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Introduction and motivation
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Experiment

It is well known from experiment that the deformation of a body is
inseparably connected with a change of its heat content and therefore
with a change of the temperature distribution in the body=thermal
expansion property
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It is natural...

The first works on thermal stresses and thermoelasticity :

FOURIER, J-B.J, Théorie Analytique de la Chaleur. Paris, Didot,
1822.

Duhamel, J.-M.-C., Second mémoire sur les phénomènes
thermo-mécaniques, J. de l’École Polytechnique, tome 15, cahier 25,
1837, pp. 1–57.
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Thermal expansion

utt(x, t)− uxx(x, t) = 0

θt(x, t)− θxx(x, t) = 0
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Thermal expansion

(S)

{
utt − uxx + γθx = 0
θt − θxx + γutx = 0
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Linear Thermoelasticity

(S)

{
utt − uxx + γθx = 0, Ω× (0,+∞),
θt − θxx + γutx = 0, Ω× (0,+∞),

A. DAY, Heat Conduction with Linear Thermoelasticity,
Springer-Verlag, New York, 1985.

CARLSON, D. E., Linear thermoelasticity. In Handbuch der Physik.
Bd.Vla/2, edited by C. Truesdell. Berlin, Springer, 1972.

C. Dafermos, On the existence and the asymptotic stability of
solutions to the equations of linear thermoelasticity, Arch. Rational.
Mech. Anal. 29, 241-271 (1968)

Clarence Zener, Internal Friction in Solids. I. Theory of Internal
Friction in Reeds, Phys. Rev. 52, 230–235 (1937) ; 53, 90–99 (1938).
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Asymptotic behavior of thermoelasticity
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Strong stability

(S)


utt − uxx + γθx = 0, Ω× (0,+∞),
θt − θxx + γutx = 0, Ω× (0,+∞),
u = 0 = θ = 0, ∂Ω
+I.C

E(t) →
t→∞

0 (Dafermos 1968)

C. M. Dafermos, On the existence and the asymptotic stability of
solutions to the equations of linear thermoelasticity. Arch. Rat.
Mech. Anal., 29, 1968, pp. 241-271.

Remark : No decay rate was given.
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Exponential decay remains open for some time (24 years !)

(S)


utt − uxx + γθx = 0, Ω× (0,+∞),
θt − θxx + γutx = 0, Ω× (0,+∞),
u = 0 = θ = 0, ∂Ω
+I.C

∃C,α > 0 s.t :

‖T (t)y‖D(A) 6 Ce−αt‖y‖D(A) (Slemrod 1981)

Slemrod, M, Global existence, uniqueness, and asymptotic stability
of classical smooth solutionsin one-dimensional non-linear
thermoelasticity,Arch. Rational Mech. Anal., 76(1981), 97-133.

J.E.M. Rivera, Energy decay rate in linear thermoelasticity, Funkcial
Ekvac., Vol. 35 (1992), pp. 19-30.
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(S)


utt − uxx + γθx = 0, Ω× (0,+∞),
θt − θxx + γutx = 0, Ω× (0,+∞),
u = 0 = θ = 0, ∂Ω
+I.C

∃C,α > 0 s.t :

‖T (t)y‖H 6 Ce−αt‖y‖H (Hansen 1992)

S. W. Hansen, Exponential energy decay in a linear thermoelastic
rod. J. Math. Anal. Appli.,167, 1992, pp. 429-442.

Z. Liu and S.M. Zheng, Exponential stability of the semigroup
associated with a thermoelastic system, Quart. Appl. Math. 51
(1993), pp. 535-545.

Z.Y. Liu and S. Zheng, Semigroups Associated with Dissipative
Systems. Chapman & Hall/CRC Research Notes in Mathematics
Series (1999).
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Techniques used in litterature

The energy method (Slemrod 1981)
The spectral analysis method (Rivera, Shibata 1990)
Fourier series expansion method and decoupling technique (Hansen
1992)
Combination of semigroup theory and energy method (Gibson,
Rosen and Tao 1992)
Control theory approach and a uniqueness continuation theorem
(Kim 1992)
Contradiction argument (Gearhart-Prüss) and PDE technique (Liu &
Zheng 1993)
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(S)

{
utt +Au+ γAαθ = 0
θt +Aβθ + γAαut = 0

F. Ammar-Khodja, A. Benabdallah and D. Teniou, Dynamical
stabilizers and coupled systems. ESAIM Proceedings 2, (1997), pp
253-262.

F. Ammar-Khodja, A. Bader, A. Benabdallah, Dynamic
stabilization of systems via decoupling techniques. ESAIM Control
Optim. Calc. Var. 4, (1999), pp. 577-593.
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F. Alabau, P. Cannarsa, V. Komornik, Indirect internal
stabilization of weakly coupled evolution equations, J.evol.equ.
(2002) 2 : 127.

J. Hao and Z. Liu, Stability of an abstract system of coupled
hyperbolic and parabolic equations. Zeitschrift für angewandte
Mathematik und Physik, 64, (2013), pp. 1145-1159.
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Exponential decay

Theorem : Gearhart 1978 and Prüss 1984
Let H be a Hilbert space and A the generator of a C0−semigroup
{T (t)}t>0. {T (t)}t>0 is exponentially stable

m

sup{Reλ, λ ∈ σ(A)} < 0 := s(A) < 0 + sup
Reλ>0

{‖(λI −A)−1‖} <∞

Theorem : Huang Falun 1985
In the previous result if {T (t)}t>0 is a contraction semigroup, then T (·)
is exponentially stable ⇔ iR ⊂ ρ(A) and sup

β∈R
{‖(iβI −A)−1‖} <∞

Remark : There is also Lyapunov theory.
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Question :
If a system of PDE decays exponentially to zero, what are conditions for
which its numerical approximation still decreases exponentially to zero
uniformly with respect to the step size ?
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Approximation and simulation of
thermoelastic system
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Theorem : Z. Liu & S. Zheng 1994, SIAM J. CONTROL AND
OPTIMIZATION

Let Tn(·), (n = 1, · · · ) be a sequence of c0−semigroups of operators on
the Hilbert spaces Hn and let An be the corresponding infinitesimal
generators. Then Tn(·) are uniformly exponentially stable iff

1 sup
n∈N
{Reλ, λ ∈ σ(An)} < 0 := σ0 < 0 ;

2 ∃σ ∈ (σ0, 0) s.t :

sup
Reλ>σ,n∈N

{‖(λIn −An)−1‖} = M0 <∞

3 ∃M1 > 0 s.t : ‖Tn(t)‖L(Hn,Hn) 6M1 <∞, ∀t > 0, n ∈ N

Theorem : Liu & Zheng 1994, SIAM J. CONTROL AND
OPTIMIZATION

If the family {Tn(·)}, (n = 1, · · · ) of c0−semigroups is of contraction, on
the Hilbert spaces Hn and An be the corresponding infinitesimal
generators. Then Tn(·) are uniform. exponentially stable ⇔
∀n ∈ N, iR ⊂ ρ(An) and sup

β∈R,n∈N
{‖(iβIn −An)−1‖} <∞
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Exponential decay of approximate thermoelaticity

(S)


utt − uxx + γθx = 0, Ω× (0,+∞),
θt − θxx + γutx = 0, Ω× (0,+∞),
u = 0 = θ = 0, ∂Ω
+I.C

J. S. GIBSON, I. G. ROSEN, AND G. TAO, Approximation in
control of thermoelastic systems, SIAM J. Control. Optim., 30
(1992), pp. 1163-1189.

Z. Y. Liu and S. Zheng, Uniform exponential stability and
approximation in control of a thermoelastic system. SIAM J. Control
Optim. 32, (1994), pp. 1226-1246.
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Numerical simulation for exp.case : FDM, FEM,
MFEM

S. NAFIRI Thermoelasticity : from exp. to poly. decay 21



Table – Distance between σ(An) and the imaginary axis for the spectral
method in the case of Dirichlet-Dirichlet boundary conditions.

n min{-Reλ, λ ∈ σ(An)}
8 8.9227×10−4

16 8.9383×10−4

24 8.9402×10−4

32 8.9407×10−4

Theorem : Hansen 1992
If γ < 1/2. Eigenvalues of the generators An (z′n = Anzn, zn(0) = zn0)
satisfy

sup
λ∈σ(An)−{0}

Reλ 6 −γ
2

2
.

S. W. Hansen, Exponential energy decay in a linear thermoelastic
rod. J. Math. Anal. Appli.,167, 1992, pp. 429-442.

Farid Ammar Khodja, Assia Benabdallah, and Djamel Teniou,
Stability of coupled systems, Abstr. Appl. Anal. Volume 1, Number 3
(1996), 327-340.
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Uniform exponential case

H. T. Banks, K. Ito and C.Wang. Exponentially stable
approximations of weakly damped wave equations. Internat. Ser.
Numer. Math. 100, Birkhäuser, (1991), pp. 1-33.

J. A. Infante and E. Zuazua. Boundary observability for the space
semi-discretizations of the 1− d wave equation. ESAIM :
Mathematical Modelling and Numerical Analysis, 33, (1999), pp.
407-438.

L. I. Ignat and E. Zuazua, A two-grid approximation scheme for
nonlinear Schrödinger equations : dispersive properties and
convergence, C. R. Math. Acad. Sci. Paris, 341, (2005), pp. 381-386.

K. Ramdani, T. Takahashi and M. Tucsnak, Uniformly
exponentially stable approximations for a class of second order
evolution equations application to LQR problems. ESAIM Control.
Optim. Calc. Var., 13, (2007), pp. 503-527.

S. Ervedoza and E. Zuazua, Uniform exponential decay for viscous
damped systems. Progr. Nonlinear Differential Equations Appl. 78,
(2009), pp. 95-112.
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Wave eqn.

(WE) with internal damping

(S)

 utt −∆u+ γut = 0,Ω
u = 0, ∂Ω
+I.C

(WE) with boundary
damping

(S)


utt −∆u+ ut = 0,Ω
u = 0, ∂Ω1
∂u
∂ν + γut = 0, ∂Ω2

+I.C

Remark
For the wave equation with internal or boundary friction damping, the
dissipation is relatively strong so that the energy method can be applied
to obtain the exponential stability as well as the uniformly exponential
stability for the approximation. However, the dissipation in the
thermoelastic system, due to heat conduction, is much weaker.
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Polynomial decay

Theorem. (Borichev and Tomilov, 2010)

Let T (t) be a bounded C0-semigroup on a Hilbert space H with
generator A such that iR ⊂ ρ(A). Then for a fixed α > 0 the following
conditions are equivalent :

(i) ‖(isI −A)−1‖ = O(|s|α), s→∞.
(ii) ‖T (t)(−A)−α‖ = O(t−1), t→∞.

(iii) ‖T (t)(−A)−1‖ = O(t
−1
α ), t→∞.

Z. Liu and B. Rao, Characterization of polynomial decay rate for
the solution of linear evolution equation, Zeitschrift für angewandte
Mathematik und Physik ZAMP, 56, (2005), pp. 630-644.

Bátkai, A., Engel, K.-J., Prüss, J., Schnaubelt, R., Polynomial
stability of operator semigroups. Math.Nachr. 279, 1425-1440
(2006).
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Polynomial decay

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for
bounded semigroups on Banach spaces, J. Evol. Equ., 8(4),
pp.765-780, 2008.

Borichev Alex, Tomilov Yu, Optimal polynomial decay of functions
and operator semigroups (2010).
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Polynomial decay

(S)

{
utt + uxx + γθx = 0
θt + θxx + γutx = 0

=⇒ (S)

{
utt + uxx + γθ = 0
θt + θxx + γut = 0

F. A. Khodja, A. Benabdallah and D. Teniou, Dynamical
stabilizers and coupled systems, ESAIM Proceedings, Vol. 2 (1997),
253-262.

Z. Liu and B. Rao, Frequency domain approach for the polynomial
stability of a system of partially damped wave equations, (2006).

Louis Tebou, Stabilization of some coupled hyperbolic/parabolic
equations. Discrete & Continuous Dynamical Systems B, 2010, 14
(4) : 1601-1620.

J. Hao and Z. Liu, Stability of an abstract system of coupled
hyperbolic and parabolic equations. Zeitschrift für angewandte
Mathematik und Physik,64, (2013), pp. 1145-1159.
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Uniform Polynomial Stability of Tn(·)

Theorem : S. N and L. Maniar 2016

Let Tn(t) (n = 1, . . .) be a uniformly bounded sequence of C0-semigroups
on the Hilbert spaces Hn and let An be the corresponding infinitesimal
generators, such that iR ⊂ ρ(An) and sup

n∈N
||A−1

n || <∞. Then for a fixed

α > 0 the following conditions are equivalent :
1 sup

s, n∈N
|s|−α‖R(is, An)‖ <∞.

2 sup
t>0, n∈N

‖tTn(t)A−αn ‖ <∞.

3 sup
t>0, n∈N

‖t 1
αTn(t)A−1

n ‖ <∞.

L. Maniar and S. Nafiri, Approximation and uniform polynomial
stability of C0−semigroups, ESAIM : COCV 22 (2016), pp. 208–235.
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Application 1 : General thermoelastic model

0 ≤ τ < 1
2 : 

ün + ρBnun − µBτnθn = 0,

θ̇n + κBnθn + σBτnu̇n = 0,
un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,

m{
x′n = Aτ,nxn,
xn(0) = xn0,
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Hypothesis

Hn family of Hilbert spaces.
Bn : D(Bn) ⊂ Hn → Hn, selfadjoint, positive definite, B−sn
compact for positive s, 0 ∈ ρ(Bn) and sup

n∈N
||B

−1
2
n || <∞.

Hn = D(B
1
2
n )×Hn ×Hn.
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Consequences

Aτ,n generates a family of C0-semigroupes of contraction Sτ,n(t).
iR ⊂ ρ(Aτ,n), n ∈ N.
sup
n∈N
||A−1

τ,n|| <∞.

Theorem

Assume 0 ≤ τ < 1
2 . Then, the semigroup generated by Aτ,n is uniform.

poly. stable with order at most α = 2(1− 2τ).
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Aτ,n verifies the hypothesis of the main theorem, then

sup
|β|≥1, n∈N

1

|β|2(1−2τ)
‖(iβI3n −Aτ,n)−1‖ <∞.

m

∃C > 0, α > 0 : ‖tTn(t)(−An)−α‖ ≤ C, ∀t > 0,∀n ∈ N.
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Application 2

(S)


utt(x, t)− uxx(x, t) + γθ(x, t) = 0 in (0, π)× (0,∞),
θt(x, t)− kθxx(x, t)− γut(x, t) = 0 in (0, π)× (0,∞),
u(x, t) |x=0,π= 0 = θ(x, t) |x=0,π on (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) on (0, π),

F. A. Khodja, A. Benabdallah and D. Teniou, Dynamical stabilizers
and coupled systems, ESAIM Proceedings, Vol. 2 (1997), 253-262.

Z. Liu and B. Rao : Frequency domain approach for the polynomial
stability of a system of partially damped wave equations, (2006).

S. NAFIRI Thermoelasticity : from exp. to poly. decay 33



By introducing new variable (velocity)

v = ut, (1)

system (S) can be reduced to the following abstract first order evolution
equation :

(S)

{
dz
dt = Az
z(0) = z0

with

z =

 z1

z2

z3

 =

 u
v
θ

 ,A =

 0 I 0
D2 0 −γ
0 γ kD2


H = H1

0 (Ω)× L2(Ω)× L2(Ω) the state space equipped with the norm

‖z‖H =
(
‖Dz1‖2L2 + ‖z2‖2L2 + ‖z3‖2L2

) 1
2

,

Here we have used the notation D = ∂/∂x, D2 = ∂2/∂x2.
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Approximations by a spectral method

Let

Ej =

 φj
0
0

 , En+j =

 0
ψj
0

 , E2n+j =

 0
0
ξj

 , j = 1, ..., n

be a basis for the finite dimensional space
Hn = Hn

1 (Ω)×Hn
2 (Ω)×Hn

3 (Ω) ⊂ H1
0 (Ω)×H1

0 (Ω)×H1
0 (Ω) ⊂ H =

H1
0 (Ω)×L2(Ω)×L2(Ω). The inner product on Hn is the one induced by

the H product. We consider the approximation to system (S) of the form

zn =

3n∑
j=1

z̃j(t)Ej(x),
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which is required to satisfy the following variational system :

(żn, Ei)H = (Azn, Ei)H, i = 1, ..., 3n.

Mn
˙̃zn =

 M
(1)
n

M
(2)
n

M
(3)
n


 ˙̃z

(1)
n

˙̃z
(2)
n

˙̃z
(3)
n


=

 0 D̃T
n 0

−D̃n 0 −γF̃n
0 γF̃Tn −Gn


 z̃

(1)
n

z̃
(2)
n

z̃
(3)
n

 = Ãnz̃n

with

(M (1)
n )ij = (Dφi, Dφj)L2 , (M (2)

n )ij = (ψi, ψj)L2 , (M (3)
n )ij = (ξi, ξj)L2 ,

(D̃n)ij = (Dφi, Dψj)L2 , (F̃n)ij = (ξi, ψj)L2 , (Gn)ij = (Dξi, Dξj)L2

and
z̃(i)
n = (z̃(i−1)n+1, ..., z̃in)T , i = 1, 2, 3.
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By construction, the matrix M (i)
n is symmetric and positive definite.

Therefore, there exists a lower triangle matrix L(i)
n such that

M (i)
n = (L(i)

n )T (L(i)
n ),

and denote Lnz̃n by z̄n,
then

˙̄zn = Anz̄n

with

An =

 0Cn (LT1 )−1D̃T
nL
−1
2 0Cn

−(LT2 )−1D̃nL
−1
1 0Cn −γ(LT2 )−1F̃nL

−1
3

0Cn γ(LT3 )−1F̃Tn L
−1
2 −(LT3 )−1GnL

−1
3

 .
It is easy to see that

(Anz̄n, z̄n)C3n = −(GnL
−1
3 z̄(3)

n , L−1
3 z̄(3)

n )Cn ≤ 0

provided that Gn is semipositive definite.
=⇒An generates a C0-semigroup Tn(t) of contraction on Hn
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Let
φj =

√
2
π

1
j sin jx, ψj =

√
2
π sin jx, ξj =

√
2
π sin jx, j = 1, ..., n.

the eigenvalues of (S), then

An =

 0 Dn 0
−Dn 0 −γ

0 γ −D2
n


with

Dn =

 1
. . .

n

 .
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Uniform Polynomial Stability with spectral
element method

Theorem
The semigroups generated by An are uniformly polynomially stable.
Moreover, we have :

sup
|β|≥1, n∈N

1

β2
‖(iβI −An)−1‖ <∞,

m

sup
t>0, n∈N

‖t 1
2Tn(t)A−1

n ‖ <∞.
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Finite difference semi-discretization

x0 = 0 < x1 = ∆ < · · · < xn−1 = (n− 1)∆ < xn = π
üj(t) + 1

∆2 [uj+1(t)− 2uj(t) + uj−1(t)] + γθj(t) = 0, t > 0, j = 1, . . . , n− 1

θ̇j(t) + 1
∆2 [θj+1(t)− 2θj(t) + θj−1(t)]− γu̇j(t) = 0, t > 0, j = 1, . . . , n− 1

u0(t) = un(t) = θ0(t) = θn(t) = 0, t > 0
uj(0) = u0j , u̇j(0) = u1j , θj(0) = θ0j , j = 0, . . . , n

m
ün +Bnun + γθn = 0,

θ̇n +Bnθn − γu̇n = 0,
un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,
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dUn
dt

= AnUn, Un(0) = U0n,

An =

 0 In 0
−Bn 0 −γIn

0 γIn −Bn

 , Bn =
1

∆2



2 −1 0

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 2


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Finite element semi-discretization


ün +Bnun + γθn = 0,

θ̇n +Bnθn − γu̇n = 0,
un(0) = u0n, u̇n(0) = u1n, θn(0) = θ0n,

where Bn = (M
(2)
n )−1M

(1)
n .

M (1)
n =

1

∆



2 −1 0

−1 2
. . .

. . . . . . . . .
. . . 2 −1

0 −1 2


,M (2)

n = ∆



2
3

1
6 0

1
6

2
3

. . .
. . . . . . . . .

. . . 2
3

1
6

0 1
6

2
3


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Uniform Polynomial Stability with finite difference
et finite element method

Theorem
The semigroups generated by An are uniformly polynomially stable.
Moreover, we have :

sup
|β|≥1, n∈N

1

β2
‖(iβI −An)−1‖ <∞,

m

sup
t>0, n∈N

‖t 1
2Tn(t)A−1

n ‖ <∞.
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Numerical experiments
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Numerical experiments

Theorem : Batkai and al 2006, Borichev and Tomilov 2010
If A is the generator of a contraction polynomially stable (of order
α > 0) C0-semigroup on a Hilbert space X. Fix δ > 0 s.t [0, δ] ⊂ ρ(A).
Then we have for some constant C

|Imλ| > C(Reλ)−
1
α for all λ ∈ σ(A) with Reλ 6 δ.
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Influence of regularity on the decay of energy !

For T = 100 and ∆t = 10−2, we consider the following initila value :

u(x, 0) = 0, θ(x, 0) = 0, ut(x, 0) =

√
2

π
sin(jx), j = 1, 2, 3.

S. NAFIRI Thermoelasticity : from exp. to poly. decay 46



Influence of regularity on the decay of energy !

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

E
nj
(
t
)

 

 
E
n

1
(t)

E
n

2
(t)

E
n

3
(t)

Figure – Effect of smoothness of the initial data on the rate of decay of energy.
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Theorem : Batkai and al 2006
If A is the generator of a contraction C0-semigroup on a Banach space
X, with 0 ∈ ρ(A). Then we have the equivalence with s > 0

(a) ‖T (t)A−s‖ = O(t−r), t→ +∞
(b) ‖T (t)A−sξ‖ = O(t−rξ), t→ +∞, ξ > 0.
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Impact of B.C on the behavior of solutions

(S)

 utt(x, t)−∆u(x, t) + γθ(x, t) = 0, Ω× (0,+∞),
θt(x, t)−∆θ(x, t)− γut(x, t) = 0, Ω× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) on Ω.

(DD) u(x, t) |∂Ω= 0 = θ(x, t) |∂Ω (Dirichlet-Dirichlet B.C)

(DN) u(x, t) |∂Ω= 0 = ∂θ
∂n (x, t) |∂Ω (Dirichlet-Neumann B.C)

(ND) ∂u
∂n (x, t) |∂Ω= 0 = θ(x, t) |∂Ω (Neumann-Dirichlet B.C)

(NN) ∂u
∂n (x, t) |∂Ω= 0 = ∂θ

∂n (x, t) |∂Ω (Neumann-Neumann B.C)
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Well posedness

{
dU
dt = AU,
U(0) = U0 = (u0, u1, θ0)

t

,
U =

(
u
v
θ

)
and

A ∈ {ADD,ADN ,AND,ANN}

where
HO = D(A

1
2

O)×H ×H, O ∈ {D,N}.

AOO′ =

 0 I 0
AO 0 −γI
0 γI AO′

 , O,O′ ∈ {D,N}

D(AOO′) = D(AO)×D(A
1
2

O)×D(AO′), O,O′ ∈ {D,N}

D(AD) = H2(Ω) ∩H1
0 (Ω), D(AN ) = {w ∈ H2(Ω)/

∂w

∂n
|∂Ω= 0}

D(A
1
2

D) = H1
0 (Ω), and D(A

1
2

N ) = H1(Ω).
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Well posedness

Theorem : For all O,O′ ∈ {D,N} the family of operators AOO′ ,
generates a contraction semigroup TOO′(·) on the Hilbert space HO.

S. NAFIRI Thermoelasticity : from exp. to poly. decay 51



Asymptotic behavior

XDD = D(A
1
2

D)×H ×H

XDN = D(A
1
2

D)×H ×HN

XND = D(A
1
2

N )×HN ×H

XNN = D(A
1
2

N )×HN ×HN

where
HN = {f ∈ H : 〈f, 1〉H = 0}.
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Asymptotic behavior

Theorem : For all O,O′ ∈ {D,N} the family of semigroups TOO′(·)
generated by AOO′ :

1 is strongly stable on the Hilbert space XOO′ .
2 not exponentially stable on XOO′ .
3 polynomially stable of decay rate α = 1/2 on XOO′
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Conclusion and open problems

Numerical study under the class B.C
Full discretization
Numerical study when d = 2, 3.
Non autonomous case A(t), t > 0

etc...

Thank you for your attention
Gracias
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