Lectures on Machine Learning

Lecture 1: from artificial intelligence to parameter learning

Stefano Carrazza

TAE2019, 8-21 September 2019

University of Milan and INFN Milan (UNIMI)

Istituto Nazionale di Fisica Nucleare

N 3PDF

Machme Learnlng PDFs » QCD

Why lectures on machine learning?

Why lectures on machine learning?

because

e it is an essential set of algorithms for building models in science,

Why lectures on machine learning?

because

e it is an essential set of algorithms for building models in science,

e fast development of new tools and algorithms in the past years,

Why lectures on machine learning?
because
e it is an essential set of algorithms for building models in science,

e fast development of new tools and algorithms in the past years,

e nowadays it is a requirement in experimental and theoretical physics,

Why lectures on machine learning?

because

it is an essential set of algorithms for building models in science,
fast development of new tools and algorithms in the past years,
nowadays it is a requirement in experimental and theoretical physics,

large interest from the HEP community: IML, conferences, grants.

What expect from these lectures?

What expect from these lectures?

e Learn the basis of machine learning techniques.

e Learn when and how to apply machine learning algorithms.

The talk is divided in two lectures:

Lecture 1 (today) Lecture 2 (tomorrow)

Non-linear models

Artificial intelligence

Machine learning Beyond neural networks

Model representation

Clustering

e Metrics Cross-validation

Parameter learning e Hyperparameter tune

Some references

Books:
e The elements of statistical learning, T. Hastie, R.
Tibshirani, J. Friedman. M
e An introduction to statistical learning, G. James, et e i

D. Witten, T. Hastie, R. Tibshirani.
e Deep learning, |. Goodfellow, Y. Bengio, A.

Courville.
Online resources: ey

e HEP-ML:
https://github.com/iml-wg/HEP-ML-Resources

e Tensorflow: http://tensorflow.org

e Keras: http://keras.io

e Scikit: http://scikit-learn.org

https://github.com/iml-wg/HEP-ML-Resources
http://tensorflow.org
http://keras.io
http://scikit-learn.org

Artificial Intelligence

Artificial intelligence timeline

ARTIFICIAL

INTELLIGENCE
MACHINE
LEARNING

4

Edward Shortliffe writes MYCIN, ImageNet Feeds
an Expert or Rule based System, Deep Learning
2009

to classify blood disease
70s

IBM Deep Blue defeats Grand

Turing Test Devised ELIZA Master Garry Kasparov in chess
1950 1964 - 1966 1996
1950s 1960s 1970s 1980s 1990s 2000s 2010s

DEEP
LEARNING

AlphaGo defeats Go
champion Lee Sedol
2016

Defining A.l.

Artificial intelligence (A.l.) is the science and engineering of making
intelligent machines. (John McCarthy ‘56)

Defining A.l.

Artificial intelligence (A.l.) is the science and engineering of making
intelligent machines. (John McCarthy ‘56)

Machine learning

Natural language processing

Artificial intelligence

Computer vision
Planning
Robotics

A.l. consist in the development of computer systems to perform tasks
commonly associated with intelligence, such as learning. 6

A.l. and humans

There are two categories of A.l. tasks:

e abstract and formal: easy for computers but difficult for humans,
e.g. play chess (IBM's Deep Blue 1997).
— Knowledge-based approach to artificial intelligence.

A.l. and humans

There are two categories of A.l. tasks:

e abstract and formal: easy for computers but difficult for humans,
e.g. play chess (IBM's Deep Blue 1997).
— Knowledge-based approach to artificial intelligence.

e intuitive for humans but hard to describe formally:
e.g. recognizing faces in images or spoken words.
— Concept capture and generalization

0000000000002 000
[T T N B A A A2 R U Y B R
2222232222222222
3233333%>3333333
Yot d a9 F5dd98¢4
5558555555555 85555
Ctbblcbbbécsibiol
T7977771% 790122777
¥ I®EIPTBPTTYLCD
7999439%94949449979

A.l. technologies

Historically, the knowledge-based approach has not led to a major success
with intuitive tasks for humans, because:

e requires human supervision and hard-coded logical inference rules.

e lacks of representation learning ability.

A.l. technologies

Historically, the knowledge-based approach has not led to a major success
with intuitive tasks for humans, because:

e requires human supervision and hard-coded logical inference rules.

e lacks of representation learning ability.

Solution:

The A.l. system needs to acquire its own knowledge. '\9@ I
This capability is known as machine learning (ML). A\?ﬁ
— e.g. write a program which learns the task. M

Venn diagram for A.l.

Artificial intelligence

e.g. Knowledge bases

Machine learning

e.g. Logistic regression

Representation learning

e.g. Autoencoders

Deep learning

e.g. MLPs

When a representation learning is difficult, ML provides deep learning
techniques which allow the computer to build complex concepts out of
simpler concepts, e.g. artificial neural networks (MLP).

Machine Learning

Machine learning definition

Definition from A. Samuel in 1959:
Field of study that gives computers the ability to learn without being

explicitly programmed.

10

Machine learning definition

Definition from A. Samuel in 1959:
Field of study that gives computers the ability to learn without being

explicitly programmed.

Definition from T. Mitchell in 1998:

A computer program is said to learn from experience E with respect to
some class of tasks 7" and performance measure P, if its performance on
T, as measured by P, improves with experience F.

10

Machine learning examples

Thanks to work in A.l. and new capability for computers:

e Database mining:
e Search engines
e Spam filters
e Medical and biological records

LESIONS LEARNT

11

Machine learnin amples

Thanks to work in A.l. and new capability for computers:

e Database mining:

e Search engines

e Spam filters

e Medical and biological records
e Intuitive tasks for humans:

e Autonomous driving
e Natural language processing

Robotics (reinforcement learning)

Game playing (DQN algorithms)

11

Machine learning examples

Thanks to work in A.l. and new capability for computers:

e Database mining:
e Search engines
e Spam filters
e Medical and biological records

e Intuitive tasks for humans:

e Autonomous driving
e Natural language processing

Robotics (reinforcement learning)

Game playing (DQN algorithms)

11

Machine learnin amples

Thanks to work in A.l. and new capability for computers:

e Database mining:

e Search engines

e Spam filters

e Medical and biological records
o Intuitive tasks for humans:

e Autonomous driving
e Natural language processing

Robotics (reinforcement learning)

Game playing (DQN algorithms)
e Human learning:

e Concept/human recognition

e Computer vision
e Product recommendation

11

ML applications in HEP

12

ML in experimental HEP

There are many applications in experimental HEP involving the LHC
measurements, including the Higgs discovery, such as:

e Tracking e Particle identification

e Fast Simulation e Event filtering

13

ML in experimental HEP

Some remarkable examples are:

e Signal-background detection:

Decision trees, artificial neural networks, support vector machines.
e Jet discrimination:

Deep learning imaging techniques via convolutional neural networks.
e HEP detector simulation:

Generative adversarial networks, e.g. LAGAN and CaloGAN.

CMS (s=7TeV,L=51fb"\s=8TeV,L=5.31"
T T

>
[0] >
(0] 8 Unweighted
0 21500
1500 3
% g1000
w
>
Wo00(- 30
B m,, (GeV)
=)
(@] 4 Data
= 50011 ey
~ [e B Fit Component
E+1_J J+te
n Bl 20
= 0 | ! | 1 1
ah 110 120 130 140 150

m,, (GeV)

14

ML in theoretical HEP

Machine Learning in HEP-TH

Level 0
Computational techniques and tools

Level 1
Applications of modern ML techniques

1
I
}
Advanced numerical methods :
and applications | Supervised learning: regression
| and classification
MC event generators and related |
tools | . o
Uncertainty propagation
. . 1
Higher Orders computational |
}
1
1
1
1

methods
“Experimental” mathematics

Computer algebra techniques

15

ML in theoretical HEP

e Supervised learning:
e The structure of the proton at the LHC

e parton distribution functions

m
Voo

xf(xp?=10° Gev?) |

e Theoretical prediction and combination
e Monte Carlo reweighting techniques osf

e neural network Sudakov

e BSM searches and exclusion limits

e Unsupervised learning: . o a
e Jet physics =

e GANs and CycleGANs for jet reconstruction :5 ~

e Clustering and compression imé

e PDF4LHC15 recommendation I
e Density estimation and anomaly detection

e Monte Carlo sampling o

¢ Reinforcement learning;:

e Jet grooming

16

Machine learning algorithms

Machine learning algorithms: Supervised learning

e Supervised learning:

regression, classification, ...

Training Data Set
Desired Output

Labels are known - + N\

~/ + + Algorithm
/ *

® C | Processing I
[] 'S Y
| Output I

\/

17

Machine learning algorithms

Machine learning algorithms: U ainetreedl Ny

e Supervised learning:
regression, classification, ...

e Unsupervised learning:
clustering, dim-reduction, ...

Discover
Interpretation
from Features

Labels are unknown ®

/ ~ o @ Algorithm
[J

[]
o0 | Processing I
®e o
| Output I

\/

17

Machine learning algorithms

a . . Reinforcement learnin
Machine learning algorithms: 2

. . | Input Data |
e Supervised learning:

regression, classification, ...

e Unsupervised learning:
clustering, dim-reduction, ...

Best Action Reward

e Reinforcement learning:

real-time decisions, ...

Environment

Algorithm

| Output I

17

Machine learning algorithms

Deep Boltzmann Machine (DBM)
Deep Belief Networks (DBN) |
——————— | peep Learning
Convolutional Neural Network (CNN) ¢~
Stacked Auto-Encoders
Random Forest
Gradient Boosting Machines (GBM)

Boosting |

Bootstrapped Aggregation (Bagging) l\ Ensemble

AdaBoost
Stacked Generalization (Blending))|
Gradient Boosted Regression Trees (GERT) /

Radial Basis Function Network (REFN)
Perceptron |

+,_Neural Networks
Back-Propagation

Hopfield Nework

Ridge Regression
Least Absolute Shrinkage and Selection Operator (LASSO)

| /
ElasticNet

Least Angle Regression (LARS)
Cubist
One Rule (OneR) |
= Rule System /
Zero Rule ZeroR) ——
Repeated Incremental Pruning to Produce Error Reduction (RIPPER) |

Linear Regression
Ordinary Least Squares Regression (OLSR) |

Stepwise Regression | /
—— | Regression /
Multivariate Adaptive Regression Splines (MARS)
Locally Estimated Scatterplot Smoothing (LOESS)

Logistic Regression

More than 60 algorithms.

Clustering
\ Clustering y

Naive Bayes

Averaged One-Dependence Estimators (AODE)
Bayesian Belief Nework (BBN)
Gaussian Naive Bayes
Muttinomial Naive Bayes

Bayesian (

_ Bayesian Network (BN)

Classification and Regression Tree (CART)
Iterative Dichotomiser 3 (ID3)

c4.5
Cs.0

Decision Tree

Chi-squared Automatic Interaction Detection (CHAID)
Decision Stump

|_Conditional Decision Trees
_ M5

Principal Component Analysis (PCA

' Partil Least Squares Regression (PLSR
sammon Mapping

Muttidimensional Scaling (MDS)
Projection Pursuit
Principal Component Regression (PCR)

Dimensionality Reduction

Partial Least Squares Discriminant Analysis
Mixture Discriminant Analysis (MDA)

Quadratic Discriminant Analysis (QDA)
Regularized Discriminant Analysis (RDA)

Flexible Discriminant Analysis (FDA)
_ Linear Discriminant Analysis (LDA)
k-Nearest Neighbour (kNN)
Learning Vector Quantization (LVQ)
{__Self-Organizing Map (SOM)
_ Locally Weighted Learning (LWL)
k-Means
[k-Medians

Expectation Maximization
Hierarchical Clustering

18

Workflow in machine learning

The operative workflow in ML is summarized by the following steps:

Data

Cost function

Optimizer

The best model is then used to:

e supervised learning: make predictions for new observed data.

e unsupervised learning: extract features from the input data.

19

Models and metrics

Models and metrics

Training —— Cross-validation —>-

Optimizer

20

Model representation in supervised learning

We define parametric and structure models for statistical inference:

e examples: linear models, neural networks, decision tree...

Data Set
for Training

{

Machine Learning
Algorithm

Estimated
Input x Model Prediction

e Given a training set of input-output pairs A = (z1,41),---, (Tn, Yn)-
e Find a model M which:

M(z) ~y
where x is the input vector and y discrete labels in classification and

real values in regression.

21

Model representation in supervised learning

Examples of models:

— linear regression we define a vector € R"™ as input and predict the

value of a scalar y € R as its output:
gx) =wlz+b

where w € R"™ is a vector of parameters and b a constant.

22

Model representation in supervised learning

Examples of models:

— linear regression we define a vector € R"™ as input and predict the
value of a scalar y € R as its output:

gx) =wlz+b
where w € R"™ is a vector of parameters and b a constant.

— Generalized linear models are also available increasing the power of
linear models:

® od
Linear 00 Quadratic oo
cd ° o - °
°)
L ® eo L ® ot
- b’ %o =9 o °
> o 00 @, %o > oﬂogp
o 4 s o % 0" o od 9 00 o Hod o
o ol o o o o © © o
_ o o 50 8olo0 P 5 o 8|0 °
o @ o0 ©° %o 74 0@ oo © %o
o o
\ v
T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6

22

Model representation in supervised learning

Examples of models:

— linear regression we define a vector € R"™ as input and predict the
value of a scalar y € R as its output:

gx) =wlz+b
where w € R"™ is a vector of parameters and b a constant.

— Generalized linear models are also available increasing the power of
linear models:

® od
Linear 00 Quadratic oo
cd o4 o - °
)
L ® eo L ® ot
- i o
o %o - K
. oeo&,’m/%oﬁ// _ L el
o 4 s 00 % 0" o od 00 o Hod o
o ol o o 8 o o © © o
i o o — 0w 85[0 s 50 840 ®
o @ o0 ©° %o 74 0@ oo © %o
4 o 4
T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6

— Non-linear models: neural networks (talk later). -

Model representat de-offs

However, the selection of the appropriate model comes with trade-offs:

e Prediction accuracy vs interpretability:
— e.g. linear model vs splines or neural networks.

A

@ Linear Regression

@ Decision Tree
@ K-Nearest Neighbors

Interpretability °
Random Forest

@ Support Vector Machines

@ Neural Nets

>

Accuracy

23

Model representation trade-offs

However, the selection of the appropriate model comes with trade-offs:

e Prediction accuracy vs interpretability:
— e.g. linear model vs splines or neural networks.

e Optimal capacity/flexibility: number of parameters, architecture
— deal with overfitting, and underfitting situations

Underfitting Appropriate capacity Overfitting
°®
£ /< > =
° ®
2y Zy Zy

23

Assessing the model performance

How to check model performance?
— define metrics and statistical estimators for model performance.
Examples:

e Regression: cost / loss / error function,

e Classification: cost function, precision, accuracy, recall, ROC, AUC

24

Assessing the model performance - cost function

To access the model performance we define a cost function J(w) which
often measures the difference between the target and the model output.

In a optimization procedure, given a model ¢,,, we search for:

arg min J(w)

w

The mean square error (MSE) is the most commonly used for regression:

Tw) = 30— tho(@:))?
=il

a quadratic function and convex function in linear regression.

Linear regression example
3T —

Optimization of w
T T T

T T

ain)

MSE(tr

JR) L 1 i |
—1.0 -0.5 0.0 05 1.0
x

25

Assessing the model performance - cost function

Other cost functions are depending on the nature of the problem.

Some other examples: e

"'ﬁi;.__‘_'_!.&.-r".

e regression with uncertainties, chi-square:

n

T(w) = > (yi—fow(®:)) (07)i (45— (25))

Gogi=ll

where:

e 0;; is the data covariance matrix.

e.g. for LHC data experimental statistical

and systematics correlations.

26

Assessing the model performance - cost function

e logistic regression (binary classification): cross-entropy

n

J(w) = == yilog i (a:) + (1= i) log(1 — fw (1)

i=1

where G, (x;) = 1/(1 + e’me’i).

Classification with TMVA (ROOT)

@soof~ S (Train)
A 55 B (Train O e e ——————————
é + + 1S (Test)
000 p (1B (Test) |
E ©
1500~ S
£ < |
= S
1000/
F o
[S
500
o' 04 05 06 07 08 09 ‘ ! ‘ ‘ ‘ '
Classifier, SVM [rbf kernel, C=1, gamma=0.005] 0 500 1000 1500 2000 2500

27

Assessing the model performance - cost function

e density estimate / regression: negative log-likelihood:

J(w) = = log(ju (1)

04
Plv1)
02
0.0
—— Gaussian mixture pdf 6
008 —— RTBM model
0.07 Sampling N = 10° 4
0.06 N
0.05
P
20
0.04
0.03 -2
0.02
-4
0.01
0.00 1 - - - - e
-2 -0 0 10 20 6 4 2 o 2 a 6 0.00 025 050
v Plva)

28

Assessing the model performance - cost function

e density estimate / regression: negative log-likelihood:

J(w) = = log(ju (1)

—— Gaussian mixture pdf
—— RTBM model
Sampling N = 10° 4

0.08

0.07
0.06
0.05

0.04

0.03
0.02

0.01

0.00

-20 -10 0 10 20

e Kullback-Leibler, RMSE, MAE, etc.

28

Training and test sets

Another common issue related to model capacity in supervised learning:

e The model should not learn noise from data.

e The model should be able to generalize its output to new samples.

29

Training and test sets

Another common issue related to model capacity in supervised learning:

e The model should not learn noise from data.

e The model should be able to generalize its output to new samples.
To observe this issue we split the input data in training and test sets:
e training set error, Jp,(w)

e test set/generalization error, Jrest(w)

Total number of examples

Training Set Test Set

29

Training and test sets

The test set is independent from the training set but follows the same
probability distribution.

Training Set —’m—> Permanent model

Test Set _— Prediction —— Estimate performance

30

nce trade-off

From a practical point of view dividing the input data in training and test:

— - 'Training error
[Underfitting zone| Overfitting zone

—— Generalization error

Error

0 Optimal Capacity
Capacity

The training and test/generalization error conflict is known as
bias-variance trade-off.

31

Bias-variance trade-off

Supposing we have model §j(x) determined from a training data set, and
considering as the true model

Y =y(X)+e withy(z) = E(Y|X = z),

where the noise ¢ has zero mean and constant variance.

32

Bias-variance trade-off

Supposing we have model §j(x) determined from a training data set, and
considering as the true model

Y =y(X)+e withy(z) = E(Y|X = z),

where the noise ¢ has zero mean and constant variance.

If we take (z0,y0) from the test set then:

E[(yo — 9(0))?] = (Bias[j(wo)])* + Var[g(x0)] + Var(e),

e Bias[j(zo)] = E[j(w0)] — y(x0)

o Var[j(zo)] = E[§(z0)?] — (E[i(x0)])”
So, the expectation averages over the variability of yo (bias) and the
variability in the training data.

32

Bias-variance trade-off

If 4 increases flexibility, its variance increases and its biases decreases.

Choosing the flexibility based on average test error amounts to a
bias-variance trade-off:

e High Bias — underfitting:
erroneous assumptions in the learning algorithm.
e High Variance — overfitting:

erroneous sensitivity to small fluctuations (noise) in the training set.

Underfitting zone Overfitting zone

Generalization

€r1or

Variance

- | e—
——-—_-..T"---—--;

Lol
Optimal Capacity

capacity

33

Bias-variance trade-off

More examples of bias-variance trade-off:

@ da 3 & i | — MsE

o | e

o o

e w J

R dh\cocoodsoccoconcoadb e |

0 0

< 7 < 7

o | ~ o |

= °
T T T T T T T T T T T T
2 5 10 20 2 5 10 20 2 5 10 20

Flexibility Flexibility Flexibility

34

Bias-variance trade off

Regularization techniques can be applied to modify the learning
algorithm and reduce its generalization error but not its training error.

For example, including the weight decay to the MSE cost function:

li — G (;)) +/\'wTw.

3

where X is a real number which express the preference for weights with
smaller squared L? norm.

35

Solution for the bias-variance trade off

Tuning the hyperparameter A we can regularize a model without
modifying explicitly its capacity.

Underfitting Appropriate weight decay Overfitting
(Excessive \) (Medium \) (A=0)
°®
> Y] > >
o o
z,) ,

36

Solution for the bias-variance trade off

A common way to reduce the bias-variance trade-off and choose the
proper learning hyperparamters is to create a validation set that:

e not used by the training algorithm
e not used as test set

Total number of examples

Training Set m Test Set

e Training set: examples used for learning.

e Validation set: examples used to tune the hyperparameters.
e Test set: examples used only to access the performance.

Techniques are available to deal with data samples with large and small
number of examples. (talk later)
37

Parameter learning

Parameter learning

Data

}

Training —— Cross-validation —>-

38

Cost function minimization

Optimization algorithms minimize an objective
function, J(w), that depends on the model & Jw)
internal learnable parameters w.

arg min J(w)

\/

39

Cost function minimization

Optimization algorithms minimize an objective
function, J(w), that depends on the model & Jw)
internal learnable parameters w.

arg min J(w)

w

\/

The most popular techniques are:

e normal equations (least squares)
e derivative based optimization

e evolutionary algorithms

The choice of a technique depends on the model and problem employed.

39

Normal equations

The normal equation is a method to solve for w analytically.

e it is employed in linear and non-linear least squares optimization.

e it is fast for small models with few features, otherwise it can be
computationally intensive and slow.

40

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size
(m,n), and the observed values y we have to solve the system:

Xw=y

How to solve it when the system if overdetermined?

41

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size
(m,n), and the observed values y we have to solve the system:

Xw=y
How to solve it when the system if overdetermined?
1. Define the cost function for the problem:

J(w) = [ly — Xw||?

41

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size
(m,n), and the observed values y we have to solve the system:

Xw=y
How to solve it when the system if overdetermined?
1. Define the cost function for the problem:
J(w) = |ly — X2

2. Compute and impose:
oJ(w)

ow =0

41

Normal equations example

Example: multivariate linear regression.

Suppose we have m training examples and n features in a matrix X, size
(m,n), and the observed values y we have to solve the system:

Xw=y
How to solve it when the system if overdetermined?
1. Define the cost function for the problem:
J(w) = |ly — X2

2. Compute and impose:
oJ(w)

ow =0

3. We obtain the solution:
w=(XTX) ' XTy=X"y
with X is the pseudoinverse of X.

41

Derivative based optimization

More general optimization algorithms based on derivatives:

e First order optimization algorithms: uses the gradient of the cost
function with respect to the parameters in a iteractive procedure.
— gradient descent algorithms.

42

Derivative based optimization

More general optimization algorithms based on derivatives:

e First order optimization algorithms: uses the gradient of the cost
function with respect to the parameters in a iteractive procedure.
— gradient descent algorithms.

e Second order optimization algorithms: uses the Hessian of the
cost function and takes care of the curvature of surface.

— if the Hessian is known it may be faster than gradient descent,
— otherwise slow due to the Hessian evaluation.

42

Derivative based optimization

More general optimization algorithms based on derivatives:

e First order optimization algorithms: uses the gradient of the cost
function with respect to the parameters in a iteractive procedure.
— gradient descent algorithms.

e Second order optimization algorithms: uses the Hessian of the
cost function and takes care of the curvature of surface.

— if the Hessian is known it may be faster than gradient descent,
— otherwise slow due to the Hessian evaluation.

In practice Gradient Descent is the most popular technique in ML.

42

Which method?

Q: normal equation or derivative based?
Suppose we have m training examples and n features.
Normal equation

v/ no parameters to tune

v/ no iterations

X slow if n is large

X requires (X7 X)~1,0(n?)

43

Which method?

Q: normal equation or derivative based?

Suppose we have m training examples and n features.

Normal equation Gradient descent

v/ no parameters to tune v efficient when n is large
v no iterations v/ easy to implement/use

X slow if n is large X requires iterations

X requires (X7 X)~1,0(n?) X requires parameter tune

43

Gradient descent idea

Basic idea:
Assuming we want to minimize J(w) where w is a vector of parameters:

e select a initial solution vector w,

e change the w to reduce J(w)

Repeat until a minimum of J(w) is reached.

a4

Gradient descent idea

Basic idea:
Assuming we want to minimize J(w) where w is a vector of parameters:

e select a initial solution vector w,

e change the w to reduce J(w)

Repeat until a minimum of J(w) is reached.

J(wa, w3) o
J(w1, w) projection

162
20 144
126
108
90

72

54
36
18

a4

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

0
w; = Wi — W%J(w)

where

e 7 is the learning rate.

45

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:
0
w; = w; —N—J(w
! ! n@wl ()

where

e 7 is the learning rate.
e 1 > 0, it can be a fixed number, because the gradient term will

automatically compensate with smaller steps: V. J|w—swp.., — 0.

best

45

Gradient descent algorithm

Simultaneously for each parameter in w repeat until convergence:

0
w; = w; — n@w- J(w)

where

e 7 is the learning rate.
e 1 > 0, it can be a fixed number, because the gradient term will
automatically compensate with smaller steps: V,,J|w— ... — O-

Why the negative sign in term —n? (example in 1D)

\ 5 o if V,,J(w) > 0 then
w decreases

Positive slope Negative
slope

o if V,,J(w) < 0 then
w increases

\/

\/

45

Gradient descent and learning rate

The 7 is another example of hyperparameter which requires tune.

e if 1 is too small, gradient descent can be slow.

A VORI

Iteration o w

46

Gradient descent and learning rate

The 7 is another example of hyperparameter which requires tune.

e if 1 is too small, gradient descent can be slow.

A VORI

y
y

Iteration o w

e if 1 is too large, gradient descent may fail to converge or diverge.
A‘/J(w) Iy \></
w

Iteration

Y

46

Gradient descent and learning rate

The 7 is another example of hyperparameter which requires tune.

e if 1 is too small, gradient descent can be slow.

A VORI

y
y

Iteration o w

e if 1 is too large, gradient descent may fail to converge or diverge.
A‘/J(w) Iy \></
w

Iteration

>
>

e Practical hint, start with small) values and then increase slowly. 40

Gradient descent and feature scaling

Another practical hint: feature scaling.

Make sure the input features x; are in a similar scale, e.g. standardization:

Li — Pa;
O—:E

ZT; =

i

where i, and o, are the mean and standard deviation respectively.

A Jw) A Standardized

w2 w2

\j
\j

Wi wi

a7

Gradient descent variants

When performing gradient descent the cost function J(w) is evaluated
over the training data, e.g. for the MSE cost function:

2wy = 2 (;Zo - yw(w»)?) .

i=1

If the training data set is too large, there are gradient descent variations
that may improve convergence in terms of speed and quality:

e Batch Gradient Descent: all training data points are evaluated in the
cost function gradient at each iteration.

48

Gradient descent variants

e Stochastic Gradient Descent (SGD):
1. randomly shuffle training examples,
2. use 1 example at each iteration.
Features:
e parameters updates have high variance and cost function fluctuates.
e helps to discover new and possibly better minima.
e requires to slowly decrease the learning rate n to reduce fluctuations.

J(w1, w3) projection

-> Batch GD 162
20 Stochastic GD 144

-30 -20 -10 0 10 20

49

Gradient descent variants

e Mini Batch Gradient Descent:
1. use a subset of size b (batch size) of examples in each iteration,
2. use the batch set example at each iteration.
Features:
e takes the best from both previous methods,
e reduces the variance in the parameter updates (stable convergence),
e good for data parallelism, efficient for matrix operations

J(w1, w) projection

-> Batch GD 162
20 Stochastic GD 144
126

—> Mini batch GD

10 i

-30 -20 -10 0 10 20

50

Gradient descent schemes

SGD has many improvements and extensions, for example:

e Momentum: it stores the update Aw at each iteration and update
parameters following:

w = w — NVyJ(w) + aAw

51

Gradient descent schemes

SGD has many improvements and extensions, for example:

e Momentum: it stores the update Aw at each iteration and update
parameters following:

w = w — NVyJ(w) + aAw

e Root Mean Square Propagation (RMSProp): it introduces an
adaptive learning rate for each parameter:

wi=w — #ij(w)

v(w, ite)

51

Gradient descent schemes

SGD has many improvements and extensions, for example:

e Momentum: it stores the update Aw at each iteration and update

parameters following:
w = w — NVyJ(w) + aAw

e Root Mean Square Propagation (RMSProp): it introduces an
adaptive learning rate for each parameter:

wi=w — #’VU,J(IU)
v(w, ite)

e Others: Averaging, AdaGrad, Adam, etc...

51

Gradient descent schemes

SGD has many improvements and extensions, for example:

e Momentum: it stores the update Aw at each iteration and update
parameters following:

w = w — NVyJ(w) + aAw

e Root Mean Square Propagation (RMSProp): it introduces an
adaptive learning rate for each parameter:

wi=w — #ij(w)

v(w, ite)
e Others: Averaging, AdaGrad, Adam, etc...

All these schemes and respective parameters can be considered as extra
hyperparameters to tune.

51

Examples of second order optimization

Popular examples of second order optimization algorithms:

e Newton's method: an iterative method based on Taylor expansion.
Example in 1D: consider the Taylor expansion

1
Jr(w) = Jr(w, + Aw) = J(wy,) + J' (w,) Aw + §J’/(wn)Aw2
We aim to find Aw which satisfies:

YV awdr(wn, + Aw) = J'(wy,) + J" (w,)Aw = 0

J' (wn)
w =w, + Aw = w, —
n+1 n n J”(U)n)
w1, ws, ... will converge to a stationary point w* where J'(w*) = 0.

52

Examples of second order optimization

Popular examples of second order optimization algorithms:

e Newton's method: an iterative method based on Taylor expansion.
Example in 1D: consider the Taylor expansion

1
Jr(w) = Jr(w, + Aw) = J(wy,) + J' (w,) Aw + §J’/(wn)Aw2
We aim to find Aw which satisfies:

YV awdr(wn, + Aw) = J'(wy,) + J" (w,)Aw = 0

J' (wn)
w =w, + Aw = w, —
n+1 n n J”(U)n)
w1, ws, ... will converge to a stationary point w* where J'(w*) = 0.

Generalization in N dimensions:
(HJ(wn))Aw = =V J(w,)

where H is the Hessian matrix.

52

Examples of second order optimization

Popular examples of second order optimization algorithms:

e Quasi-newton methods: i.e. methods which optimizes even if the
Hessian matrix is expensive or not available. The Taylor's series is:

J(w, + Aw) = J(w,,) + Vi J (w,)T Aw + %AwTBAw.,
where B is an approximation to the Hessian matrix and
Vuwd (W, + Aw) = V,,J(w,) + BAw,
which produces the Newton step:
Aw = —B 'V, J(w,).

Some methods: BFGS, L-BFGS, DFP, Broyden.
e differ by the choice of the solution to update B.

Popular in ML since the beginning of the deep learning era.

53

Evolution algorithms

Evolutionary algorithms (EA), inspired by biological evolution, is a
generic population-based metaheuristic optimization algorithm.

Techniques in EA use mechanisms such as: reproduction, mutation,

recombination, and selection.

Genetic algorithm is the most popular technique of EA.

EA/GA algorithm
Reproduction _I
Selection ~ ~4— Mutation
No Recombination 4—|

Converged?

l Yes

54

Genetic algorithm

Genetic algorithm is well suited when:

e gradients are not available,
e non parametric function,
e non homogeneous cost function along all training set points.

Example:

T p———

— Selection E
' .. . Mutations/
H Crossover
1 . EEEEE
H

|

. . . —» Best candidate

No

Converged?

Yes

55

Questions?

	Artificial Intelligence
	Machine Learning
	Models and metrics
	Parameter learning

