## First-principles diagrammatic simulations of solids

#### Artem Pulkin

California Institute of Technology (Caltech), Pasadena, CA 91125, US

gpulkin@gmail.com

25.02.2019





Artem Pulkin (Caltech)

Diagrammatic simulations of solids

### Devices

### Digital



#### Bio







Beyond



\*Some images in this presentation may be subject to copyright

Diagrammatic simulations of solids

### Novel materials

• Two-dimensional



• Metamaterials



• Layered, artificial, organic, ...

# Properties

### Electronic

- band gaps
- spectral functions
- light-matter
- magnetism
- electronic phases
- Mechanical
  - elastic
  - thermal expansion
  - piezoelectric
- Defects
- Interfaces
- Phases
- Alloys

Aims:

• Solve the many-body electronic problem numerically

$$H = H_{1p} + H_{2p} = -\sum_{i} \frac{\Delta_{i}}{2} + U(r_{i}) + \frac{1}{2} \sum_{ij} \frac{1}{|r_{i} - r_{j}|}$$

(fermions, Born-Oppenheimer approximation)

first-principles

• Compare/reference to experimental data

# Density functional theory

Practical perspective:

$$H = H_{1p} + H_{2p} + V_{eff,1p} \rightarrow \text{solved easily}$$

- $V_{\mathrm{eff},\mathrm{1p}}[
  ho]$  fitted to simple models / experimental data
- A special role of density  $\rho$ : mean-field approximation

Pros:

- $\bullet~\mbox{Fast} \rightarrow \mbox{enables}$  calculations of larger/more complex models;
- Lots of reference data, codes, large community
- Extensible (+U, hybrid, etc.)

Cons:

- No errorbar, no wf, sometimes not variational
- Empiric approach
- Lack of alternatives ...

## Alternatives

- Mean-field
  - DFT
  - cost of diagonalization  $-O(N^3)$ • Hartree-Fock = DFT with 100% exchange and 0% correlations

# of 2-el integrals (typical) -  $O(N^4)$ 

- Diagrammatic theories
  - GW
  - perturbation theory (MP2)
  - configuration interaction (CI)
  - coupled-cluster (CC)
- Wavefunction
  - exact
  - quantum stochastic
  - tensor networks
- O(N)\* methods
- N size of the model

 $O(N^4 - N^6)$  $O(N^5+)$ 

 $O(N^6+)$ 

 $O(N^{6}+)$ 

Numerical aspects

## Second quantization

• Define a finite single-particle basis set

- real-space grid
- plane waves
- atom-centered functions (STO, Gaussians, numerical)  $\rightarrow$  atomic basis
- Calculate matrix elements h, v

$$H = H_{1p} + H_{2p} = \sum_{\alpha\beta} h_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} + \sum_{\alpha\beta\gamma\delta} v_{\alpha\beta\gamma\delta} c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\delta} c_{\gamma}$$

 $\alpha, \beta, \dots \text{ are both in "real" and spin-1/2 space}$ •  $v_{\alpha\beta\gamma\delta} = \int dr_1 dr_2 \ \phi^*_{\alpha}(r_1)\phi_{\gamma}(r_1) \frac{1}{|r_1 - r_2|} \phi^*_{\beta}(r_2)\phi_{\delta}(r_2)$ 

## Hartree-Fock

- Mean-field approximation
- Basis rotation:  $\phi_i(r) = \sum_{\alpha} c_{i\alpha} \phi_{\alpha}(r)$
- Antisymmetric product

$$\Psi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(\mathbf{r}_1) & \phi_2(\mathbf{r}_1) & \dots & \phi_N(\mathbf{r}_1) \\ \phi_1(\mathbf{r}_2) & \phi_2(\mathbf{r}_2) & \dots & \phi_N(\mathbf{r}_2) \\ & & \dots & \\ \phi_1(\mathbf{r}_N) & \phi_2(\mathbf{r}_N) & \dots & \phi_N(\mathbf{r}_N) \end{vmatrix}$$

Ansatz:

$$\langle \Psi | H | \Psi 
angle = E_{
m HF} \left( c_{i lpha} 
ight) o {
m min}$$

• Unique up to a unitary:

$$E_{
m HF}\left(m{c}_{ilpha}
ight)=E_{
m HF}\left(\sum_{j}U_{ij}m{c}_{jlpha}
ight)$$

Artem Pulkin (Caltech)

### Hartree-Fock

• 
$$E_{\rm HF} = \langle \Psi | H | \Psi \rangle =$$
  
 $\sum_{i\alpha\beta} c^*_{i\alpha} c_{i\beta} \cdot h_{\alpha\beta} + \frac{1}{2} \sum_{ij\alpha\beta\gamma\delta} v_{\alpha\beta\gamma\delta} \cdot c^*_{i\alpha} c_{i\gamma} \cdot c^*_{j\beta} c_{j\delta} - v_{\alpha\beta\gamma\delta} \cdot c^*_{i\alpha} c_{i\delta} \cdot c^*_{j\beta} c_{j\gamma} =$   
 $\rho_{\alpha\beta} \cdot h_{\alpha\beta} + \frac{1}{2} v_{\alpha\beta\gamma\delta} \cdot \rho_{\alpha\gamma} \cdot \rho_{\beta\delta} - \frac{1}{2} v_{\alpha\beta\gamma\delta} \cdot \rho_{\alpha\delta} \cdot \rho_{\beta\gamma} = E + J - K$   
•  $E$  - density in external potential  
•  $J$  - density in self-induced potential (Coulomb)  
•  $K$  - exchange

• Compare: Hartree (direct) product  $|\Psi\rangle = \prod_{i} \phi_i(\mathbf{r_i})$ :

$$E_{\mathrm{H}} = \langle \Psi | H | \Psi 
angle = E + J > E_{\mathrm{HF}}$$

• DFT view:

$$E_{\rm HF} = \rho_{\alpha\beta} \left[ h_{\alpha\beta} + \frac{1}{2} \left( v_{\alpha\gamma\beta\delta} - v_{\alpha\gamma\delta\beta} \right) \cdot \rho_{\gamma\delta} \right] = \rho_{\alpha\beta} \left( h_{\alpha\beta} + V_{\alpha\beta}^{\rm eff} \left[ \rho \right] \right)$$

Constrain  $c_{ilpha} 
ightarrow$  eigenvectors of  $h_{lphaeta} + V^{\mathrm{eff}}_{lphaeta}[
ho]$  with lowest eigenvalues  $\epsilon_i$ 



### Perturbations

- 1. HF  $\rightarrow$  occupied, virtual  $\phi$
- **2**. Rotate *H* into  $\phi$ :

$$\begin{aligned} & H_{1\mathrm{p}} + H_{2\mathrm{p}} = \\ & \left( h_{ij} \cdot \mathbf{c_i}^{\dagger} \mathbf{c_j} + h_{ia} \cdot \mathbf{c_i}^{\dagger} \mathbf{c_a} + h_{ai} \cdot \mathbf{c_a}^{\dagger} \mathbf{c_i} + h_{ab} \cdot \mathbf{c_a}^{\dagger} \mathbf{c_b} \right)_1 + \left( v_{ijkl} \cdot \mathbf{c_i}^{\dagger} \mathbf{c_j}^{\dagger} \mathbf{c_l} \mathbf{c_k} + \ldots \right)_2, \\ & ijkl \ldots \text{ occupied space, } abcd \ldots \text{ - virtual space} \end{aligned}$$

3. Define new vacuum 
$$|0\rangle := |\Phi\rangle$$

4. Use symmetry, qp vacuum (normal ordering), ... to calculate perturbation terms

$$E_{\rm MP2} = \sum_{\Phi} |\langle \Phi | H - H_{\rm HF} | \Psi \rangle|^2 / (E_{\Psi} - E_{\Phi}) = -\frac{1}{4} \sum_{ijab} \frac{v \cdot v - v \cdot v}{\epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j}$$
  
a vi b j i vi b j

## The many-body state

- Define determinant basis c<sub>a</sub><sup>†</sup>c<sub>b</sub><sup>†</sup>c<sub>c</sub><sup>†</sup>...c<sub>i</sub>c<sub>j</sub>c<sub>k</sub>... |0⟩, i < j < k < ... < a < b < c < ...</li>
  T = \sum t<sup>a</sup> : c<sup>†</sup>c : + \sum t<sup>ab</sup> : c<sup>†</sup>c<sup>†</sup>c : c : + ... = particle-conserving
- $T = \sum_{ia} t_i^a \cdot \mathbf{c}_a^\dagger \mathbf{c}_i + \sum_{ijab} t_{ij}^{ab} \cdot \mathbf{c}_a^\dagger \mathbf{c}_b^\dagger \mathbf{c}_i \mathbf{c}_j + \dots$  particle-conserving excitations
- $(1 + T) |0\rangle$  a many-body state in terms of amplitudes t (not normalized)

## Size consistency



CI ansatz:

$$\Psi_X = (1 + T_X) |0\rangle_X; \quad \Psi_Y = (1 + T_Y) |0\rangle_Y:$$

$$\Psi_{X+Y} = (1 + T_X) |0\rangle_X \times (1 + T_Y) |0\rangle_Y = (1 + T_X + T_Y + T_X T_Y) |0\rangle_{XY}$$

### Coupled-cluster (CC) ansatz

$$\Psi = e^{\mathcal{T}} \left| 0 \right\rangle : \quad \Psi_{X+Y} = e^{\mathcal{T}_X} \left| 0 \right\rangle_X \times e^{\mathcal{T}_Y} \left| 0 \right\rangle_Y = e^{\mathcal{T}_X + \mathcal{T}_Y} \left| 0 \right\rangle_{XY}$$

Artem Pulkin (Caltech)

25.02.2019 14 / 28

# CC equations

Variational ansatz

$$E = \left< 0 \right| e^{T^{\dagger}} H e^{T} \left| 0 \right>$$

e<sup>T</sup> - infinite excitations (creates particle-hole pairs)
e<sup>T†</sup> - infinite annihilations;

#### "Infinite" number of terms

Instead, use the eigenvalue approach

$$e^{-T}He^{T}|0
angle = E|0
angle$$

## CC equations

For approximate T (i.e. single, double excitations)  $T = T_1 + T_2$ :

$$e^{-T_1-T_2}He^{T_1+T_2}\ket{0} \neq E\ket{0} \leftarrow ext{overdefined}$$

Fix the number of equations to match the number of parameters by projecting onto CI space

$$P = |0\rangle\langle 0| + \sum_{ia} |^{a}_{i}\rangle\langle^{a}_{i}| + \sum_{ijab} \left|^{ab}_{ij}\rangle\langle^{ab}_{ij}\right|$$

And solve:

$$Pe^{-T_1-T_2}He^{T_1+T_2}\ket{0}=E\ket{0}$$

(hoping that you are still targeting the ground state)

# CC diagrams

Bookkeeping = diagrams  $\left< \frac{a}{i} \right| e^{-T} H e^{T} \left| 0 \right> = \sum_{b} f_{ab} T_{i}^{b} + f_{ai} + \dots$ Free index (particle space) - a Free index (hole space) - i T b Contraction index (particle space) T1 matrix element



### Benchmark: diamond



FIG. 4. Band structure of diamond calculated with DFT (PBE), HF, and EOM-CCSD, using the DZVP single-particle basis and a  $3 \times 3 \times 3$  *k*-point mesh.

McClain et. al., Journal of chemical theory and computation 13(3) (2017)

Artem Pulkin (Caltech)

Diagrammatic simulations of solids

### 2D materials

# 2D materials family

Graphene, graphane, fluorographene, chlorographene, silicene, germanene, silicane, fluorosilicene, fluorogermanene, chlorogermanene, BN, transition metal dichalcogenides  $MX_2$ , M = transition metal, X = chalcogen:  $MoS_2$ ,  $ReSe_2$ , ...



M. Chhowalla, et al., Nat Chem 5, 263275 (2013)

## $\mathrm{MoS}_2$

### 2H phase



- hexagonal lattice, 3 atoms/unit cell
- semiconductor (direct band gap at K, K')
- spin-orbit effects
- exfoliated similarly to graphene

Artem Pulkin (Caltech)

# Setup



- gaussian Bloch orbitals, dzvp atomic basis set, spin-restricted theory;
- Brillouin zone sampling;
- ground-state CC + equation-of-motion IP and EA roots ( $N_{\rm elec} 1$ ,  $N_{\rm elec} + 1$  spaces);

• 
$$gap = \max E_{EA} - \min E_{IP}$$

## Extrapolation of the band gap

$$\Delta_g \sim \Delta_\infty - A/N_k$$

**Source**: error in 4-center integrals (also known as G = 0 problem or exchange divergence) caused by periodic boundary conditions:



## 3rd dimension

To model a 2D material ...

- with DFT  $\rightarrow$  make  $L_z$  large enough;
- with exact exchange  $\rightarrow$  ?

$$(pq|rs) \sim \sum_{G \neq 0} w \frac{1}{G^2}, \quad G = nb \quad n \in \mathbb{Z}$$
  
 $w = \frac{1}{V} = \frac{1}{S \cdot L_z}, \quad G_{\min} \sim \frac{1}{L_z}$   
 $(pq|rs) \sim \frac{L_z}{S}$  - diverges  $L_z \to \infty, S = \text{const}$ 

• either use analytic Fourier treatment along z:  $(pq|rs) \sim \sum_{G \neq 0} w \frac{1}{G}$ 

• or use a uniform k-sampling  $S \sim L_z^2$ :  $G_{\min} \sim \frac{1}{\sqrt{S}}$ , error

$$(pq|rs) \sim \frac{1}{\sqrt{S}}$$

-1

Artem Pulkin (Caltech)

## Infinite limit



• 2D: 
$$\Delta_g \sim \Delta_\infty + \operatorname{const}/N_k$$
  
• 3D:  $\Delta_g \sim \begin{cases} \Delta_\infty + \operatorname{const} \cdot L_z/N_k^2, & N_k \ll L_z \\ \Delta_\infty + \operatorname{const}/N_k, & N_k \sim L_z \\ \Delta_\infty + \operatorname{const}, & N_k \gg L_z \end{cases}$ 

Artem Pulkin (Caltech)

Diagrammatic simulations of solids

### Electronic band structure



## Experiment vs theory



Possible reasons for the discrepancy:

- 1. Theory fails:
  - CCSD is not good enough;
  - slow convergence wrt basis set;
  - features of  $O(g) \rightarrow$  too few k-points;
- 2. Model is wrong
  - substrate, defects and doping

Mak et. el., PRL **105** 136805 (2010) Ramasubramaniam, PRB **86** 115409 (2012) Qiu et. al., PRB **93** 235435 (2016)

## Other 2D transition metal dichalcogenides

The size of the band gap in 2D TMDs (eV)

|      | $MoS_2$  | $MoSe_2$               | $WS_2$                 | $WSe_2$         |
|------|----------|------------------------|------------------------|-----------------|
| PBE  | 1.7      | 1.5                    | 1.7                    | 1.3             |
| GW   | 2.8 +1.1 | 2.4 +0.9               | 2.9 +1.2               | 2.4 + 1.1       |
| CCSD | 3.2 +0.4 | 2.8 + <mark>0.4</mark> | 3.4 + <mark>0.5</mark> | 3.0 <b>+0.6</b> |

- Ground and excited many-body states of a 2D crystal calculated;
- Qualitative agreement, quantitative differences in the electronic band structure of 2D materials;
- Systematic corrections of the band gap size across the family of materials;
- Open questions regarding the agreement with experiment

Thank you