
Future of QI

Benasque Quantum Informtion Workshops 2011 – 2019

July 2019

+5 more...

FOUNDATIONS OF QUANTITY PHYSICS QUANTUM INFORMATION THEORY * PBR THEOREM NPT BOUND ENTANGLEMENT * Activation Q. non-locality -Buantum Volute Ingleton ≥ 0 - B.E.S Whate B ineg - Characknization M-garl, entanglement _ Beyond B. ineq. + apps PRINCIPLES FOR Q CORRELATIONS - O. Discord ?? * Unv. D.c. with Q Walks hermo: Landauer pple + 2nd law * Unitying Q Greld Discord 99 & QTI IN LOW. ENERGY * O.C. with little entary. - Frewall in BH - Charact, LOCC + POVM (Measurement) - ARE LEGGETI - GARG - Rôle ent in O.C INEQUALITIES USEFUE? * Security Perice-indep QKD - Decidability in QIT - Geneal framework security devinty - Nort- (OCALITY IN TIANT BODT PAYSIES - Certification space-like separation devined - MULT PRINCIPLES ENDUCH? - Example non-gou C.C. Channot - LIFE AFTER LOOPHOLE-FREE BJ? - PPTZ => E. Breaking 10 + 40 + 40 + 40 + 50 = 900

QUANTUM OFFICE & IMPLEMENTATIONS

* BROWN STRIE OF NAMOTECHANICAL PESONM MANY-BOPY PHYSICS - What is D-wave doing * Title - DEPENDENT , VARIATIONAL - I TIPLETIENTATIONS OF DI PRINCIPLE * DETECTION LOOPHOLE FREE STUFF * (FITICACITY IN OPEN & STOTEMS - EFFICIENT SIMULATION OF Q PHOTONIC EXPERIMENT - Def. entang, bosous/fermons - CLASS PHASES HIGHER-D - Approxs (truncation) TN - LIMITATIONS OF Q SIMULATION -Thermalization physical Syst - Boson sampling (Limitations) - Non-eq, irrequalities (Quantum) * SUPERCONDICTING QUEITS * SIMULATION OF HIGH-ENERGY - Simulation TN HET PHYSICS IN OPTICAL LATTICES - TN ALS/CFT - SATELLITE-BASED & COTIT! - Pelatims fluct-entanglement - CERTIFICATION OF Q SITUENTIN - LUW- ENIRON EFFECTIVE THEORIES LONG DIFFANCE ENT BASED BC EXP MPL OF 182-LIKE THEOREMS? - 11 3 Sed proketing QIU in D<4 O CONTRADION STATE PARTER OF CO

2013: Achievements in the last few years

Quantum Info

- Universal qc w/ q walk
- Unifying q correlations
- QC w/ little entanglement
- security device-indep QKD

Foundations QP

- PBR Theorem
- activation of q nonlocality
- Q thermo: Landauer's principle & 2nd Laws

Q Optics & Implementations

- ground state nanomech syst
- detection-loophole-free photonic exp
- superconducting qubits
- q sim.: high-energy physics in opt lattices
- q sim.: beating class comp

Many-Body Physics

- complexity of Hamiltonians
- criticality in open systems
- time-dependent variational principle

2013: Open Problems I

Quantum Info

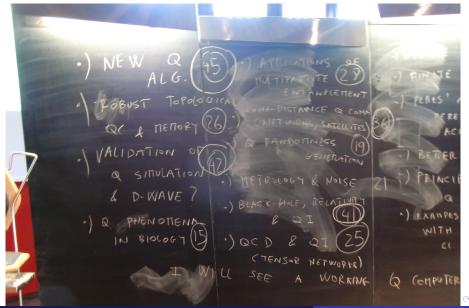
- NPT bound entanglement
- Q violation Ingleton ineq
- m-partite entanglement: characterization & applic
- Q discord ??
- LOCC: characterization
- rôle of entanglement in QC
- device-indep: general framework security: certification of spacelike sep
- non-additivity of EOF/class capacity: examples
- QC more powerful than CC?
- PPT² ⇒ ent breaking

Foundations QP

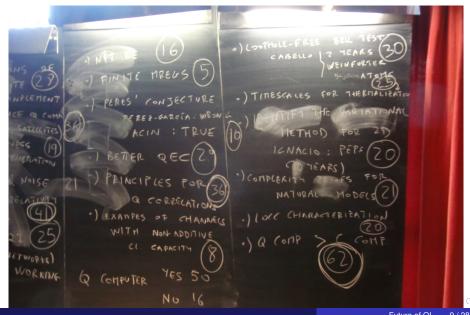
- bound ent violate Bell Ineq?
- beyond Bell Ineq
- principles for Q correlations
- relativity & QM in low-energy physics
- QI + relativity
- B.H. info paradox / firewall
- are Leggett-Garg Ineq useful?
- decidability in QIT
- non-locality in many-body phys
- life after loophole-free Bell Exp
- Tsirelson's Problem
- Q chaos & entanglement

2013: Open Problems II

Many-Body Physics


- efficient sim of Q Dynamics
- classific phases higher D
- approx TN
- thermalization
- non-equilib inequalities (quantum)
- simulation TN HEP
- TN [?]

 AdS/CFT
- relation fluctuat ↔ entang.
- low-energy effective theories
- self-protect. Q Mem. *D* < 4?
- robustness topolog memories


Q Optics & Implementations

- what is D-Wave doing?
- implementations of QI stuff
- Q networks
- cheap QKD
- satellite-based Q Comm
- certification of Q Sim
- long-distance ent-based QC
- exp test of PBR-like theorems
- many-body state prep
- def ent of bosons/fermions
- limitations of Q simulations
- Boson Sampling (limitations)

2013 - Concluding Session

2013 - Concluding Session

The Top 10 of Open QIS Challenges 2013

- Q computation more powerful than classical? (62)
- New q algorithms (45)
- Oertification of q simulation (42)
- Black Holes, general relativity & q information (black hole information paradox) (41)
- Long-distance q communication (networks, satellites) (36)
- Principles for q correlations (36)
- Loophole-free Bell test (30)
- better QECC (29)
- o robust topological QC & QMemory (26)
- timescales for thermalization (25)
- high-energy physics and QI (tensor networks) (25)

2015 Open Problems

OPEN PROBLEMS SESSION

INFORMATION/COMPUTATION Disack holes & holography demonstrate supremacy/speedup of QC better quantum error correcting codes unitiparitie entanglement for QFF and tensor networks macroscopic qubits'QT macroscopic qubits'QT unantum artificial intelligence (machine examing, etc.) IPF bound entanglement

Benasque 2015

Adán Cabello & Géza Giedke

178	MANY-BODY PHYSICS
32	better numerical algorithms for simulation
24	Quantum PCP conjecture
19	understanding the interplay of equilibration/transport/localization
18	entanglement detection
18	variational methods/tensor networks for field theories/continuous models in >= 2D
14	uses for many-body phases
13	classifying topological phases in D=2 or higher
12	timescales of equlibration (also thermalization)

July 8th, 2015

170	IMPLEMENTATIONS
25	experimental demonstration of a protocol enhanced by quantum error correction
25	a 2D topological (e.g. surface) code
24	a quantum computer
23	long-distance quantum teleportation
23	q. chemistry simulation
22	gravity tested in the lab
20	quantum repeaters
8	more efficient process tomography

2015 Open Problems

208	INFORMATION/COMPUTATION
30	black holes & holography
30	demonstrate supremacy/speedup of QC
28	better quantum error correcting codes
21	multipartite entanglement
16	QFT and tensor networks
10	macroscopic qubits/QI
	quantum artificial intelligence (machine learning, etc.)
10	the existence of NPT bound entanglement
^	

176	FOUNDATIONS
28	principles for quantum correlations
26	encorporating time into the foundations of QT
19	quantum mechanics and relativity at low energies
17	experiment to rule out realist interpretation
15	role of causality
13	quantum thermo: work and heat?
12	are all states useful?
11	protocols using QT + relativity
40	

2015 Open Problems

178	MANY-BODY PHYSICS
32	better numerical algorithms for simulation
24	Quantum PCP conjecture
19	understanding the interplay of equilibration/transport/localization
18	entanglement detection
18	variational methods/tensor networks for field theories/continuous models in >= 2D
14	uses for many-body phases
13	classifying topological phases in D=2 or higher
12	timescales of equlibration (also thermalization)
4.0	1 1 / 10 00 10

470	11 401 51 451 514 5161 10
170	IMPLEMENTATIONS
25	experimental demonstration of a protocol enhanced by quantum error correction
25	a 2D topological (e.g. surface) code
24	a quantum computer
23	long-distance quantum teleportation
23	q. chemistry simulation
22	gravity tested in the lab
20	quantum repeaters
8	more efficient process tomography

Physical moltipartile entanglement Coherence theory and entanglement AQ approch to nonlinear channels

180 22 if will be add

201 Foundations

The role of causality New recostructions Gased on interpretations Q thermodynamics Colfiction of rabilities and quarking. Quantum FCP conjecture in temporal correlations a Ellient alongithms QT- exotic Spare-times Falsidying sensitive collapse madels Existence of NPT bound onlonglement Why pababilities

Many body

More applications of tensor networks

AEllicent algorithms Gapless

Open Qsystems non Markaian

Implementations

useful a methology Underslanding Frank-Hulbord models Qthermo machines-lo use a supremacy without universality * Politically correct words".

2017 Open Problems I

- physical multipartite entanglement
- coherence theory and entanglement
- QI and gravity (ECC)
- Black Holes / holography
- (supreme) quantum machine learning
- new killer applications for QC
- resources for delegated QC
- g approach to nonlinear channels
- q speedup before QECC?
- NPT bound entanglement?

Foundations

- role of causality
- new reconstructions based on interpretations
- q thermodynamics
- network vs Bell nonlocality
- certification of randomness and quantumness in temporal correlations
- QT–exotic space-times connection
- falsifying sensitve collapse models
- why probabilities?

2017 Open Problems I

Many-body

- more applications tensor networks
- many-body localization
- applications of TN to: RNG, QFT, q learning, c learning
- quantum PCP conjecture
- efficient algorithms for gapless systems
- open q systems w non-Markovian effects

Implementations

- useful q metrology
- understanding Fermi-Hubbard model
- q thermo machines to use
- certifying q supremacy without (or with) universality
- q certification
- device-independent QKD
- q nanophotonics for QIP
- is FTQC really possible?
- is adiabatic QC really possible?
- make a surface code

Bets over the years

- NPT bound entanglement? 2011 Ruskai: No
- general composable security proof for DI-QKD 2011 Winter: yes;
 Acín: 2 yrs
- Peres' Conjecture? 2011 Perez-García: False

 Vertesi and Brunner 2014
- optimal states for 1-mode Gaussian channels? 2011
 García-Patrón: vacuum (✓)
- loophole-free Bell test
 2011 Kleinmann: > 2y ✓ 2013 Cabello: 2y, Weinfurter (✓)
 2015: Hensen et al; Giustina et al; Shalm et al
- D-wave QC? 2011 Cirac: No (2y) ✓
- q repeater better than direct transmission 2011 Brask Bohr: 3y
- q sim better than c sim Lewenstein: 2y; Cirac: > 1y
- the variational method? 2013 Cirac: PEPS (10y)
- business interest in QC will increase 2015 Latorre: yes (2y)

Voted predictions

a universal quantum computer within our lifetimes?

```
in 2013: YES: 50; NO: 16 in 2015: YES: 60; NO: 11; ABS: 5.
```

- predictions 2017 (for 2019):
 - quantum computers with X qubits and 10^3 gates: (A) > 100 qubits (3; 4%) (B) 50 100 (37; 58%) (C) < 50 (24; 46%)
 - device-independent QKD:

```
(A) < 1 \text{km} (3; 6\%) (B) 1 - 10 \text{km} (35; 71\%) (C) > 10 \text{k} (11, 23\%)
```

- reliable phase diagram Hubbard model:
- (A) Yes (9; 29%) (B) NO (22; 71%)
- q metrology: commercial device using
- (A) only entanglement (24; 61%) (B) entanglement and (Q?)EC
- (2; 5%) (C) none (13, 33%)

The 2019 Quantum Information Workshop

2019

recent advances - major open problems - bets/predictions