Edge state dynamics of a bosonic fractional Chern insulator Adolfo G. Grushin, Néel Institute, CNRS Benasque, 26/2/19

X. Y. Dong, AGG, J. Motruk, F. Pollmann, Phys Rev. Lett. (2018)

The promise of a fractional quantum Hall effect without Landau levels

Y. L. Wu et al. Phys. Rev. B 85, 075116 (2012)

Neupert et al. Phys. Scr. T164, 014005, (2015) Emil J. Bergholtz, Zhao Liu Int. J. Mod. Phys. B 27, 1330017 (2013)

The promise of a fractional quantum Hall effect without Landau levels

Y. L. Wu et al. Phys. Rev. B 85, 075116 (2012)

Neupert et al. Phys. Scr. T164, 014005, (2015) Emil J. Bergholtz, Zhao Liu Int. J. Mod. Phys. B 27, 1330017 (2013)

The promise of a fractional quantum Hall effect without Landau levels

Y. L. Wu et al. Phys. Rev. B 85, 075116 (2012)

Neupert et al. Phys. Scr. T164, 014005, (2015) Emil J. Bergholtz, Zhao Liu Int. J. Mod. Phys. B 27, 1330017 (2013)

Chern insulators in the solid state

Doped topological insulators

C. Z. Chang Science (2013)

Moire Graphene

E. M. Spanton et. al Science (2018)

Irradiated Graphene

J.W. McIver et al. 1811.03522

Chern insulators in the solid state

Doped topological insulators C. Z. Chang Science (2013)

Moire Graphene

E. M. Spanton et. al Science (2018)

Irradiated Graphene

J.W. McIver et al. 1811.03522

Chern insulators in synthetic matter

Aidelsburger et. al Nat. Phys (2013)

M. Rechtsman, Nature (2013)

Ultra-cold bosons

Aidelsburger et. al Nat. Phys (2013)

(Floquet) Chern insulator with ultra cold bosons

$$H_{\text{eff}} = -J \sum_{m,n} \{ \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} e^{i[\pi/2(m+n) - \phi_0]} + (1 - \frac{1}{2}) + (1 - \frac{1}{2}) \}$$

M. Aidelsburger et al. Nat. Phys (2015)

(Floquet) Chern insulator with ultra cold bosons

M. Aidelsburger et al. Nat. Phys (2015)

How does one know it is a Chern insulator? Wave packet motion

A. Dauphin and N. Goldman PRL 2013

$x(t) = -(a^2 t E_y / \pi \hbar) \nu_{\text{approx}},$

How does one know it is a Chern insulator? Wave packet motion 0.0 Differential shift 2x(t)/a

A. Dauphin and N. Goldman PRL 2013

$x(t) = -(a^2 t E_y / \pi \hbar) \nu_{\text{approx}},$

M. Aidelsburger et al. Nat. Phys (2015)

How does one know it is a Chern insulator? Wave packet motion 0.0

A. Dauphin and N. Goldman PRL 2013

Circular dichroism

D. T. Tran, A. Dauphin, AGG, N. Goldman, P. Zoller Sci. Adv. (2018)

Differential shift 2x(t)/a-2.5 -5.0 0

 $x(t) = -(a^2 t E_y / \pi \hbar) \nu_{\text{approx}},$

M. Aidelsburger et al. Nat. Phys (2015)

 $(\Gamma_{+}^{\text{int}} - \Gamma_{-}^{\text{int}})/2A_{\text{cell}} = (E_{\text{sp}}/\hbar)^2C$

Circular dichroism

D. T. Tran, A. Dauphin, AGG, N. Goldman, P. Zoller Sci. Adv. (2018)

$x(t) = -(a^2 t E_y / \pi \hbar) \nu_{\text{approx}},$

M. Aidelsburger et al. Nat. Phys (2015)

 $(\Gamma_{+}^{\text{int}} - \Gamma_{-}^{\text{int}})/2A_{\text{cell}} = (E_{\text{sp}}/\hbar)^2C$

Can we distinguish a fractional Chern insulator by looking at edge state dynamics?

Edge state dynamics of a Chern insulator

 $Jt/\hbar = 0$

$Jt/\hbar = 10$

N. Goldman et. al PNAS 2013 A. Grushin et. al J. Stat. Mech. (2014)

Edge state dynamics of a bosonic fractional Chern insulator

X. Y. Dong, AGG, J. Motruk, F. Pollmann, Phys Rev. Lett. (2018)

Density Matrix Renormalization Group

Matrix-Product State representation of the ground state M. Fannes et al Comm Math. Phys. '92, Schollwoeck Ann. Phys.'11

$$|\psi_0\rangle:\cdots \xrightarrow{B} B$$

DMRG on cylinders with circumference up to L=12S. R. White PRL '92

2D physics at cost of long-range interaction in 1D representation

Infinite cylinder

Finite cylinder

Static ground state: fractional Chern insulator at 1/8 filling

Its been a while...

[Hafezi et al. '07; Möller and Cooper '09; ...]

0.75

 $\langle Q_L \rangle$ 0.50Quantized Hall conductivity 0.25 $\sigma_{xy} = 1/2$ 0.00

Static ground state: fractional Chern insulator at 1/8 filling

Its been a while...

[Hafezi et al. '07; Möller and Cooper '09; ...]

 $\langle Q_L \rangle$ 0.50Quantized Hall conductivity 0.251 10

$$\sigma_{xy} = 1/2$$

(b)

Gapless edge states

 $_{oldsymbol{N}}$ 2.10 , c = 1

2.05

2.00

Time evolution

Hamiltonian expressed as a sum of local terms $\ H = \sum_x H_x$

Expand $U = \exp(-itH)$ for $t \ll 1$:

$$U(t) = 1 + t \sum_{x} H_x + \frac{1}{2} t^2 \sum_{x,y}$$

 $H_x H_y + \cdots$

Compact Matrix Product Operator (MPO)

$$W_{\alpha\beta}^{[n]j_nj'_n} = \alpha - - \beta - \beta - j_n$$

Time evolution

Hamiltonian expressed as a sum of local terms $\ H = \sum_x H_x$

Expand $U = \exp(-itH)$ for $t \ll 1$:

$$U(t) = 1 + t \sum_{x} H_x + \frac{1}{2}t^2 \sum_{x,y}$$

$$\approx 1 + t \sum_{x} H_x + t^2 \sum_{\substack{x < y \\ \epsilon \sim L}} H_x$$

Neglect overlapping terms in expansion

M. P. Zaletel et al 'PRB 15

 $H_x H_y + \cdots$

 $H_x H_y$

 $\mathbb{Z}t^2$

Compact Matrix Product Operator (MPO)

$$W_{\alpha\beta}^{[n]j_nj'_n} = \alpha - -\beta - \beta - j_n$$

Time evolution

Hamiltonian expressed as a sum of local terms $H = \sum_x H_x$

Expand $U = \exp(-itH)$ for $t \ll 1$:

$$U(t) = 1 + t \sum_{x} H_x + \frac{1}{2}t^2 \sum_{x,y}$$

$$\approx 1 + t \sum_{x} H_x + t^2 \sum_{\substack{x < y \\ \epsilon \sim L}} H_x$$

Neglect overlapping terms in expansion

M. P. Zaletel et al 'PRB 15

 $H_x H_y + \cdots$

 $H_x H_y$

 L_t^2

Compact Matrix Product Operator (MPO)

$$W_{\alpha\beta}^{[n]j_nj'_n} = \alpha - -\beta - \beta - j_n$$

Dynamical correlation function $G(x,t) = \langle b(x,t)b^{\dagger}(0,0) \rangle$

Dynamical correlation function $G(x,t) = \langle b(x,t)b^{\dagger}(0,0)\rangle$

t (\hbar/J) 5

3

 ${\mathcal X}$

 k_x

Dynamical correlation function $G(x,t) = \langle b(x,t)b^{\dagger}(0,0) \rangle$

t (\hbar/J) 5

3

Fourier transformation of the density evolution following local quench:

Fourier transformation of the density evolution following local quench:

Single particle

3

3

3

3

Fourier transformation of the density evolution following local quench:

Dynamical signatures of the FCI phase The time evolution of the imbalance : $I = N_R - N_L$

 $\mu/J = \begin{array}{rrr} -1 & -6 \\ -2 & -8 \\ -3 & -10 \\ -4 & -100 \end{array}$

Dynamical signatures of the FCI phase The time evolution of the imbalance : $I = N_R - N_L$

Edge state dynamics of a quantum Hall edge

X. G. Wen PRB (1990)

For a state with $\sigma_{x'}$

The spectral function and the DOS

*Assumptions: thermodynamic limit of a 1D isolated edge

A(k,w)

Edge state spectral function knows about fractional excitations

$$y = \frac{1}{m} \frac{e^2}{h}$$

is * $A(k, \omega) \propto (\omega + vk)^{m-1} \delta(\omega - vk)$
is $N(\omega) \propto \omega^{m-1}$

Edge state dynamics of a quantum Hall edge

X. G. Wen PRB (1990)

For a state with $\sigma_{x'}$

The spectral function and the DOS

A(k,w)

Edge state spectral function knows about fractional excitations

$$y = \frac{1}{m} \frac{e^2}{h}$$

is * $A(k, \omega) \propto (\omega + vk)^{m-1} \delta(\omega - vk)$
is $N(\omega) \propto \omega^{m-1}$

*Assumptions: thermodynamic limit of a 1D isolated edge

The edge does not behave as an isolated Luttinger liquid:

Single particle

$row = \begin{bmatrix} 0 & -2 & -4 & -6 \\ 1 & -3 & -5 & -7 \end{bmatrix}$

The edge does not behave as an isolated Luttinger liquid:

FCI

Edge state dynamics of a bosonic fractional Chern insulator is chiral but not that of an isolated Luttinger liquid. It is insensitive to the strength of a perturbation, unlike the Chern insulator

X. Y. Dong, AGG, J. Motruk, F. Pollmann, Phys Rev. Lett. (2018) Harper-Hofstadter

Dynamical signatures of the Chern insulator

