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The behavior of an elastic body
subjected to a strong oscillating

magnetic field.



We are interested in the homogenization problem 
 

!
"#$$% &' − div ,-(&')+ 1' × #$&' = 4' 		in		78

&' = 0		:;		(0,=) × #Ω
&'(0, ?) = &'@,					#$&'(0, ?) = &'A.		

 

 
Ω ⊂ ℝE bounded open, 78 = (0, =) × Ω,		, positive tensor 
 

4' → 4		G;	HAI0,=; H%(Ω)K
E
 

 
&'@ ⇀ &@	in	M@A(Ω)E,			&'A ⇀ &A	G;	H%(Ω)E 

 
1'(N, ?) = O'(?)+ P'(N,?) + M'(N, ?) 

 
O' ⇀ 0		in		QRA,S(Ω)E,										P' ∗⇀ 0		in	HU(78)E			 

 
M' → M		in		MAI0,=;QRA,S(Ω)K

E
,						V > 3. 



Remark. We can consider Ω ⊂ ℝ$, replacing 
&' × )*+' 

by 
&,')*+' 

 
whith &,':Ω → ℝ$×$  skew-symmetric. 
 
The present of /'(1,2) does not vary the structure of the limit of the equation. 
 
The most interesting terms are 4',5'. 
 
We start by studying the influence of 4'. 
 
 



Lemma. Let !" be the solution of 
 

#
−div ()(!") + -" × /" = 1" 		in		Ω

!" = 0		67		8Ω,
 

where  
-" ⇀ 0		in		;<=,>(Ω)?,		@ > 3,							/" ⇀ /		in			C=(Ω),						1" → 1		in			C<=(Ω). 

Define F"
G as the solutions of 

H
−div ()IF"

GJ + -" × )G = 0 		in		Ω

F"
G = 0		67		8Ω,

 

and K ∈ M
N
O(Ω)?×? by 

()IF"
GJ:)IF"QJ ⇀ K)G ⋅ )Q 		in			M

>
S(Ω). 

Then, defining ! by 
!" ⇀ !		in			CT

=(Ω)? 
we have 

!" − ! −U F"
G/G

?

VW=
→ 0	in	CT

=(Ω)? 

 
()(!"): )(!") ∗⇀ ()(!): )(!) +K! ⋅ !			in	the	measures. 



Remark. The lemma provides a corrector result, i.e. a strong approximation in 
!"#(Ω)'	of  )*. It does not give a limit equation for ).  
 
Indeed: ,* ⇀ 0		in		12#,4(Ω)',		5 > 3,							8* ⇀ 8		in			!#(Ω) does not permit 
to pass to the limit in ,* × 8*  and then in  
 

:−div >?()*) + ,* × 8* = B* 		in		Ω
)* = 0		CD		EΩ,  

 
Remark. The lemma is related with a result of  L. Tartar,1977. He considers the 
Navier-Stokes problem 
 

:−∆)* +()* ∙ ∇))* + ,* × )* + ∇5* = B* 		in		Ω
)* = 0		CD		EΩ,  

The term ,* × )*  represents here a Coriolis force. 
Using the functions I*

J (oscillating functions method) we get the limit problem 
 

K−∆)+() ∙ ∇)) + L) + ∇5 = B 		in		Ω
) = 0		CD		EΩ.

 

 



Theorem: The solution !" of 
 

#
$%&&' !" − div ,-(!")+ 1" × %&!" = 4" 		in		78

!" = 0		:;		(0,=) × %Ω
!"(0, ?) = !"@,					%&!"(0, ?) = !"A,

 

	
with			1"(E, ?) = F"(?)+ G"(E, ?) + H"(E,?), satisfies 
 

					!" ∗⇀ !		in	KL M0, =;H@A(Ω)O
P
∩RA,LS0, =; K'(Ω)TP 

 
G" × %&!"@ 	∗⇀ U	in	KLS0, =; K'(Ω)TP  

∃W:Ω → ℝP,		F" × !"@ ⇀ [W	in	H\A(Ω)P,		[W ∈ K
'^
^\'(Ω)P,			[W ⋅ W ∈ KA(Ω). 

 

#
($a + [)%&&' ! − div ,-(!)+ H × %&! + U = 4 		in		78

! = 0		:;		(0, =) × %Ω
!(0, ?) = !@,					%&!(0, ?) = ($a +[)\A($!A + [W),

 

 



Proposition: We have 
 

!|#$%|& + ()(#$+): )(#$+) ∗⇀ 
 

0+ + ()(#+): )(#+) + (!1 + 2)3%(!#% + 24) ⋅ (!#% +24) 
 
in the measures, with 0+ a nonnegative measure. 
 
Assume the initial conditions well posed (related to Francfort-Murat, 1992) 
  

#$% ⇀ #%	in	9%(Ω), 
 

−div?()(#$+)@ + A$ × #$%		compact	in		93%(Ω)I. 
Then, 

24 = 2#% 
 

!|#$%|& + ()(#$+): )(#$+) ∗⇀ !|#%|& + ()(#+): )(#+) +2#% ⋅ #% 
 
in the measures 
 
 



Theorem: Assume the initial conditions well posed and !"#$ bounded in 
%&(0, *; %,(Ω))/×/. Then  

2 = 0 
 
and the following corrector result holds 
 

!"4$ ∼ !"46			in			%:(0, *; %:(Ω))/ 
 

;(4$) ∼ ;(4) +=;>?$
@A!"46,@

B

@C&

		in			%:(0, *; %:(Ω))/×/. 

 
Remark: If these conditions do not hold, we still have 

; DE 4$
"F

"G
HIJ ∼ ; DE 4

"F

"G
HIJ+=;>?$

@AK46,@ (I:) − 46,@ (I&)M
B

@C&

	 

in			%:(0, *; %:(Ω))/×/,  ∀I&, I:, 0 < I& < I:. 
 
The proof of the theorem consists in integrating in time and then to use this 
result. Integrating in time, we do not see the oscillations in time. 



Example: 

!"($,&) = )"($, &) = 0,			,"(&) =
1

.
, /

&

.
0 ,			, ∈ 2#

4 (5)6,		7 ,89 = 0.
;

 

The limit problem reads as 
 

<

(=> +@)ABB
C D − div IJ(D) = K 		in		MN

D = 0		OP		(0, Q) × AΩ

D(0, &) = DT,					ABD(0, &) = (=> +@)UV(=DV + @W),

 

 

@JX ⋅ JZ = 7 IJ[\X]:J[\Z]89,
;

 

with 

_
−div IJ[\X] + , × JX = 0 		in		ℝ6

\ ∈ )#
V(5)6.

 

 
The magnetic field induces an increasing of mass in the homogenized equation. 
The new mass is anisotropic. 



What about the structure of !? 
 
Related problem: JCD, J. Couce-Calvo, F. Maestre, J.D. Martín-Gómez, 2014. 
Corrector for 
 

"
#$(&'#$(') − div.(/'∇.(')+ 2' ⋅ ∇$,.(' = 6'		in		(0,:) ×ℝ

=

('(0, >) = ('
?,			#$('(0, >) = @'

?
 

 
with  

&'(>, A) = &? B
>

C
D + C&E FA, >,

A

C
,
>

C
G ,					/'(>, A) = /? B

>

C
D + C/E FA, >,

A

C
,
>

C
G 

 

2'(>, A) = 2 FA, >,
A

C
,
>

C
G ,					6'(>, A) = 6 FA, >,

A

C
,
>

C
G 

 

('
? = (?(>)+ C(E B>,

>

C
D ,			@'

? = @? B>,
>

C
D. 

 
The functions are periodic in >/C and almost periodic in A/C. 
M. Brassart, M. Lenczner, 2010 consider the case &E = 0, /E = 0, 2 = 0. 



Even if the coefficients do not oscillate in time, the corrector is 

!"($,&) ∼ !)($, &) + +!, -$, &,
$
+ ,
&
+., 

i.e. the oscillations in space of the coefficients introduce oscillations in time for 
the solution. 
 
If / = 0, the homogenized equation is 
 

234 56
)34!)7 − div<(=>∇<!)) = @		in		(0, C) × ℝF

!)(0, &) = !),			34!"(0, &) = G),
 

 

6) = H6)(I)JI
K

,				@($,&) = HLMN@($, &, O, I)PJI
K

,				G)(&) = HG)(&, I)JI
K

, 
=>	the	usual	homogenized	matrix	associated	to	=). 

 
This can be obtained using the asymptotic expansion 

!"($, &) ∼ !)($, &) + +!, 5$, &,
&
+7. 

This does not provide a corrector. This differs from parabolic problems. 



Example: JCD, J. Couce-Calvo, F. Maestre, J.D. Martín-Gómez, 2014.  
 
 

!"##
$ %& − "(($ %& + 2 cos

2.(0 + 1)
3

"(%& = 5		in		(0, ;) × ℝ

%>(0, 1) = %>,			"#%&(0, 1) = ?>.
 

 
The limit problem is 
 

!"##
$ %> − "(($ %> + 2A B(0 − C)"(%>(D, 1 + 0 − D)ED

#

>
= 5		in		(0, ;) × ℝ

%>(0, 1) = %>,			"#%>(0, 1) = ?>.
 

 

B(C) = −
1
2
G

0$H

4HJ! (J + 1)!

L

HM>

 



Returning to the elasto-magnetic problem: 
 

!
"#$$% &' − div ,-(&')+ 1' × #$&' = 4' 		in		78

&' = 0		:;		(0,=) × #Ω
&'(0, ?) = &'@,					#$&'(0, ?) = &'A,

 

 
Limit equation 
 

!
("B + C)#$$% & − div ,-(&)+ D × #$& + E = 4 		in		78

& = 0		:;		(0, =) × #Ω
&(0, ?) = &@,					#$&(0, ?) = ("B +C)FA("&A + CG),

 

 
H' × #$&'@ 	∗⇀ E	in	KLM0, =; K%(Ω)OP  

 
 

"|&'A|% + ,-(&'@): -(&'@) ∗⇀ 
 

S@ + ,-(&@): -(&@) + ("B + C)FA("&A + CG) ⋅ ("&A +CG) 
 



Theorem: ∃": $%&0, ); $+(Ω)/
0
→ $2&0, ); $+(Ω)/

0
, linear, continuous, s.t. 

∀4 ∈ Ω,		∀7 ∈ (0, )),			a.e.			; ∈ (0, 7)  
 

< |">|+?4
@&A,B(CDE)/

≤ GH< I< |>|+?4
@&A,B(CDJ)/

K

%
+E

L
?MN

+

 

 

0 ≤ < < "> ⋅ >?4
@&A,B(CDE)/

E

L
?M 

 

< |P −"RJS|+?4
@&A,B(CDE)/

≤ G	TL(UV(4, 7)) 

 
with 

W = Y
|Z|
[
. 





Corollary: If the initial data is well posed the limit problem is 
 

!
(#$ + &)())* + − div 01(+)+ 2 × ()+ + 4()+ = 6 		in		9:

+ = 0		<=		(0, ?) × (Ω
+(0, A) = +B,					()+(0, A) = +C.

 

 
Example with initial data not well posed. Assume 
 

+E(0,A) = +B,					()+E(0, A) = +C. 
∃ℱ: I*(Ω)J → ILM0, ?; I*(Ω)O

J
 with 

P |ℱR|*
S(T,U(VWX))

YA ≤ [ P (#$ +&)WC&R ⋅ RYA
S(T,UV)

 

such that the limit problem is 
 

!
(#$ +&)())* + − div 01(+)+ 2 × ()+ + 4()+ = 6 + ℱ+C 		in		9:

+ = 0		<=		(0, ?) × (Ω
+(0, A) = +B,					()+(0, A) = #(#$ +&)WC+C.

 

 



Remark: In order to get a nonlocal term in the limit we need to take magnetic 
fields oscillating in space and time simultaneously. 
 
We shown !"($, &) = )"(&) ⇀ )		in		./0,1(Ω)3, provides an increasing of 
mass but not a non-local term in the limit. 
 
Analogously, assuming  

!" ∈ 5
0([0, 8])3,		!",	!

:
"	;<=<>>>?>, 

	!"(0) = 0, ?/@
ABCD× →ℳ/0	in	5

0
H([0, 8])3×3 

 
The limit equation of  

I

JKLL
M N" − div R?(N")+ !" × KLN" = T" 		in		UV

N" = 0		WX		(0,8) × KΩ

N"(0, &) = N"
H,					KLN"(0, &) = N"

0.		

 

is 
 

I

JℳLℳKLL
M N − div R?(N) + JℳLℳKLN = T + ℱN0 		in		UV

N = 0		WX		(0, 8) × KΩ

N(0, &) = NH,					KLN(0, &) = ℳ/0(0)N0.

 

 


