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VIII PDE, optimal design and numerics, Benasque, August 2019

Pep Mulet (UV) IMEX schemes 1 / 42



This talk is based on work with:

Sebastiano Boscarino (U. Catania),
Raimund Bürger (U. Concepción)
Rosa Donat (U. Valencia)
Francisco Guerrero (U. Valencia)
Daniel Inzunza (U. Concepción)
Giovanni Russo (U. Catania)
Luis Miguel Villada (U. Bio Bio).

and is intended to be an exposition of my recent experience in the field:

R. Bürger, P. M., and L. M. Villada. SIAM J. Sci. Comp., 2013.
S. Boscarino, R. Bürger, P. M., G. Russo, and L. M. Villada. SIAM
J. Sci. Comp., 2015.
R. Donat, F. Guerrero, and P. M. Appl. Numer. Math., 2018.
R. Bürger, D. Inzunza, P. M., and L. Villada. Numer. Meth. PDE,
2019.
R. Bürger, D. Inzunza, P. M., and L. Villada. to appear in Appl.
Numer. Math., 2019.

Pep Mulet (UV) IMEX schemes 2 / 42



Outline

1 Convective PDE with degenerate diffusion

2 Implicit-Explicit Runge-Kutta schemes for diffusive kinematic flow models
Nonlinearly implicit-explicit schemes
Diffusively corrected multi-species kinematic flow models
Numerical experiments with Nonlinearly IMEX schemes
Linearly implicit-explicit schemes
Numerical experiments with Linearly IMEX schemes

3 IMEX-RK schemes for gradient flow equations
Nonlinearly Implicit-Explicit schemes
Numerical experiments

4 Conclusions
Ongoing and future work

Pep Mulet (UV) IMEX schemes 3 / 42



Convective PDE with degenerate diffusion

Outline

1 Convective PDE with degenerate diffusion

2 Implicit-Explicit Runge-Kutta schemes for diffusive kinematic flow models
Nonlinearly implicit-explicit schemes
Diffusively corrected multi-species kinematic flow models
Numerical experiments with Nonlinearly IMEX schemes
Linearly implicit-explicit schemes
Numerical experiments with Linearly IMEX schemes

3 IMEX-RK schemes for gradient flow equations
Nonlinearly Implicit-Explicit schemes
Numerical experiments

4 Conclusions
Ongoing and future work

Pep Mulet (UV) IMEX schemes 3 / 42



Convective PDE with degenerate diffusion

Convection-diffusion equations and MOL

Goal: efficient numerical solution of convection-diffusion system of m
equations with m unknowns

ut +∇ ·
(
f c[u]− fd(u,∇u)

)
= 0, ∇· ≡ div = divx

u = u(x, t) ∈ Rm, x ≡ space, t ≡ time

f c[u] ≡ convective fluxes (may depend non-locally on u)

fd(u,∇u) ≡ diffusive fluxes

+B.C.+ I.C.

(May be strongly) Degenerate diffusion, i.e. fd vanishes for some
values of u ⇒ discontinuities may appear (weak solutions) and
numerical methods should cope with them.

Accuracy obtained by Method Of Lines (spatial discretization by finite
differences, finite volumes, Galerkin techniques,. . . )
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Convective PDE with degenerate diffusion

Linear convection-diffusion

ut + γux − δuxx = 0, x ∈ (0, 1), periodic BC, γ, δ > 0

Consider xj , j = 1, . . . , L, in equispaced grid (∆x = 1
L), e.g.

Use F.D. (upwind for convection) in (ut + γux − δuxx)(xj , t) = 0 ⇒

ut(xj , t) + γ
u(xj , t)− u(xj−1, t)

∆x
− δu(xj+1, t)− 2u(xj , t) + u(xj−1, t)

∆x2
≈ 0

Get spatial semidiscretization for vj(t) ≈ u(xj , t)

⇒ v′j(t) = γ
−vj(t) + vj−1(t)

∆x
+ δ

vj+1(t)− 2vj(t) + vj−1(t)

∆x2
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Convective PDE with degenerate diffusion

Method of lines: ut + γux − δuxx = 0, x ∈ (0, 1)

Linear PDE and linear discretization (by F.D.) ⇒ linear ODE: v
′
1(t)
...

v′m(t)

 =
γ

∆x


−1 0 . . . 1
1 −1 ˙ 0
. . . . . . . . . . . . . . . . .
0 . . . 1 −1


︸ ︷︷ ︸

C

 v1(t)
...

vm(t)



+
δ

∆x2


−2 1 0 . . . 1
1 −2 1 ˙ 0
. . . . . . . . . . . . . . . . . . . .
1 . . . 0 1 −2


︸ ︷︷ ︸

D

 v1(t)
...

vm(t)



Spatial semidiscretization:

v′(t) = Av(t), A =
γ

∆x
C +

δ

∆x2
D ∈ RL×L, v(t) ∈ RL
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Convective PDE with degenerate diffusion

Fully discrete numerical method

Fully discrete scheme for vnj ≈ vj(tn) ≈ u(xj , tn) by applying, e.g.,
Euler’s method to v′ = Av (∆t = tn+1 − tn for sake of argument):

vn+1 = vn + ∆t Avn = (I + ∆t A)vn ⇒
vn = (I + ∆tA)nv0, v0

j = u(xj , 0)

Use spectral decomposition of A (with eigenvalues λp = λp(A)) for

(I + ∆tA)nv0 =
∑
p

(1 + ∆tλp)
nzp

⇒ no blow up (exact solutions do not) if |1 + ∆tλp| ≤ 1, ∀p
von Neumann analysis yields eigenvalues λp, p = 0, . . . ,m− 1 so that

max
p
|λp| ≈ 2

(
γ

∆x
+

2δ

∆x2

)
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Convective PDE with degenerate diffusion

Stiffness - stability

Increasing stiffness (large eigenvalues) when ∆x→ 0 (more from D):

max
p
|λp| ≈ 2

(
γ

∆x
+

2δ

∆x2

)
↑ ∞

Many tiny time steps ∆t to attain fixed T > 0 (no need for accuracy):

|1 + ∆tλp| ≤ 1, ∀p⇐⇒ ∆t

(
γ

∆x
+

2δ

∆x2

)
≤ 1

No restriction on ∆t for stability of e.g. Implicit Euler’s method, but

∆t ∝ ∆x for accuracy
Need to ensure that vn+1 = vn + ∆tAvn+1 has (uniquely determined)
solution vn+1 = (I −∆tA)−1vn i.e., I −∆tA is invertible ( X example)
Need to solve the equation to compute it!
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Convective PDE with degenerate diffusion

Nonlinear stability

Nonlinear stability analysis for MOL in [Verwer and Sanz-Serna (1984)] is
intricate and/or of limited applicability.

Poor man’s analysis (mostly unjustified) based on linearization about
constant states ū and linear stability analysis:

ut + f(u)x − (A(u)ux)x = 0⇒

(linearization about ū, u(x) = ū+ ũ(x))

ũt + f ′(ū)︸ ︷︷ ︸
γ

ũx −A(ū)︸ ︷︷ ︸
δ

ũxx = 0⇒

stiffness measure = 2

(
|γ|
∆x

+
2δ

∆x2

)
= 2

(
|f ′(ū)|

∆x
+

2A(ū)

∆x2

)
For systems, it turns into practical bound for ∆t, for semiempirical K

∆t

(
maxp,ū |λp(f ′(ū))|

∆x
+

2 maxp,ū λp(A(ū))

∆x2

)
≤ K
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Convective PDE with degenerate diffusion

Spatial discretization

In general, the spatial discretization of

ut +∇ ·
(
f c[u]− fd(u,∇u)

)
= 0, is:

v′ = C(v) +D(v) (C(v) = − γ

∆x
Cv,D(v) =

δ

∆x2
Dv in example)

To cope with weak solutions, both terms are derived by divided
differences of numerical fluxes (Lax-Wendroff theorem), i.e., in 1D

C(v)j = −
f̂ c(v)j+ 1

2
− f̂ c(v)j− 1

2

∆x
, D(v)j =

f̂d(v)j+ 1
2
− f̂d(v)j− 1

2

∆x

Numerical fluxes f̂d(v)j+ 1
2

are (relatively) simple, but f̂ c(v)j+ 1
2

are not:

shock-capturing, need to take into account upwind direction for
stability and use highly nonlinear reconstruction (MUSCL, ENO,
WENO, · · · ) for nonoscillatory accuracy.
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IMEX schmes for diffusive kinematic flow models

Implicit-Explicit schemes

Implicit methods are attractive for not restricting ∆t.

But, when nonlinearity comes in (either from PDE or spatial
discretization or both), applying an implicit solver to

v′ = C(v) +D(v)

e.g., Implicit Euler’s method

vn+1 = vn + ∆t(C(vn+1) +D(vn+1)),

requires solving nonlinear systems (by e.g. Newton’s method).

Dealing with the nonlinearity (nonlinear solver implementation,
existence and uniqueness of solutions) for D is relatively easy, but it
is not so for C.

We aim to use Implicit-Explicit schemes [Crouzeix (1980)], as

vn+1 = vn + ∆t(C(vn) +D(vn+1)),

but with higher-order accuracy.
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IMEX schmes for diffusive kinematic flow models Nonlinearly implicit-explicit schemes

Nonlinearly implicit-explicit schemes

[Ascher, Ruuth, and Spiteri (1997)] apply Partitioned Runge-Kutta method

defined by
c̃ Ã

b̃T
, ãi,j = 0, j ≥ i,

c A

bT
, ai,j = 0, j > i

ERK DIRK

0 0 0
1 1 0

1
2

1
2

Heun

0 0 0

1 1
2

1
2

1
2

1
2

Crank-Nicolson

to the split system (which is equivalent to v′ = C(v) +D(v)){
w̃′ = C(w̃ + w) (Explicit)

w′ = D(w̃ + w) (Implicit)
with v = w̃ + w, (1)

( order PRK = min(order ERK, order DIRK) )
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IMEX schmes for diffusive kinematic flow models Nonlinearly implicit-explicit schemes

Nonlinearly implicit-explicit schemes

Application of s stages PRK

for i = 1, . . . , s

w̃(i) = w̃n + ∆t
∑i−1

j=1 ãijC(w̃(j) + w(j))

solve w(i) = wn + ∆t
∑i−1

j=1 aijD(w̃(j) + w(j)) + aiiD(w̃(i) + w(i))

end

w̃n+1 = w̃n + ∆t
∑s

j=1 b̃jC(w̃(j) + w(j))

wn+1 = wn + ∆t
∑s

j=1 bjD(w̃(j) + w(j))

Simplification by setting vn = w̃n + wn, v(i) = w̃(i) + w(i):

for i = 1, . . . , s

solve v(i) = vn + ∆t

(
i−1∑
j=1

ãijC(v(j)) +

i−1∑
j=1

aijD(v(j)) + aiiD(v(i))

)
end

vn+1 = vn + ∆t

s∑
j=1

(
b̃jC(v(j)) + bjD(v(j))

)
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IMEX schmes for diffusive kinematic flow models Nonlinearly implicit-explicit schemes

Nonlinearly implicit-explicit schemes

This algorithm requires solving for z = v(i), i = 1, . . . , s, nonlinear
systems of M equations (M = #PDE×#dof� 0) as follows:

F (z) = z − µD(z)− r = 0, µ = ∆taii > 0

r = vn + ∆t

(
i−1∑
j=1

ãijC(v(j)) +

i−1∑
j=1

aijD(v(j))

)

Does it have a solution? Is it unique?

For general PDE, + answer only for small enough ∆t; in some cases, +
answer, for any ∆t > 0 (see gradient flow).

How can we compute it? (direct fixed point method discarded)
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IMEX schmes for diffusive kinematic flow models Nonlinearly implicit-explicit schemes

Newton’s method

Damped Newton’s method for solving F (z) = 0, z, F (z) ∈ RM :

Input: Initial guess z0

for i = 0, . . .
solve for δi: F

′(zi)δi = −F (zi) (need ∃F ′(zi)−1)
zi+1 = zi + αiδi, (choice αi = 1⇒ Newton’s method)

end

αi ≈ min
α∈(0,1]

‖F (zi + αδi)‖ ⇒ ‖F (zi+1)‖ < ‖F (zi)‖ (≈ Armijo’s rule)

Strictly decreasing nonlinear residuals

‖F (z0)‖ > ‖F (z1)‖ > . . .

Newton-Kantorovich’s theorem ⇒ guaranteed fast convergence
(quadratic) zi → z if αi → 1
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IMEX schmes for diffusive kinematic flow models Diffusively corrected multi-species kinematic flow models

Diffusively corrected multi-species kinematic flow models

We apply in [Bürger, Mulet, and Villada (2013)] Nonlinearly
Implicit-Explicit schemes to:

Polydisperse sedimentation with compression [Berres, Bürger,

Karlsen, and Tory (2003)]

Multi-Class LWR traffic model with anticipation and reaction time
[Wong and Wong (2002); Benzoni-Gavage and Colombo (2003); Bürger,

Mulet, and Villada (2013)]

ut + f c(u)x − fd(u, ux)x = 0, u, f c(u), fd(u, ux) ∈ Rm.

(1D models)

Different species characterized by:

Spherical particles with different diameters: d1 > · · · > dm
Drivers with different maximal velocities: β1 > · · · > βm

ui ≡ density of i-th species.
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IMEX schmes for diffusive kinematic flow models Diffusively corrected multi-species kinematic flow models

Diffusively corrected multi-species kinematic flow models

Kinematic convective fluxes, for velocities for i-th species vi(u):

f c
i (u) = uivi(u)

where vi(u) depends globally on all components through few functions

(simplifies hyperbolicity analysis through secular equation [Donat and

Mulet (2010)])

MCLWR (Dick-Greenberg Vtraf ↓)

vi(u) = βiVtraf(φ), φ = u1 + · · ·+ um.

Polydisperse sedimentation (MLB model, Richardson-Zaki Vsed ↓)

vi(u) = ν(1− φ)Vsed(φ)(δi −
∑
j

δjuj), δi =
d2i
d21
.
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IMEX schmes for diffusive kinematic flow models Diffusively corrected multi-species kinematic flow models

Diffusively corrected multi-species kinematic flow models

Strongly degenerate diffusion for diffusion matrix Ad(u) ∈ Rm×m:

fd(u, ux) = Ad(u)ux, Ad(u) = 0 for φ < φc, λ(Ad(u)) ≥ 0

(φ = u1 + · · ·+ um ≡ total concentration)

hyperbolic behavior (shocks/rarefactions) on dillute suspensions or light

traffic, diffusion only above threshold φc > 0.
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IMEX schmes for diffusive kinematic flow models Diffusively corrected multi-species kinematic flow models

Spatial discretization

Convective numerical fluxes: use Finite-Difference WENO schemes

[Shu and Osher (1989)] applied to local characteristic fluxes (more

precise although more expensive than component-wise application

[Zhang, Wong, and Shu (2006)])

Diffusive numerical fluxes: (recall vj = vj(t) ≈ u(xj , t))

(
Ad(u)ux

)
(xj+ 1

2
, t) ≈

f̂d(v)j+ 1
2︷ ︸︸ ︷

1

2

(
Ad(vj) +Ad(vj+1)

)vj+1 − vj
∆x

⇒

D(v)j =
f̂d(v)j+ 1

2
− f̂d(v)j− 1

2

∆x
⇒ D(v) = ∆x−2B(v)v,

for B(v) a tridiagonal block matrix, with m×m blocks which are

functions of Ad(vj).
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IMEX schmes for diffusive kinematic flow models Diffusively corrected multi-species kinematic flow models

Continuation strategy for Newton’s method

Diffusion matrix function Ad(u) is not differentiable for
φ =

∑m
k=1 uk = φc ⇒ D(v) is not differentiable.

Standard Newton’s method requires differentiable D
⇒ regularize D by ε > 0:

differentiable Dε ≈ D (lim
ε→0
‖Dε −D‖∞ = 0)

Dε(u) = 0,when
m∑
k=1

uk ≤ φc

(strongly degenerate diffusion also for regularized problems).

Convergence of (damped) Newton’s method worsens when ε→ 0

Continuation strategy: obtain uε0 for large ε0, decrease ε0 to ε1 and
use uε0 as initial guess for Newton method to solve for ε1 . . . until
reaching εmin ≈ 0.
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IMEX schmes for diffusive kinematic flow models Numerical experiments with Nonlinearly IMEX schemes

Tridisperse sedimentation with compression

Use following IMEX-RK schemes:
ARS(1,1,1) (1st order), 1 stage [Ascher, Ruuth, and Spiteri (1997)]

ARS(2,2,2) (2nd order), 2 stages [Ascher, Ruuth, and Spiteri (1997)]

SSP2(3,3,2) (2nd order), 3 stages [Pareschi and Russo (2005)]

3 species with diameters d1 > d2 > d3 (1 fastest, 3 slowest)
Total concentration φ = u1 + u2 + u3, threshold φc = 0.2
Reference soln. computed by Kurganov-Tadmor (KT, explicit) scheme.
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IMEX schmes for diffusive kinematic flow models Numerical experiments with Nonlinearly IMEX schemes

Efficiency plot

Approximate L1 errors vs CPU for KT (explicit) and IMEX schemes

All IMEX have approximately the same efficiency, and are more than 10
times faster (for the same accuracy) than KT.
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IMEX schmes for diffusive kinematic flow models Numerical experiments with Nonlinearly IMEX schemes

Comparison convergence history for Newton’s method

‖F (zν)‖2 vs. iteration count ν for nonlinear solvers (with IMEX-ARS(1,1,1))

Newton×
{

line search
no line search

}
×
{

continuation
no continuation

}
Line search: damping with selected αν for sufficient decrease or set αν = 1
Continuation: gradual decrease ε→ εmin ≈ 0 or fixed εmin.
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IMEX schmes for diffusive kinematic flow models Linearly implicit-explicit schemes

Linearly implicit-explicit schemes

Although NIMEX schemes revealed to be quite robust in our tests, the
cost per iteration (and implementation) is not trivial.

[Boscarino, Bürger, Mulet, Russo, and Villada (2015)] Apply PRK scheme to
system obtained by doubling variables (recall D(v) = ∆x−2B(v)v and
that stiffness does not come from B(v), but from ∆x−2)

v′ = C(v) + ∆x−2B(v)v, v(0) = v0

⇐⇒

{
ṽ′ = C(ṽ) + ∆x−2B(ṽ)v, ṽ(0) = v0

v′ = C(ṽ) + ∆x−2B(ṽ)v, v(0) = v0

Specifically, apply an explicit RK scheme (with Butcher array Ã, b) to
the ṽ variable and a DIRK scheme (with Butcher array A, b) to the v
variable (same b vectors), both of s stages.
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IMEX schmes for diffusive kinematic flow models Linearly implicit-explicit schemes

Linearly implicit-explicit schemes

Using the notation Φ(ṽ, v) = C(ṽ) + ∆x−2B(ṽ)v:

for i = 1, . . . , s

ṽ(i) = vn + ∆t
∑i−1
j=1 ãijΦ(ṽ(j), v(j)) (explicit)

v(i) = vn + ∆t
∑i−1
j=1 aijΦ(ṽ(j), v(j)) + ∆taiiΦ(ṽ(i), v(i)) (implicit)

end

vn+1 = vn + ∆t
∑s

j=1 bjΦ(ṽ(j), v(j))

Only need to solve, for each i, the linear equation in v(i)

(I − ∆taii
∆x2

B(ṽ(i)))v(i) = vn + ∆t

 i−1∑
j=1

aijΦ(ṽ(j), v(j)) + ∆taiiC(ṽ(i))


Memory can be saved by storing, using and solving directly (same
matrix, different right hand) for the variables Kj = Φ(ṽ(j), v(j)) (no
penalty paid for doubling variables, half memory requirements).
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IMEX schmes for diffusive kinematic flow models Numerical experiments with Linearly IMEX schemes

3-Class Lighthill-Whitham-Richards traffic model

Comparison of NIMEX vs
LIMEX for sedimentation:
NIMEX is more accurate and
LIMEX cheaper per iteration
and have ≈ same efficiency.

Simulation T = 3min, 5 miles
circular road (periodic B.C.)

u1 ≡ fastest drivers, u3 ≡
slowest drivers (normalized
units, 1 = bumper to bumper)

Diffusion threshold φc = 0.075
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IMEX schmes for diffusive kinematic flow models Numerical experiments with Linearly IMEX schemes

3-Class Lighthill-Whitham-Richards traffic model

LIMEX schemes in test: H-CN(2,2,2) H-DIRK2(2,2,2) H-LDIRK{2, 3}(2,2,2) SSP-LDIRK(3,3,2)

Efficiency plot (approximate L1 errors vs CPU) ⇒ LIMEX almost 10× faster
than corresponding NIMEX in this case.
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IMEX-RK schemes for gradient flow equations

Gradient flow equations

Goal: efficient numerical solution of PDE with gradient flow structure
[Carrillo, Chertock, and Huang (2015); Burger, Fetecau, and Huang (2014)]

ut +∇ ·
(
f c[u]− fd[u]

)
= 0,

f c[u] = u∇(W ∗ u), convective flux (nonlocal, convolution)

fd[u] = u∇(H ′(u)), diffusive flux

0 ≤ u(x, t) ≡ population density, space≡ x ∈ Rm, time ≡ t
W (x) ≡ (symmetric) interaction potential,
H(u) ≡ (convex) density of internal energy.

Models collective behavior, interacting gases, porous media flow, ...
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IMEX-RK schemes for gradient flow equations

Gradient flow equations

Assume smooth enough interaction potential W , so that

f c = u∇(W ∗ u) = u((∇W ) ∗ u)

depends nonlocally on u.

[Bürger, Inzunza, Mulet, and Villada (2019)] Rewrite diffusive flux as:

fd[u] = u∇(H ′(u)) = uH ′′(u)∇u⇒ K(u) =

∫ u

0
sH ′′(s)ds⇒

K ′(u) = uH ′′(u) ≥ 0⇒ ∇K(u) = K ′(u)∇u = fd[u]

so that ∇ · fd[u] = ∇ · ∇K(u) =∆K(u)

Degenerate diffusion: u(x) = 0⇒ K ′(u(x)) = K ′(0) = 0

Example: H(u) ∝ uη ⇒ K(u) ∝ uη
{

fast diffusion η < 1

slow diffusion η > 1
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IMEX-RK schemes for gradient flow equations

Numerical fluxes ([Carrillo, Chertock, and Huang (2015)])

Consider f c[u] = u(W ∗ u−H ′(u))x, fd = 0 (⇒ D = 0) and compute

f̂ c(v)j+1/2 = ṽj+1/2w̃j+1/2, w̃j+1/2 =
G̃j+1 − G̃j

∆x
, G̃j = (W ∗h v)j −H ′(vj)

(discrete convolutions ∗h computed by FFT, key to performance)

ṽj+1/2 =

{
MUSCL(vj−1, vj , vj+1) w̃j+1/2 > 0

MUSCL(vj , vj+1, vj+2) w̃j+1/2 < 0

MUSCL ≡ upwind, 2nd order, +preserv reconstruction
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IMEX-RK schemes for gradient flow equations

Numerical fluxes ([Bürger, Inzunza, Mulet, and Villada (2019)])

Based on [Donat, Guerrero, and Mulet (2018)], use decoupled
discretizations: f c[u] = u(W ∗ u)x ⇒

f̂ c(v)j+1/2 = vj+1/2wj+1/2, wj+1/2 =
Gj+1 −Gj

∆x
,Gj = (W ∗h v)j

vj+1/2 =

{
MUSCL(vj−1, vj , vj+1) wj+1/2 > 0

MUSCL(vj , vj+1, vj+2) wj+1/2 < 0.

D(z) = ∆hK(z), K(z)j = K(zj), with standard Laplacian ∆h,
Dirichlet b.c. (compactly supported solution).
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IMEX-RK schemes for gradient flow equations

Explicit schemes

Theorem ([Carrillo, Chertock, and Huang (2015)])

Under the CFL condition
∆t

∆x
max
j
|w̃j+1/2| ≤

1

2
, the Explicit Euler’s Method

is +preserving.

Theorem ([Bürger, Inzunza, Mulet, and Villada (2019)])

Under the CFL condition ∆t

maxj |wj+1/2|
∆x

+

max
0≤u≤‖v‖∞

K ′(u)

∆x2

 ≤ 1

2
,

EEM is +preserving.

CFL ⇒ +preserving explicit schemes obtained by SSP-RK3 (convex
combination of 3 EE steps)

maxj |wj+ 1
2
| = O(1) (if W smooth enough)

maxj |w̃j+ 1
2
| = O(∆x−1) ⇒ ∆t = O(∆x2) for both schemes.
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IMEX-RK schemes for gradient flow equations Nonlinearly Implicit-Explicit schemes

Nonlinearly Implicit-Explicit schemes

Applying LIMEX would ruin “nice” structure of diffusion ∆K(u).

Recall that the NIMEX-RK algorithm requires solving for z = v(i),
i = 1, . . . , s, nonlinear systems of M equations
(M = #PDE×#dof� 0) as follows:

F (z) = z − µD(z)− r = 0, µ = ∆taii > 0,

r = (known) vector built from previous RK stages

Use special structure of D(z) = ∆hK(z), K(z)j = K(zj) to prove:

Theorem ([Bürger, Inzunza, Mulet, and Villada (2019)])

µ > 0, r ∈ RM , rj ≥ 0, j = 1, . . . ,M ⇒ the equation

z − µD(z)− r = 0

has a unique solution z ∈ RM satisfying zj ≥ 0, j = 1, . . . ,M .
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IMEX-RK schemes for gradient flow equations Nonlinearly Implicit-Explicit schemes

Nonlinearly Implicit-Explicit schemes

Previous result (based on Brouwer’s fixed point Theorem) applies to get:

Theorem ([Bürger, Inzunza, Mulet, and Villada (2019)])

Under the CFL condition
∆t

∆x
maxj |wj+1/2| ≤ 1/2 the Euler IMEX method

vn+1 = vn + ∆t
(
C(vn) +D(vn+1)

)
is a positivity preserving scheme.

Sketch of proof

vn ≥ 0 + CFL ⇒ vn + ∆tC(vn) ≥ 0 (by theorem on explicit scheme)

Previous theorem applied to vn+1 − ∆t︸︷︷︸
µ

D(vn+1)− (vn + ∆tC(vn)︸ ︷︷ ︸
r

) = 0 yields

∃! solution vn+1 ≥ 0.
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IMEX-RK schemes for gradient flow equations Nonlinearly Implicit-Explicit schemes

Nonlinearly Implicit-Explicit schemes

Tried Shu-Osher SSP strategy [Shu and Osher (1988)] to get second order
accuracy, e.g.:

v(1) = vn + γ1∆t
(
C(vn) +D(v(1))

)
v(2) = v(1) + γ2∆t

(
C(v(1)) +D(v(2))

)
vn+1 = (1− α)v(1) + αv(2),

0 < α ≤ 1, γ1, γ2 > 0

but 6 ∃ such α, γ1, γ2. ⇒ no direct application to higher-order IMEX-RK
schemes (6 ∃ RK implicit schemes in SSP form of order > 1 [Gottlieb,

Shu, and Tadmor (2001)]).

No problems in our numerical experiments with 2nd order non-SSP
versions, but would like to explore other strategies for + preserving
schemes of order > 1.
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IMEX-RK schemes for gradient flow equations Numerical experiments

2D experiments

Test from [Carrillo, Chertock, and Huang (2015)] (smooth interaction
potential, slow diffusion)

u0 = 0.25χ[−3,3]×[−3,3],

W (x1, x2) =
1

π
exp(−x2

1 − x2
2),

H(u) =
ν

η
uη, ν = 0.1, η = 2.1
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IMEX-RK schemes for gradient flow equations Numerical experiments

Efficiency plot (approximate L1 errors vs. CPU)

CPU gain of IMEX with respect to explicit scheme [Carrillo, Chertock, and

Huang (2015)] ranges from 10 to 100 in this case (gap, of course,
increases with resolution)
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IMEX-RK schemes for gradient flow equations Numerical experiments

2D experiments

Test from [Carrillo, Chertock, and Huang (2015)] (non-smooth interaction
potential, slow diffusion)

u0 = 0.05χ[−3,3]×[−3,3]

W (x) = − (1− |x|)+,

H(u) =
ν

η
uη, ν = 1.48, η = 3.
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IMEX-RK schemes for gradient flow equations Numerical experiments

Efficiency plot (approximate L1 errors vs. CPU)
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CPU gain of IMEX with respect to explicit scheme [Carrillo, Chertock, and

Huang (2015)] ranges from 10 to 100.
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Conclusions

Conclusions

Can get efficient RK numerical methods by treating implicitly some (but
not all) terms in the spatial discretization in MOL applied to PDE with
convection and degenerate diffusion.

Can get order > 1 both for Nonlinearly-IMEX and Linearly-IMEX.

LIMEX is much easier to implement and the cost per step is smaller
than NIMEX, but these may be preferable for some favorable structures.

When using Newton’s method continuation (in some limited cases) and
line-search strategies might be worthy for ensuring convergence.

Have used these methods for some diffusively corrected kinematic
models and gradient flow models.
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Conclusions Ongoing and future work

Interacting species with cross-diffusion

Model in [Carrillo, Filbet, and Schmidtchen (2018); Carrillo, Huang, and

Schmidtchen (2018)] for interacting species with nonlocal behavior:
∂u1

∂t
=

∂

∂x

(
u1

∂

∂x
(W11 ∗ u1 +W12 ∗ u2 + ν(u1 + u2)) +

ε

2

∂u2
1

∂x

)
,

∂u2

∂t
=

∂

∂x

(
u2

∂

∂x
(W22 ∗ u2 +W21 ∗ u1 + ν(u1 + u2)) +

ε

2

∂u2
2

∂x

)
,

W11,W22 are self-interaction potentials and W12,W21 are
cross-interaction potentials, ν > 0 is the coefficient of
cross-diffusivity and ε the coefficient of self-diffusivity.

Treat implicitly diffusion terms.
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Conclusions Ongoing and future work

Navier-Stokes-Cahn-Hilliard equations

[Lowengrub and Truskinovsky (1998); Abels and Feireisl (2008)] Models
evolution of compressible mixture of binary fluids (e.g. foams,
solidification processes, fluid–gas interface, ...) under gravity.

c ≡ concentration of 1st species, ρ ≡ density of mixture, v ≡ velocity,
G ≡ gravitational acceleration, p(ρ, c) ≡ pressure, ε, νNS, νCH > 0.

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ⊗ v + p(ρ, c)I) = ρG+ νNS

(
∆v +

1

3
∇∇ · v

)

(2)

Treat implicitly these terms, specially that in (2) (solving this
Cahn-Hilliard equation explicitly would require ∆t ∝ ∆x4!)
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Conclusions Ongoing and future work

Navier-Stokes-Cahn-Hilliard equations

[Lowengrub and Truskinovsky (1998); Abels and Feireisl (2008)] Models
evolution of compressible mixture of binary fluids (e.g. foams,
solidification processes, fluid–gas interface, ...) under gravity.

c ≡ concentration of 1st species, ρ ≡ density of mixture, v ≡ velocity,
G ≡ gravitational acceleration, p(ρ, c) ≡ pressure, ε, νNS, νCH > 0.

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ⊗ v + p(ρ, c)I) = ρG+ νNS

(
∆v +

1

3
∇∇ · v

)
− ε∇ · (ρ∇c⊗∇c)

(ρc)t +∇ · (ρcv) = νCH∆

(
µ0(ρ, c)− ε

ρ
∇ · (ρ∇c)

)
(2)

Treat implicitly these terms, specially that in (2) (solving this
Cahn-Hilliard equation explicitly would require ∆t ∝ ∆x4!)
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