from the

core framework

• less automation for cross-validation

and hyperparameter tune

38



Example of code using TensorFlow:

1 n_intput = 2

2 n_output = 1

3 n_hidden_1 = 5

4 n_hidden_2 = 3

5

6 # tf Graph input

7 X = tf.placeholder("float", [None, n_input])

8 Y = tf.placeholder("float", [None, n_output])

9

10 # Store layers weight & bias

11 weights = {

12 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

13 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

14 'out': tf.Variable(tf.random_normal([n_hidden_2, n_output]))

15 }

16 biases = {

17 'b1': tf.Variable(tf.random_normal([n_hidden_1])),

18 'b2': tf.Variable(tf.random_normal([n_hidden_2])),

19 'out': tf.Variable(tf.random_normal([n_output]))

20 }

39



Example of code using TensorFlow:

1 ...

2

3 def MLP(x): # define the neural network

4 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])

5 layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])

6 return tf.matmul(layer_2, weights['out']) + biases['out']

7

8 model = MLP(X) # attach model to the input placeholder

9 loss = tf.reduce_mean(tf.square(model-Y)) # evaluate loss graph

10 train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

11

12 # perform training loop manually

13 ...

14 for epoch in range(1000):

15 _, cost = sess.run([train, loss], feed_dict={X: x_train, Y: y_train})

40



Scikit-learn

41



Scikit-learn

Scikit-learn contains the most popular algorithms for:

• Supervised learning: neural networks, decision trees, etc.

• Unsupervised learning: density estimate, clustering, etc.

• Model selection: cross-validation, hyperparameter tune, etc.

• Dataset transformations: feature extractions, dim. reduction, etc.

• Dataset loading

• Strategies to scale computationally

• Computational performance

42



Questions?

42


	Artificial neural networks
	Beyond neural networks
	Hyperparameter tune
	Cross-validation
	Closure testing
	ML in practice

