Comb tensor networks. Criticality on a comb lattice

Natalia Chepiga

Swiss National Science Foundation

University of California, Irvine, USA \rightarrow University of Amsterdam, The Netherlands

8 March 2019

in collaboration with Steven R. White, UCI

arXiv:1903.00432

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019 1 / 21

San

Scope

- Comb tensor networks
- Spin-1 comb
 - Emergent spin-1/2 chain critical backbone
 - "Higher-order" edge states
- Spin-1/2 comb critical teeth
 - Effective length of critical chains: $L \to 2L \to L-1$
 - Finite-size scaling of the energy gap
- Transverse field Ising comb critical teeth
 - Induced longitudinal field
 - Transition or crossover?
- Outlook

NOR

イロト イポト イヨト イヨト

- Spin chains (teeth) coupled through one edge
- Highly decorated spin chain (backbone)

One dimensional... in which direction?

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019 3 / 21

DQC

• Y-DMRG: Guo, White, Phys. Rev. B 74, 060401 (2006)

• Fork tensor networks:

Holzner, Weichselbaum, von Delft, Phys. Rev. B 81, 125126 (2010);Bauernfeind, Zingl, Triebl, Aichhorn, Evertz, Phys. Rev. X 7, 031013 (2017)

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 3 / 21

Sar

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

ъ

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

 $\exists \rightarrow$ 8 March 2019 3 / 21

1

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 3 / 21

Ξ

Э

- The goal is to split two channels of entanglement: along the backbone and within the tooth
- Finite-size clusters form local degrees of freedom
- Ad-lib complicated interactions within the clusters (DMRG-limited)
- The wave-function is expected to obey the area law

A comb network. Mixed-canonical form

Auxiliary backbone tensors:

- Each tensor is at most of rank 3
- Split degrees of freedom on a backbone

NC, White, arXiv:1903.00432

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

San

Hamiltonian in terms of local tensors - PEPO •

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

Ξ 8 March 2019 5 / 21

E

200

- Hamiltonian in terms of local tensors PEPO
- Optimization within the tooth = DMRG

Natalia Chepiga $(SNF, UCI \rightarrow UvA)$

Comb tensor networks

DQC

- Hamiltonian in terms of local tensors PEPO
- Optimization within the tooth = DMRG
- Fully contracted tooth can be viewed as an MPO with fat physical bonds

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 5 / 21

DQC

< □ > < □ > < □ > < □ > <</p>

- Optimization within the tooth = DMRG
- Fully contracted tooth can be viewed as an MPO with fat physical bonds
- Optimization of two backbone tensors = DMRG

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 5 / 21

Sar

- Optimization within the tooth = DMRG
- Optimization of two backbone tensors = DMRG
- Connect update \neq DMRG and involves three environments ۲

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

Sar

Complexity

(a)

Complexity $(\chi \approx \zeta \approx \lambda \approx D)$

- ${\ \bullet \ }$ Backbone update: D^5
- Connect update: D^4
- Tooth update: D^3

For AKLT-like states (finite $\xi,\,\zeta)$ the complexity is λ^3

Comb tensor networks

DMRG versus comb. Schmidt values

- Heisenberg spin-1/2
- Backbone cut is the same for the comb and for the DMRG
- DMRG: the largest bond dimension is inside the tooth
- Comb: the bond dimension decreases upon approaching the tip of the tooth

NC, White, arXiv:1903.00432

Natalia Chepiga (SNF,UCI→UvA)

San

DMRG versus comb. Complexity

Natalia Chepiga (SNF,UCI→UvA)

8 March 2019 7 / 21

Spin-1 Heisenberg comb

$$H = J_{bb} \sum_{i=1}^{N-1} \mathbf{S}_{i,1} \cdot \mathbf{S}_{i+1,1} + J_t \sum_{i=1}^{N} \sum_{j=1}^{L-1} \mathbf{S}_{i,j} \cdot \mathbf{S}_{i,j+1},$$

1

990

イロト イヨト イヨト

Spin-1 Heisenberg comb

$$H = J_{bb} \sum_{i=1}^{N-1} \mathbf{S}_{i,1} \cdot \mathbf{S}_{i+1,1} + J_t \sum_{i=1}^{N} \sum_{j=1}^{L-1} \mathbf{S}_{i,j} \cdot \mathbf{S}_{i,j+1},$$

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 9 / 21

1

990

《口》 《圖》 《注》 《注》

Emergent spin-1/2 chain

CFT prediction for WZW SU(2)₁: d = 1/2 and c = 1

Natalia Chepiga (SNF,UCI→UvA)

8 March 2019 10 / 21

Spin-1 comb. Correlations

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019

クへで 10 / 21

Э

Spin-1 comb

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019

クへで 10 / 21

Higher-order edge states

- Tooth with odd number of sites
- Edge states of each tooth couple to a triplet

Higher-order edge states

- Tooth with odd number of sites
- Edge states of each tooth couple to a triplet
- Effective spin-1 chain Haldane state \rightarrow Edge states

Higher-order edge states

$$J_{bb} = J_t$$

NC, White, $arXiv:1903.00432$		$<\Xi > <\Xi >$	~ ~ ~
Natalia Chepiga $(SNF, UCI \rightarrow UvA)$	Comb tensor networks	8 March 2019	11 / 21

Spin-1/2 Heisenberg comb

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 12 / 21

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆日 ▶ ● □ ● ●

Spin-1/2 Heisenberg comb. Tooth correlations

- $J_{bb} \ll J_t$: Decoupled chains with L sites
- $J_{bb} \approx J_t$: Chains with 2L sites
- $J_{bb} \gg J_t$: Decoupled chains with L 1 sites

Two chains: Eggert and Affleck, Phys. Rev. B 46, 10866 (1992)

Natalia Chepiga $(SNF,UCI \rightarrow UvA)$

Comb tensor networks

Nearest-neighbor correlations and entanglement

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019 14 / 21

Local magnetization

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019 14 / 21

Local magnetization

- Teeth with odd number of sites
- Spin-1/2 state on each tooth
- Ground-state critical $\frac{1}{2}$ chain of length (NL)

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

1 8 March 2019 15 / 21

1

Local magnetization

Transverse-field Ising comb

$$H = J_{bb} \sum_{i=1}^{N-1} S^{x}_{i,1} S^{x}_{i+1,1} + J_t \sum_{i=1}^{N} \sum_{j=1}^{L-1} S^{x}_{i,j} S^{x}_{i,j+1} + h \sum_{i=1}^{N} \sum_{j=1}^{L} S^{z}_{i,j},$$

Critical teeth: $h = J_t/2$

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019 16 / 21

≡ ∽९ペ

《曰》 《卽》 《臣》 《臣》

Local magnetization $S_{i,j}^z$

- Tips of the teeth are polarized along the field
- Polarization on the backbone decreases with increasing J_{bb}
- Special type of edge states appear
- Teeth induce non-uniform longitudinal field $h_i^x = J_t S_{i,2}^x \neq \text{const}$

<ロト <回ト < 注ト < 注ト

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

8 March 2019

E

17 / 21

Total magnetization

- Phase transition or a crossover?
- Enormous finite-size effect

Natalia Chepiga $(SNF, UCI \rightarrow UvA)$

Comb tensor networks

8 March 2019 18 / 21

1

Local polarization along x-axis

First-order transition? Continuous transition in the thermodynamic limit?

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

 $\exists \rightarrow$ 8 March 2019 19 / 21

E

Transverse field Ising comb

Periodic boundary conditions \rightarrow Uniform longitudinal field

Natalia Chepiga (SNF,UCI→UvA)

Comb tensor networks

Ξ 8 March 2019

I D > I A

DQC 20 / 21

E

- Comb lattice quasi-one-dimensional system
- Exotic critical behavior induced by the backbone interaction
- Competing dimensions: *gapless* teeth + *gapped* backbone, etc.
- Direction-dependent correlation length, central charge, critical exponent, etc.
- Flexible and powerful algorithm ...and many geometries to play with

