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Framework

Linear controlled system

y ′ = Ay + Bu, for t ∈ (0,T ), y(0) = y0.

y = y(t) is the state.

u ∈ L2(0,T ;U) is the control.

y0 is the initial datum.

(H1) A generates a C0 semigroup on an Hilbert space H,

(H2) B is the control operator, ∈ L (U;H), for an Hilbert space U.

{
y0 ∈ H,
u ∈ L2(0,T ;U)

⇒ y ∈ C 0([0,T ];H).
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y ′ = Ay + Bu, for t ∈ (0,T ), y(0) = y0.

Some control questions: What states can be reached at time T?

Approximate controllability

For any y0, y1 ∈ H and ε > 0, find u such that the solution y
satisfies ‖y(T )− y1‖H ≤ ε.

Exact controllability

For any y0, y1 ∈ H, find u such that the solution y satisfies
y(T ) = y1.

Null controllability / controllability to trajectories

For any y0 ∈ H, find u such that the solution y satisfies y(T ) = 0.
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Classical approach

To solve these problems, one usually relies on duality theory.
Introducing

FT : u ∈ L2(0,T ;U) 7→
∫ T

0
e(T−t)ABu(t) dt,

we have y(T ) = eTAy0 + FTu. Therefore,

Approximate controllability ⇔ Ran FT = H ⇔ Ker F ∗T = {0}.

Exact controllability⇔ Ran FT = H

⇔ ∃C > 0, ∀zT ∈ H, ‖zT‖ ≤ C‖F ∗T zT‖L2(0,T ;U).

Null controllability⇔ Ran FT = Ran (eTA)

⇔ ∃C > 0, ∀zT ∈ H, ‖eTA∗
zT‖ ≤ C‖F ∗T zT‖L2(0,T ;U).
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What is F ∗T zT ?

F ∗T zT = B∗z(t),

where z is the solution of

z ′ + A∗z = 0, for t ∈ (0,T ), z(T ) = zT .

Consequently,

Approximate controllability ⇔ Unique continuation property
z ′ + A∗z = 0, for t ∈ (0,T ),
z(T ) = zT ∈ H,
B∗z = 0, for t ∈ (0,T ),

then zT = 0.
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A constructive approach

Given y0, y1 ∈ H, and ε > 0, to find an approximate control, one
can minimize

J(zT , f ) =
1

2

∫ T

0
‖B∗z(t)‖2

U dt +
1

2

∫ T

0
‖f (t)‖2

H dt

+ 〈y0, z(0)〉H − 〈y1, zT 〉H + ε ‖zT‖H ,

for (zT , f ) ∈ H × L2(0,T ;H), where z satisfies

z ′ + A∗z = f , for t ∈ (0,T ), z(T ) = zT .

Lemmata

J is strictly convex and coercive on H × L2(0,T ;H)
 Consequence of unique continuation.

If (ZT ,F ) is the minimizer, y = F and u = B∗Z solves the
approximate control problem.
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Our goal today

Control the linear system y ′ = Ay + Bu at time T and impose
linear constraints on the control and the controlled trajectory.

(H3) G is a closed vector space of L2(0,T ;U), and PG is the
orthogonal projection on G in L2(0,T ;U).

(H4) W is a closed vector space of L2(0,T ;H), and PW is the
orthogonal projection on W in L2(0,T ;H).

Approximate controllability with constraints

For any y0, y1 ∈ H, ε > 0, g∗ ∈ G , w∗ ∈ W , find a control function
u ∈ L2(0,T ;U) such that the control u and the controlled
trajectory y satisfy

‖y(T )− y1‖H ≤ ε,
PG u = g∗,

PW y = w∗.
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Relevant unique continuation property is
z ′ + A∗z = w , for t ∈ (0,T ),
z(T ) = zT ,
B∗z = g , for t ∈ (0,T ),
with (zT , g ,w) ∈ H × G ×W

⇒


zT = 0,
g = 0,
w = 0.

(UC)

Theorem

Assume that W is of finite dimension.

Unique continuation property (UC)

⇔ Approximate controllability with constraints
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Proof of ⇐: If ∃(zT , g ,w) ∈ H × G ×W \ {(0, 0, 0)} such that

z ′ + A∗z = w , for t ∈ (0,T ),
z(T ) = zT ,
B∗z = g

then, for y ′ = Ay + Bu, with y(0) = 0,

0 = 〈y(T ), zT 〉H −
∫ T

0
〈y(t),w(t)〉H dt −

∫ T

0
〈u(t), g(t)〉U dt.

In particular, if one imposes PW y = w , PG u = g , we should have

‖y(T ) + zT‖H ‖zT‖H ≥ ‖zT‖
2
H + ‖w‖2

L2(0,T ;H) + ‖g‖2
L2(0,T ;U),

hence y(T ) cannot approximate −zT .
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Proof of ⇒: If we suppose that (UC) holds, let y0, y1 ∈ H, ε > 0,
g ∈ G∗, and w∗ ∈ W . Minimize

J(zT , g ,w , f ) =
1

2

∫ T

0
‖B∗z(t) + g(t)‖2

U dt+
1

2

∫ T

0
‖f (t) + w(t)‖2

H dt

+ 〈y0, z(0)〉H − 〈y1, zT 〉H + ε ‖zT‖H

+

∫ T

0
〈B∗z(t), g∗(t)〉U dt +

∫ T

0
〈f (t),w∗(t)〉H dt,

for (zT , g ,w , f ) ∈ H × G ×W × L2(0,T ;H), and z ′ + A∗z = f ,
z(T ) = zT .

Lemmata

Unique continuation (UC) ⇒ J is coercive.

If (ZT ,G ,W ,F ) is the minimizer of J, y = F + W + w∗, and
u = B∗Z + G + g∗ solves the control problem.
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Exact controllability with constraints

For any y0, y1 ∈ H, g∗ ∈ G , w∗ ∈ W , find a control function
u ∈ L2(0,T ;U) such that the control u and the controlled
trajectory y satisfy

y(T ) = y1, PG u = g∗, PW y = w∗.

Theorem

Assume the observability inequality: ∃C > 0, such that for all z
satisfying z ′ + A∗z = f , z(T ) = zT ,

‖(zT , g ,w , f )‖H×G×W ×L2(0,T ;H)

≤ C
(
‖B∗z + g‖L2(0,T ;U) + ‖f + w‖L2(0,T ;H)

)
. (ExObs)

Then Exact controllability with constraints holds.

Sylvain Ervedoza 28/08/19 Control and linear constraints



Introduction Main result Examples Further Approx. Proof Other results Summary

Recall that classical exact controllability of y ′ = Ay + Bu is
equivalent to

‖zT‖ ≤ C‖F ∗T zT‖L2(0,T ;U) = C‖B∗z‖L2(0,T ;U), (ClassExObs)

for z solving z ′ + A∗z = 0, z(T ) = zT .

Lemma

If G and W are of finite dimension,
Unique continuation (UC) + Classical Observability (ClassExObs)

⇒ Observability inequality (ExObs).
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Null controllability with constraints

For any y0 ∈ H, g∗ ∈ G , w∗ ∈ W , find a control function
u ∈ L2(0,T ;U) such that the control u and the controlled
trajectory y satisfy

y(T ) = 0, PG u = g∗, PW y = w∗.

Theorem

Assume the observability inequality: ∃C > 0, such that for all z
satisfying z ′ + A∗z = f , z(T ) = zT ,

‖(z(0), g ,w , f )‖H×G×W ×L2(0,T ;H)

≤ C
(
‖B∗z + g‖L2(0,T ;U) + ‖f + w‖L2(0,T ;H)

)
. (NullObs)

Then Null controllability with constraints holds.
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Lemma

If G and W are of finite dimension, and ∃T̃ ∈ (0,T ) s.t.
z ′ + A∗z = w , for t ∈ (0, T̃ ),

z(T̃ ) = zT̃ ,

B∗z = g , for t ∈ (0, T̃ ),
with (zT̃ , g ,w) ∈ H × G ×W ,

⇒


zT̃ = 0,
g = 0,
w = 0,

and ∃C > 0 such that for z solving z ′ + A∗z = 0 in (0,T ),∥∥∥z(T̃ )
∥∥∥
H
≤ C ‖B∗z‖L2(0,T ;U) . (Ineq)

Then the observability inequality (NullObs) holds.

Rk: The observability estimate (Ineq) implies null-controllability of
y ′ = Ay + Bu at time T , and null-controllability of y ′ = Ay + Bu
at time T ′ implies (Ineq).
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Summary

Relevant unique continuation property is
z ′ + A∗z = w , for t ∈ (0,T ),
z(T ) = zT ,
B∗z = g , for t ∈ (0,T ),
with (zT , g ,w) ∈ H × G ×W

⇒


zT = 0,
g = 0,
w = 0.

(UC)

Main remaining difficulty

How to check this unique continuation property in practice?
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Example 1

We consider a linear control system

y ′ = Ay + Bu

which is

approximately controllable in time TAC

exactly controllable in time TEC

TEC > TAC .

Typical example

The wave equation. In the unit square observed from a
neighborhood of two consecutive sides, TAC = 2, TEC = 2

√
2.

We choose T = TEC , and

G ⊂ {u ∈ L2(0,T ;U), u = 0 on (T − TAC ,T )}, W = 0,

Then (UC) holds.
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Ω = (0, 1)2, ω = neighborhood of two consecutive sides:
∂tty −∆y = uχω, for (t, x) ∈ (0,T )× Ω,
y(t, x) = 0, for (t, x) ∈ (0,T )× ∂Ω,
(y(0, ·), ∂ty(0, ·)) = (y0, y1) ∈ H1

0 (Ω)× L2(Ω).

Let T ≥ 2
√

2, and G be a finite dimensional subspace of

{u ∈ L2(0,T ; L2(ω)), u = 0 on (T − 2,T )× ω},

Theorem

Given any (y0, y1), (yT0 , y
T
1 ) ∈ H1

0 (Ω)× L2(Ω), any g ∈ G , there
exists u ∈ L2(0,T ; L2(ω)) such that the solution of the wave
equation satisfies

(y(T , ·), ∂ty(T , ·)) = (yT0 , y
T
1 ) and PG u = g .

Rk: This theorem cannot be true when

G = {u ∈ L2(0,T ; L2(ω)), u = 0 on (T − 2,T )× ω}
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Ex. 2: G = {0}, and B∗z = 0 implies that w = 0.

Controlled heat equation in Ω bounded domain of Rd , ω open
subset of Ω.

∂ty −∆y = uχω, for (t, x) ∈ (0,T )× Ω,
y(t, x) = 0, for (t, x) ∈ (0,T )× ∂Ω,
y(0, ·) = y0, in Ω.

G = {0} and W a subspace of L2(0,T ; L2(Ω)) such that

Πω : f 7→ f |ω satisfies Ker (Πω|W ) = {0}.

Then (UC) holds:
∂tz + ∆z = w , for (t, x) ∈ (0,T )× Ω,
z(t, x) = 0, for (t, x) ∈ (0,T )× ∂Ω,
z(T , ·) = zT , in Ω,
z(t, x) = 0 in (0,T )× ω.

⇒ w = 0 and z = 0.
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In particular, if we further assume that W is of finite dimension,
Null controllability with constraint holds in time T .

Inspired by works on sentinels: [Lions ’92, Nakoulima ’04,
Mophou-Nakoulima ’08, ’09, Gao ’15].

Can be done when W and G are non zero under the condition

∃ two linear operators K and L s.t.
K : L2(0,T ;H) 7→ H for some Hilbert space H,
L : L2(0,T ;U) 7→ H,
K (∂t + A∗) = LB∗,
Ker ((g ,w) ∈ G ×W 7→ Lg + Kw) = {0}.
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Example 3

Theorem

Let A be the generator of an analytic semigroup on H.
Let K ∈ N, (µk)k∈{1,·,K} two by two distinct real numbers, Wk be
a family of closed vector spaces included in H such that

∀z ∈ D(A∗), (µk + A∗)z ∈ Wk , and B∗z = 0⇒ z = 0,

and W = Span {eµk twk , k ∈ {1, · · · ,K}, and wk ∈ Wk}.
Let J ∈ N, (ρj)j∈{1,·,J} two by two distinct real numbers, Gj be a
family of closed vector spaces included in U such that

∀z ∈ D(A∗) satisfying (ρj + A∗)z = 0, B∗z ∈ Gj ⇒ z = 0,

and G = Span {eρj tgj , j ∈ {1, · · · , J}, and gj ∈ Gj}.
We also assume µk 6= ρj for all j , k and the classical unique
continuation property (z ′ + A∗z = 0 & B∗z = 0) ⇒ z ≡ 0.
Then the unique continuation property (UC) is satisfied.
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Proof. If z satisfies

z ′ + A∗z = w , B∗z = g ,

with w ∈ W and g ∈ G , applying

P =
K∏

k=1

(∂t − µk)
J∏

j=1

(∂t − ρj),

we obtain (Pz)′ + A∗(Pz) = 0 and B∗(Pz) = 0. By the classical
unique continuation property, Pz = 0, hence

z(t) =
K∑

k=1

zke
µk t +

J∑
j=1

zje
µj t ,

with (µk + A∗)zk ∈ Wk , and B∗zk = 0,

and (ρj + A∗)zj = 0, and B∗zk ∈ Gj .

Therefore, z = 0, and thus w = 0 and g = 0.
Sylvain Ervedoza 28/08/19 Control and linear constraints



Introduction Main result Examples Further Ex. 1 Ex.2 Ex. 3

This idea was used in the context of Navier-Stokes equations:

Ω = T× (0, 1), where T = R/2πZ.
∂ty + (y · ∇)y −∆y +∇p = 0, in (0,∞)× Ω,
div y = 0, in (0,∞)× Ω,
y(t, x1, 0) = (0, 0), on (0,∞)× T,
y(t, x1, 1) = (0, u(t, x1)), on (0,∞)× T,
y(0, x1, x2) = y0(x1, x2), in Ω.

y = y(t, x1, x2) ∈ R2 is the velocity.

p = p(t, x1, x2) is the pressure.

u = u(t, x1) is the control function, acting on the normal
component only.

Theorem: Stabilization at any exponential rate [Chowdhury SE 19].

For any ω > 0, ∃ε > 0, ∀y0 ∈ V 1
0 (Ω) satisfying ‖y0‖H1 ≤ ε,

∃u ∈ L2(0,∞; L2(0, 1)), such that ‖y(t)‖H1(Ω) ≤ Ce−ωt .
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Here, the control system is of the form

y ′ = Ay + F (y) + Bu,

where

F is a quadratic term.

The space H = L2
σ(Ω) can be decomposed into H = H0 ⊕ H1,

and

y ′ = Ay+Bu ⇔
{

y ′0 = A0y0,
y ′1 = A1y1 + B1u,

where

{
y0 = PH0y ,
y1 = PH1y .

In fact, H0 = {y ∈ L2
σ(Ω), y = y(x2)}, and H1 = H⊥0 .

Consequently, the projection y0 cannot be controlled on the
linearized equations.
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Strategy: Expand y = εα + ε2β and use the non-linear term to
control the projection in H0.
Inspired by [Coron Crépeau ’04, Cerpa ’07, Cerpa Crépeau ’09,
Coron Rivas ’15].

ε > 0 small.

α, β of order 1.

α ∈ H1.

Up to lower order terms,{
α′ = A1α + B1u,
α(0) = α0 ∈ H1

{
β′ = Aβ + Bu + F (α),
β(0) = u0 − α0.

Difficulty: Controlling P0β = β0.{
β′0 = A0β0 + F0(α),
β0(0) = β00 ∈ H0.
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In particular, our arguments rely on the following construction: Let

H0,ω = Span {Ψ eigenvector of A0 corresponding to eigenvalue λ > ω}.

This space is of finite dimensional in our case.

Lemma

For any h0 ∈ H0,ω, there exists a control function u such that the
solution (α, β0) of{

α′ = A1α + B1u,
α(0) = 0,

{
β′0 = A0β0 + F0(α),
β0(0) = 0,

satisfies
α(T ) = 0 and PH0,ωβ0(T ) = h0.

Indirect controllability result through a non-linear coupling.
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Intermediate result

If Ψ is an eigenvector of A0 corresponding to an eigenvalue λ,
there exist two controls u± such that the solutions (α±, β0,±) of{

α′± = A1α± + B1u±,
α±(0) = 0,

{
β′0,± = A0β0,± + F0(α±),

β0,±(0) = 0,

satisfies
α±(T ) = 0 and 〈β0,±(T ),Ψ〉 = ±1.
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Proof

When taking two controls ua and ub such that{
α′a = A1αa + B1ua,
αa(0) = 0,

{
α′b = A1αb + B1ub,
αb(0) = 0,

satisfy αa(T ) = αb(T ) = 0, for all a, b ∈ R, if β0 satisfies{
β′0 = A0β0 + F0(aαa + bαb),
β0(0) = 0,

satisfy

〈β0(T ),Ψ〉 = a2Q(ua, ua) + 2abQ(ua, ub) + b2Q(ub, ub),

where Q is a bilinear form.
A structure result: If u is odd or even in space, Q(u, u) = 0.
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 We look for ua = ua(t) sin(x1) odd, ub = ub(t) cos(x1) even
and Q(ua, ub) 6= 0.

Q(ua, ub) = π5/2

∫ T

0
ua(t)qb(t, 1) dt,

where qb is obtained by solving
−∂tZb + Zb − ∂22Zb +

(
qb
∂2qb

)
= Fb(t, x2), in (0,T )× (0, 1),

−Z1,b + ∂2Z2,b = 0, in (0,T )× (0, 1),
Zb(t, 0) = Zb(t, 1) = (0, 0), in (0,T ),
Zb(T , x2) = 0, in (0, 1).

with Fb(t, x2) = cos(πx2)eπ
2t

(
α2,b(t, x2)
α1,b(t, x2)

)
, and

αb =

(
α1,b(t, x2) sin(x1)
α2,b(t, x2) cos(x1)

)
solves α′b = Aαb + Bub.
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Two steps:

Find a control function ub such that αb(T ) = 0 and qb(t, 1)
non-zero.

Find a control function ua such that αa(T ) = 0 and∫ T
0 ua(t)qb(t, 1) dt 6= 0.

This further requires qb(t, 1) to be such that we can impose the
projection on qb(t, 1).

We do that by imposing αb(t) = eµtα and ub(t) = eµt on some
subinterval (T1,T2) of (0,T ) for a suitable choice of µ
guaranteeing that

qb(t, 1) = c0e
(µ+π2)t +

∑
aje

(λj+π
2)(t−T1) +

∑
bje

λj (T2−t)

for λj in the spectrum of A, and c0 6= 0.
Then our argument applies if µ /∈ {λj ,−λj − π2} and a null

control ua exists for which we have
∫ T

0 ua(t)qb(t, 1) dt = 1.
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Comments

Time-dependent coefficients: Provided well-posedness is
ensured, the control system y ′ = A(t)y + Bu can be
controlled with linear constraints on u in G and y in W
provided the following unique continuation property holds

z ′ + A(t)∗z = w , for t ∈ (0,T ),
z(T ) = zT ,
B∗z = g , for t ∈ (0,T ),
with (zT , g ,w) ∈ H × G ×W

⇒


zT = 0,
g = 0,
w = 0.

(UC)

Unbounded control operators: The same results and proofs
apply when B is an admissible control operator.
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Open problem

Quantifying the cost of controlling in G and W .
Similarly as the discussion in the work [Fernandez-Cara,
Zuazua ’00] for controlling the state exactly on some
finite-dimensional space E ⊂ L2(Ω) in the context of
approximate controllability of the heat equation:

PEy(T ) = PEy1 and ‖y(T )− y1‖L2(Ω) ≤ ε.

Estimates of the cost:

exp

(
C (1 + exp(Tµ(E ))

ε

)
,

where µ(E ) = max
ϕ∈E\{0}

‖∇ϕ‖2
L2(Ω)

‖ϕ‖2
L2(Ω)

.
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Thank you for your attention!

Comments Welcome

Reference:
Control issues and linear constraints on the control and on the
controlled trajectory.
Sylvain Ervedoza, 2019.
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