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Optimal control problem

Given N > 0 optimization horizon, minimize the cost functional

JN(x ,u) =
N−1∑
k=0

`(x(k),u(k))

over u(k) ∈ U, subject to the discrete-time control system

x(k + 1) = f (x(k),u(k)) , k = 0, . . . ,N

with state and input constraints x(k) ∈ X, u(k) ∈ U
initial condition x(0) = x0 ∈ X
` : X × U → R is a running cost,
f solution operator (ODE, PDE, or their numerical approx)

Brief notation: x+ = f (x ,u)
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Turnpike - Interpretation

The turnpike property describes a behaviour of optimal
trajectories for a finite horizon optimal control problem

"There is a fastest route between any two points; and if origin and
destination are close together and far from the turnpike, the best
route may not touch the turnpike. But if origin and destination are far
enough apart, it will always pay to get on to the turnpike and cover
distance at the best rate of travel, even if this means adding a little
mileage at either end."

Dorfman, Samuelson and Solow,
Linear Programming and Economic Analysis (1958)

Informally: any optimal trajectory stays near a steady-state
(xe,ue) most of the time
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Turnpike - Example 1

Keep the state of the system

x+ = 2x + u

inside the given interval X = [−2;2] minimising the control
effort

`(x ;u) = u2

with input constraints U = [−3;3]
Rmk: the closer the state is to xe = 0, the cheaper it is to keep
the system inside X

=⇒ optimal trajectories should stay near xe = 0
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Turnpike - Example 2

Consider the 1D macroeconomic model by [Brock-Mirman ’72]
Minimize the cost functional J with running cost

`(x ,u) = − ln(Axα − u) , A = 5 , α = 0.34

with dynamics
x+ = u

with input and state constraints X = U = [0,10]

Here the optimal trajectories are less obvious
On infinite horizon, it is optimal to stay at the equilibrium

xe ≈ 2.2344 with `(xe;ue) ≈ 1.4673

One may thus expect that finite horizon optimal trajectories also
stay for a long time near that equilibrium
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Turnpike - Essential feature

The number of points outside the blue neighborhood is
bounded indipendently of the optimization horizon N
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Definition of Turnpike

(xe,ue) ∈ X× U equilibrium for the control system, i.e.,
f (xe,ue) = xe.

Turnpike property at (xe,ue) if for each ε > 0 and ρ > 0
there exists Cρ,ε > 0 s.t. for all N ∈ N all optimal trajectories
x? starting in Bρ(xe) satisfy

#
{

k ∈ {0, . . . ,N}
∣∣ ‖x?(k)− xe‖ > ε

}
≤ Cρ,ε .

Near-equilibrium turnpike property at (xe,ue) if for each ρ > 0,
ε > 0 and δ > 0 there exists Cρ,ε,δ > 0 s.t. for all x ∈ Bρ(xe)
and all N ∈ N, all trajectories xu(·, x) with
JN(x ,u) ≤ N`(xe,ue) + δ for some u ∈ U, satisfy the inequality

#
{

k ∈ {0, . . . ,N}
∣∣ ‖xu(k , x)− xe‖ > ε

}
≤ Cρ,ε,δ .

In words, the optimal/near equilibrium trajectories stay in an
ε-neighbourhood of xe for all but finitely many “exceptional” time instants
whose number is bounded independently of the optimization horizon N.
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Turnpike at (xe,ue) - References

First described in mathematical economy in the context of
optimal growth strategies
Ramsey (1928), A Mathematical Theory of Saving
von Neumann (1945), A Model of General Economic Equilibrium

Dorfman, Samuelson, Solow (1957)
McKenzie (1983, 1986,...)

Recent interest from the mathematical control community
Zaslavski (2014)
for ODEs, continuous time: Porretta, Zuazua (2013), Trélat,
Zuazua (2015), Faulwasser et al. (2015), ...
for ODEs, discrete time: Grüne (2013), Damm et al. (2014),
Grüne, Müller (2016), ...

Further works for turnpike towards non equilibrium points
Zanon et al (2017), Grüne, Pickelmann (2017),
Berberich et al (2018), Trélat, Zhang, Zuazua (2019), ...
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Dissipativity - Main notions

x+ = f (x ,u)

Introduce functions s : X × U → R and λ : X → R , where

s(x ,u) supply rate, measuring the (possibly negative)
amount of energy supplied to the system
via the input u in the next time step

λ(x) storage function, measuring the amount of energy
stored inside the system when it is in state x



Strict Dissipativity - Definition

K := {α : R+
0 → R+

0 ,
continuous, strictly increasing,
α(0) = 0}

The system x+ = f (x ,u) is called strictly pre-dissipative if
there are xe ∈ X, α ∈ K s.t. for all x ∈ X, u ∈ U, the
inequality

λ(x+) ≤ λ(x) + s(x ,u)− α(‖x − xe‖)

holds.
The system is called strictly dissipative if it is strictly
pre-dissipative with λ bounded from below



Dissipativity - Physical interpretation

λ(x+) ≤ λ(x) + s(x ,u)− α(‖x − xe‖)

Physical interpretation:

λ(x) = energy stored in the system in state x
s(x ,u) = energy supplied to the system

Strict dissipativity:
- energy can not be generated inside the system
- a certain amount of energy α(‖x − xe‖) must be dissipated
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LQ Optimal Control Problem

We consider linear quadratic finite dimensional discrete-time
optimal control problems

min
u∈UN(x0)

JN(x0,u)

JN(x0,u) :=
N−1∑
k=0

x(k)T Qx(k)+u(k)T Ru(k)+sT x(k)+vT u(k)+c ,

x(k + 1) = Ax(k) + Bu(k) , x(0) = x0 ,

where
N ∈ N optimization horizon, x(k) ∈ Rn, u(k) ∈ Rm

s ∈ Rn, v ∈ Rm, c ∈ R, x0 ∈ Rn

A, B, Q and R matrices of appropriate dimension,
Q and R symmetric, Q ≥ 0 and R > 0



LQ Optimal Control Problem /2

x(k + 1) = Ax(k) + Bu(k) , x(0) = x0 , (1)

x(k) ∈ X state of the system at time tk , X state constraints
u(k) ∈ U control acting on the system from tk to tk+1,

U input constraints
xu(k , x0) solution to (1) corresponding to IC x0 and control u

f (x ,u) = Ax + Bu solution operator

`(x ,u) = xT Qx + uT Ru + sT x + vT u + c running cost

JN(x0,u) :=
N−1∑
k=0

`(x(k),u(k)) minimized over

UN(x0) := {u ∈ UN | xu(k , x0) ∈ X for all k = 0, . . . ,N}
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Characterization of strict dissipativity for LQ problems

Let (xe,ue) be an equilibrium on X× U

Lemma: (i) For LQ problems, the supply rate can be chosen as
s(x ,u) = `(x ,u)− `(xe,ue), and the storage function as

λ(x) = xT Px + qT x . (2)

(ii) The LQ problem is strictly pre-dissipative, with a storage
function λ of the form (2), if and only if the matrix inequality

Q + P − AT PA > 0

is satisfied.
Moreover, if P > 0, then the LQ problem is strict dissipative.

(iii) The LQ problem is strictly dissipative if and only if P > 0 or
X is bounded



Spectral criteria for solvability of the matrix inequality

Lemma: The matrix inequality

Q + P − AT PA > 0

has a solution P if and only if all unobservable eigenvalues
satisfy |µ| 6= 1.

Moreover, the solution satisfies P > 0 if and only if all
unobservable eigenvalues µ of A satisfy |µ| < 1, i.e.,
iff (A,C) is detectable

Rmk: x+ = Ax + Bu , `(x ,u) = xT Qx + uT Ru + sT x + vT u
with Q = CT C ≥ 0 and R > 0.

We call an eigenvalue µ of A unobservable if the
corresponding eigenvector v satisfies Cv = 0
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Main result without state constraints

Theorem: Consider the LQ problem with (A,B) stabilizable,
Q = CT C, constraint sets X = Rn and U ⊂ Rm. Then the
following properties are equivalent

(i) The problem is strictly dissipative at an equilibrium
(xe,ue) ∈ int(X× U)

(ii) The problem has the turnpike property at an equilibrium
(xe,ue) ∈ int(X× U)

(iii) The pair (A,C) is detectable, i.e., all unobservable
eigenvalues µ of A satisfy |µ| < 1.

Moreover, if one of these properties holds, then the equilibria in
(i) and (ii) coincide, and the exponential turnpike property
holds.
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Main result with state constraints

Theorem: Consider the LQ problem with Q = CT C, constraint
sets X ⊂ Rn bounded and U ⊂ Rm. Then the following
properties are equivalent

(i) The problem is strictly pre-dissipative at an equilibrium
(xe,ue) ∈ int(X× U)

(ii) The problem has the near equilibrium turnpike property at
an equilibrium (xe,ue) ∈ int(X× U)

(iii) All unobservable eigenvalues µ of A satisfy |µ| 6= 1.

Moreover, if one of these properties holds, then the equilibria in
(i) and (ii) coincide. If, in addition, (A,B) stabilizable, then the
exponential turnpike property holds.
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The role of state constraints

It is evident that the conditions in the state constrained case are
significantly less restrictive:
I with bounded state constraints, all unobservable

eigenvalues µ of A must satisfy |µ| 6= 1, i.e., all
unobservable uncontrolled solutions must converge to 0
or diverge to ∞ exponentially fast

I without bounded state constraints, all unobservable
eigenvalues µ of A must satisfy |µ| < 1, i.e., all
unobservable uncontrolled solutions must converge to 0
exponentially fast



Back to Example 1

Cost function `(x ,u) = u2

=⇒ Q = C = 0

Dynamics x+ = 2x + u

=⇒ µ = 2

Constraints X = [−2;2] , U = [−3;3]

The dynamics has the (single) eigenvalue µ = 2, which is
unobservable

Hence, the turnpike property holds for bounded constraints, but
it cannot hold for X = R

Indeed, in this case all optimal solutions grow exponentially
(unless x0 = 0), because u ≡ 0 is clearly the optimal control
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Example 3 - Necessity of the conditions

Cost function `(x ,u) = u2

=⇒ Q = C = 0

Dynamics x+ = x + u

=⇒ µ = 1

Constraints X = [−2;2] , U = [−3;3]

The single eigenvalue µ = 1 is unobservable

Hence, the near equilibrium turnpike property does not hold

Indeed, in this case all optimal trajectories are constant, thus
the near equilibrium turnpike property at (xe,ue) does not
hold whenever x0 6= xe
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The role of state constraints for turnpike phenomena

General principle for bounded constraints:

I The solutions corresponding to eigenvalues |µ| > 1
become unbounded without control action

I The bounded constraints make the unbounded solutions
expensive, because we need to counteract using
expensive control action

I This forces the optimal trajectories to the turnpike
I Hence, state constraints help to enforce the turnpike

property



Discrete-time, X = Rd , (A,B) stabilizable, Q = CT C

(A,C) is detectable ⇐⇒ ∀ unobservable eigenvalues µ of A: |µ| < 1

~ww� ~ww�
strict dissipativity at (xe,ue) ∈ int (X× U)

~www (without (A,B) stabilizable)

~ww�
turnpike property at (xe,ue) ∈ int (X× U)

www� (without Q = CT C)

exponential turnpike at (xe,ue) ∈ int (X× U)



Discrete-time, X ⊂ Rd bounded, Q = CT C

∀ unobservable eigenvalues µ of A: |µ| 6= 1

~ww� (without boundedness of X)

strict pre-dissipativity at (xe,ue) ∈ int (X× U)

(without boundedness
of X )

~www www� (without Q = CT C)

near equilibrium turnpike at (xe,ue) ∈ int (X× U)

www� (A,B) stabilizable

turnpike property at
(xe,ue) ∈ int (X× U) =⇒ exponential turnpike at

(xe,ue) ∈ int (X× U)



Conclusions & Outlook

- Connection between
Turnpike phenomena ⇐⇒ Strict dissipativity
(Including the presence of state and control constraints)

- Necessary and sufficient conditions for turnpike and near
equilibrium turnpike properties in terms of

i) spectral properties of the system matrices,
ii) the notions of strict dissipativity and the newly introduce

strict pre-dissipativity of a system at an equilibrium point.

Outlook:
- Analyse these relations for infinite dimensional systems

- Analyse the case of equilibrium (xe,ue) ∈ ∂(X× U)

- Develop a dynamical system characterization of turnpike
phenomena in the presence of constraints
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Thank you
for your attention!



Continuous-time, X = Rd , (A,B) stabilizable, Q = CT C

(A,C) is detectable ⇐⇒
∀ unobservable eigenvalues µ of A:

Re(µ) < 0
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strict dissipativity at (xe,ue) ∈ int (X× U),

i.e. Q − AT P − PA > 0 with P > 0
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~ww� (without boundedness of X)

strict pre-dissipativity at (xe,ue) ∈ int (X× U),
i.e. Q − AT P − PA > 0

(without boundedness
of X )

~www www� (without Q = CT C)

near equilibrium turnpike at (xe,ue) ∈ int (X× U)

((A,B) stabilizable)
www�

turnpike property at (xe,ue) ∈ int (X× U)
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