Controlllability of low Reynolds numbers swimmers of ciliated type

Jérôme Lohéac, joint work with Takéo Takahashi (IECL)

Centre de Recherche en Automatique de Nancy, France

VIII Partial differential squations, optimal design and numerics Benasque - 23/08/2019

Motivations

Definition (To swimm)

To propel oneself in water by natural means (such as movements of the limbs, fins, or tail).

The action of swimming is seen as a control problem. Given two points, can the fish reach one from another?

The displacement of the fish is due to fluid-structure interactions.

Introduction

The fluid

	The Reynolds numbe	r: $Re = \frac{\rho UL}{\mu}$.
$Re \ll 1$		$Re \gg 1$
Stokes Equations	Navier-Stokes Equations	Euler Equations (perfect fluid), turbulence

Examples :

	L(cm)	$U(cm.s^{-1})$	T(s)	Re
Bacteria	10 ⁻⁵	10 ⁻³	10^{-4}	10 ⁻⁵
Spermatozoon	10^{-3}	10^{-2}	10^{-2}	10 ⁻³
fish	50	100	0.5	5.10 ⁴
Pigeon	25	10 ³	5.10^{-1}	10 ⁵

æ

・ロト ・部ト ・モト ・モト

+ Newton's principle, $ma = \Sigma F$

+ Forces equilibrium, $0 = \Sigma F$

All deformations are not interesting for the motion...

Theorem (Scallop Theorem, Purcell 1977)

If the swimmer's deformation is reversible in time, then the displacement of the swimmer is null.

Taylor's experience

The deformations II

Purcell's swimmer

Taylor's experience

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Helical deformation

Introduction

References I

- Swimmer models:
 - Experiences:
 - G. Taylor, Analysis of the swimming of microscopic organisms, 1951
 - Exhibition of physical specificities:
 - E. M. Purcell, Life at low Reynolds number, 1977
 - S. Childress, Mechanics of swimming and flying, 1981
 - A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number and Efficiencies of self-propulsion at low Reynolds number, 1989

Introduction

References II

- Controllability results:
 - With Euler fluid:
 - T. Chambrion and A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid, 2011
 - With Navier-Stokes fluid:

• ...

- With Stokes fluid:
 - F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example, 2008
 - J. San Martín, T. Takahashi and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms, 2007 An optimal control approach to ciliary locomotion, 2016
- Number of controls:
 - J. San Martín, T. Takahashi and M. Tucsnak (2007) \longrightarrow 6
 - ▶ F. Alouges, A. DeSimone et al. (2013)
 - J. L. and A. Munnier (2014)

Image: A mathematical states of the state

Modeling the swimming problem

- 2 Lie brackets computations
- Generic controllability result
- 4 Conclusion

The swimmer mechanism

The swimmer is located by the position of it's mass center $h(t) \in \mathbb{R}^3$ and an angular position $Q(t) \in SO(3)$.

Construction of ${\mathcal X}$

Given $\Theta \in C^k(\mathbb{S}^2, \mathbb{TS}^2)$, we define the map

$$\begin{array}{ccc} \mathbb{S}^2 & \longrightarrow & \mathbb{S}^2 \\ y & \longmapsto & \exp_y(\Theta(y)) = \cos|\Theta(y)| \, y + \operatorname{sinc} |\Theta(y)| \, \Theta(y). \end{array}$$

Consider $\delta = (\delta_1, \dots, \delta_d) \in C^k(\mathbb{S}^2, \mathbb{TS}^2)^d$, for every $s = (s_1, \dots, s_d) \in {\rm I\!R}^d$, we set

$$\mathcal{X}_{\delta}(s) = \exp_{y}\left(\sum_{j=1}^{d} s_{j}\delta_{j}(y)\right).$$

Construction of \mathcal{X}

Given $\Theta \in C^k(\mathbb{S}^2, \mathbb{TS}^2)$, we define the map

$$\begin{array}{ccc} \mathbb{S}^2 & \longrightarrow & \mathbb{S}^2 \\ y & \longmapsto & \exp_y(\Theta(y)) = \cos|\Theta(y)| \, y + \operatorname{sinc} |\Theta(y)| \, \Theta(y). \end{array}$$

Consider $\delta = (\delta_1, \dots, \delta_d) \in C^k(\mathbb{S}^2, \mathbb{TS}^2)^d$, for every $s = (s_1, \dots, s_d) \in {\rm I\!R}^d$, we set

$$\mathcal{X}_{\delta}(s) = \exp_{y}\left(\sum_{j=1}^{d} s_{j}\delta_{j}(y)\right).$$

Given δ , we define $\tilde{\mathcal{J}}(\delta) \subset \mathbb{R}^d$, the set of $s \in \mathbb{R}^d$ such that $\mathcal{X}_{\delta}(s)$ is a C^1 -diffeomorphism of \mathbb{S}^2 , and $\mathcal{J}(\delta)$ the connected component of $\tilde{\mathcal{J}}(\delta)$ containing 0.

Lemma

 $\mathcal{J}(\delta)$ is a nonempty open subset of \mathbb{R}^d .

Hypothesis on Ψ_0

Set

$$C_0^k(\mathbb{R}^3) = \left\{ \varphi \in C^k(\mathbb{R}^3) \mid \lim_{|x| \to \infty} \partial_{x_i}^j \varphi(x) = 0, \ i \in \{1, 2, 3\}, \ j \in \{0, \dots, k\} \right\}$$

endowed with the norm

$$\|\varphi\|_{\mathcal{C}^k_0(\mathbb{R}^3)} = \sum_{j=0}^k \sum_{i=1}^3 \sup_{x \in \mathbb{R}^3} |\partial^j_{x_i}\varphi(x)|.$$

We define

$$\tilde{\mathcal{D}}_0^k = \Big\{ \Psi \in C_0^k(\mathbb{R}^3)^3 \ | \ \operatorname{Id}_{\mathbb{R}^3} + \Psi \text{ is a } C^1 \text{-diffeomorphism of } \mathbb{R}^3 \Big\}$$

and \mathcal{D}_0^k the connected component of $\tilde{\mathcal{D}}_0^k$ containing 0.

Lemma

 \mathcal{D}_0^k is a nonempty open subset of $C_0^k(I\!\!R^3)^3$.

Hypothesis on Ψ_0

Set

$$C_0^k(\mathbb{R}^3) = \left\{ \varphi \in C^k(\mathbb{R}^3) \mid \lim_{|x| \to \infty} \partial_{x_i}^j \varphi(x) = 0, \ i \in \{1, 2, 3\}, \ j \in \{0, \dots, k\} \right\}$$

endowed with the norm

$$\|\varphi\|_{\mathcal{C}^k_0(\mathbb{R}^3)} = \sum_{j=0}^k \sum_{i=1}^3 \sup_{x \in \mathbb{R}^3} |\partial^j_{x_i}\varphi(x)|.$$

We define

$$\tilde{\mathcal{D}}_0^k = \Big\{ \Psi \in C_0^k(\mathbb{R}^3)^3 \ | \ \operatorname{Id}_{\mathbb{R}^3} + \Psi \text{ is a } C^1 \text{-diffeomorphism of } \mathbb{R}^3 \Big\}$$

and \mathcal{D}_0^k the connected component of $\tilde{\mathcal{D}}_0^k$ containing 0.

Lemma

 \mathcal{D}_0^k is a nonempty open subset of $C_0^k(I\!\!R^3)^3$.

We assume $\Psi_0 \in \mathcal{D}_0^k$, so that the shape of the swimmer is

$$\mathcal{S}_{c} = (\mathrm{Id}_{\mathbb{R}^{3}} + \Psi_{0})(\mathbb{S}^{2})$$

with $c = (\Psi_0, \delta)$ the swimmer configuration.

J. Lohéac (CRAN)

Finally, we set

 $X_c(s) = (\mathrm{Id}_{\mathbb{R}^3} + \Psi_0) \circ \mathcal{X}_{\delta}(s) \qquad (c = (\Psi_0, \delta), \ s \in \mathcal{J}(\delta)).$

 $X_c(s)$ is a C^k -diffeomorphism from \mathbb{S}^2 to \mathcal{S}_c .

Proposition

The set

$$\mathcal{A}^k(d) = \left\{ (\Psi_0, \delta, s) \in \mathcal{D}_0^k imes \mathcal{C}^k(\mathbb{S}^2, \mathrm{T}\mathbb{S}^2)^d imes I\!\!R^d \mid s \in \mathcal{J}(\delta)
ight\}$$

is a nonempty connected open set of $C_0^k(\mathbb{R}^3)^3 \times C^k(\mathbb{S}^2, \mathbb{TS}^2)^d \times \mathbb{R}^d$.

Image: A matrix and a matrix

Rigid motion of the swimmer

While immersed in the fluid, the swimmer can rotate and translate. The physical deformation of the swimmer is

$$X^{\dagger}(h,Q,s)(y) = QX_c(s)(y) + h.$$

We also set

$$\mathcal{S}^{\dagger}(h,Q) = Q\mathcal{S}_{c} + h.$$

While immersed in the fluid, the swimmer can rotate and translate. The physical deformation of the swimmer is

$$X^{\dagger}(h,Q,s)(y) = \frac{Q}{X_c}(s)(y) + \frac{h}{h}.$$

We also set

$$\mathcal{S}^{\dagger}(h,Q) = Q\mathcal{S}_{c} + h.$$

The deformation velocity is then

< □ > < ^[] >

The coupled problem I

$$\begin{split} -\Delta u^{\dagger} + \nabla p^{\dagger} &= 0 & \text{ in } \mathcal{F}^{\dagger}(h, Q), \\ \text{ div } u^{\dagger} &= 0 & \text{ in } \mathcal{F}^{\dagger}(h, Q), \\ \lim_{|x| \to \infty} u^{\dagger}(t, x) &= 0, \\ u^{\dagger} &= v^{\dagger} & \text{ on } \mathcal{S}^{\dagger}(h, Q), \\ \int_{\mathcal{S}^{\dagger}(h, Q)} \sigma(u^{\dagger}, p^{\dagger}) n^{\dagger} \, \mathrm{d}\Gamma &= 0, \\ \int_{\mathcal{S}^{\dagger}(h, Q)} (x - h) \times \sigma(u^{\dagger}, p^{\dagger}) n^{\dagger} \, \mathrm{d}\Gamma &= 0, \end{split}$$

with $\sigma(u^{\dagger}, p^{\dagger}) = \nabla u^{\dagger} + \nabla u^{\dagger \top} - p^{\dagger} I_3$, the Cauchy stress tensor.

The coupled problem II

By the change of variables, $u^{\dagger}(t,x) = Qu(t,Q(t)^{\top}(x-h(t)))$ and $p^{\dagger}(t,x) = p(t,Q(t)^{\top}(x-h(t)))$, we obtain,

 $-\Delta u + \nabla p = 0 \qquad \qquad \text{in } \mathcal{F}_c,$

$$\operatorname{div} u = 0 \qquad \qquad \operatorname{in} \mathcal{F}_c,$$

$$\lim_{|x|\to\infty} u(t,x) = 0,$$

$$u = \ell + \omega \times x + \sum_{j=1}^{a} \dot{s}_j \partial_{s_j} X_c(s) \circ X_c(s)^{-1}$$
 on \mathcal{S}_c ,

$$\int_{\mathcal{S}_c} \sigma(u, p) \mathrm{n} \,\mathrm{d}\Gamma = 0,$$
$$\int_{\mathcal{S}_c} x \times \sigma(u, p) \mathrm{n} \,\mathrm{d}\Gamma = 0,$$

with

$$\dot{h}=Q\ell$$
 and $\dot{Q}=Q\mathbb{A}(\omega),$

where $\mathbb{A}(\omega)$ is such that $\mathbb{A}(\omega)x = \omega \times x$.

A geometric control problem I

Define for
$$i \in \{1, 2, 3\}$$
 and $j \in \{1, \dots, d\}$ the solutions
$$\begin{cases} u_c^i \\ u_c^{i+3} \\ v_c^i(s) \end{cases}$$
 of the Stokes system $v_c^i(s)$

with boundary conditions {

$$u'_c = e_i$$

$$u^{i+3}_c = e_i \times x$$
 on \mathcal{S}_c .

$$v^j_c(s) = D^j_c(s) = \partial_{s_j} X_c(s) \circ X_c(s)^{-1}$$

Then we have,

$$u(t,x) = \sum_{i=1}^{3} \ell_i(t) u_c^i(x) + \sum_{i=1}^{3} \omega_i(t) u_c^{i+3}(x) + \sum_{j=1}^{d} \dot{s}_j(t) v_c^j(s(t))(x).$$

A geometric control problem II

Noticing that,

$$\int_{\mathcal{S}_{c}} e_{i} \cdot \sigma(u, p) \operatorname{n} d\Gamma = 2 \int_{\mathcal{F}_{c}} \operatorname{D}(u) : \operatorname{D}(u_{c}^{i}) \quad \text{and}$$
$$\int_{\mathcal{S}_{c}} (e_{i} \times x) \cdot \sigma(u, p) \operatorname{n} d\Gamma = 2 \int_{\mathcal{F}_{c}} \operatorname{D}(u) : \operatorname{D}(u_{c}^{i+3}) \quad (i \in \{1, 2, 3\}),$$

the relations
$$\int_{\mathcal{S}_c} \sigma(u, p) \mathrm{n} \, \mathrm{d}\Gamma = 0$$
 and $\int_{\mathcal{S}_c} x \times \sigma(u, p) \mathrm{n} \, \mathrm{d}\Gamma = 0$ read as
$$\kappa_c \begin{pmatrix} \ell \\ \omega \end{pmatrix} = N_c(s)\dot{s},$$

with

$$\mathcal{K}_{c} = 2\left(\int_{\mathcal{F}_{c}} \mathrm{D}(u^{i}) : \mathrm{D}(u^{i})\right)_{i,j \in \{1,\dots,6\}} \text{ and } \mathcal{N}_{c}(s) = -2\left(\int_{\mathcal{F}_{c}} \mathrm{D}(u^{i}_{c}) : \mathrm{D}(v^{j}_{c}(s))\right)_{\substack{i \in \{1,\dots,6\}\\j \in \{1,\dots,d\}}}$$

< □ > < 同 >

.

Lemma

The mapping $(c, s) \in \mathcal{A}^k(d) \mapsto (K_c, N_c(s)) \in \mathcal{M}_6(\mathbb{R}) \times \mathcal{M}_{6,d}(\mathbb{R})$ is analytic. In addition, for every c, K_c is positive definite.

Consequently, the system can be rewritten as

$$\dot{h} = Q\ell,$$
 (1a)

$$\dot{Q} = Q \mathbb{A}(\omega),$$
 (1b)

$$\dot{s} = \lambda,$$
 (1c)

$$\begin{pmatrix} \ell \\ \omega \end{pmatrix} = K_c^{-1} N_c(s) \lambda, \tag{1d}$$

with state $(h, Q, s) \in \mathbb{R}^3 \times SO(3) \times \mathbb{R}^d$ and control $\lambda \in \mathbb{R}^d$.

Proposition

For every $(h_0, Q_0, s_0) \in \mathbb{R}^3 \times SO(3) \times \mathcal{J}(\delta)$, the system (1) endowed with the initial condition $(h, Q, s)(0) = (h_0, Q_0, s_0)$ and control $\lambda \in L^1_{loc}(\mathbb{R}_+)^d$ (resp. $\in C^{p-1}(\mathbb{R}_+)^d$) admits a unique maximal solution (h, Q, s) which is absolutely continuous (resp. of class C^p).

Furthermore, given T > 0, if for every $t \in [0, T]$, $s_0 + \int_0^t \lambda(\tau) d\tau \in \mathcal{J}(\delta)$, then the solution (h, Q, s) is well-defined on [0, T].

< □ > < 同 > < 三 >

Modeling the swimming problem

2 Lie brackets computations

Generic controllability result

4 Conclusion

-

formulation in a Lie group I

Define the Lie group

$$E(3,d) = \left\{ P(h,Q,s), \ (h,Q,s) \in \mathbb{R}^3 \times SO(3) \times \mathbb{R}^d \right\},$$

with $P(h,Q,s) = \begin{pmatrix} \begin{pmatrix} Q & h \\ 0 & 1 \end{pmatrix} & 0 \\ & 0 & \begin{pmatrix} I_d & s \\ 0 & 1 \end{pmatrix} \end{pmatrix} \in \mathcal{M}_{d+5}(\mathbb{R}).$

Its Lie algebra is

$$\mathfrak{e}(3,d) = \left\{ \mathfrak{p}(\ell,\omega,\lambda), \ (\ell,\omega,\lambda) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^d \right\},$$

with $\mathfrak{p}(\ell,\omega,\lambda) = \begin{pmatrix} \begin{pmatrix} \mathbb{A}(\omega) & \ell \\ 0 & 0 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix} \end{pmatrix}$

formulation in a Lie group II

Defining
$$f_c^j(s) = \mathfrak{p}\left(\ell_c^j(s), \omega_c^j(s), e_j\right) = \begin{pmatrix} \left(\mathbb{A}(\omega_c^j(s)) & \ell_c^j(s)\right) & 0\\ 0 & 0 \end{pmatrix} & 0 \end{pmatrix}$$

with $\begin{pmatrix} \ell_c^j(s)\\ \omega_c^j(s) \end{pmatrix} = K_c^{-1} N_c(s) e_j$, the system writes
 $\frac{\mathrm{d} P(h, Q, s)}{\mathrm{d} t} = I(Q) \sum_{j=1}^d f_c^j(s) \lambda_j = \sum_{j=1}^d f_c^j(h, Q, s) \lambda_j,$
with $I(Q) = P(0, Q, 0) = \begin{pmatrix} \begin{pmatrix} Q & 0\\ 0 & 1 \end{pmatrix} & 0\\ 0 & \begin{pmatrix} \mathrm{I}_d & 0\\ 0 & 1 \end{pmatrix} \end{pmatrix}.$

æ

< □ > < □ > < □ > < □ > < □ >

Lie brackets computations I

Remind that

$$[f^j_c,f^j_c](h,Q,s)=\mathrm{D} f^j_c(h,Q,s)\cdot f^j_c(h,Q,s)-\mathrm{D} f^j_c(h,Q,s)\cdot f^j_c(h,Q,s).$$

We have,

$$\begin{split} [f_c^j, f_c^i] &= I(Q) \tilde{\mathfrak{p}} \left(\partial_{s_j} V_c^i - \partial_{s_i} V_c^j + V_c^j \wedge V_c^i \right), \\ [f_c^k, [f_c^j, f_c^i]] &= I(Q) \tilde{\mathfrak{p}} \left(\partial_{s_k} \left(\partial_{s_j} V_c^i - \partial_{s_i} V_c^j \right) + \partial_{s_k} V_c^j \wedge V_c^i + V_c^j \wedge \partial_{s_k} V_c^i \right. \\ &+ V_c^k \wedge \left(\partial_{s_j} V_c^i - \partial_{s_i} V_c^j + V_c^j \wedge V_c^i \right) \right), \end{split}$$

with
$$V_c^i(s) = \begin{pmatrix} \ell_c^i(s) \\ \omega_c^i(s) \end{pmatrix} = \mathcal{K}_c^{-1} \mathcal{N}_c(s) e_i, \ V_c^j \wedge V_c^i = \begin{pmatrix} \omega_c^j \times \ell_c^i - \omega_c^j \times \ell_c^j \\ \omega_c^j \times \omega_c^i \end{pmatrix}$$
 and
 $\tilde{\mathfrak{p}} \begin{pmatrix} \ell \\ \omega \end{pmatrix} = \mathfrak{p}(\ell, \omega, 0) = \begin{pmatrix} \mathbb{A}(\omega) & \ell & 0 \\ 0 & 0 & 0 \end{pmatrix}.$

æ

Lie brackets computations II

Lemma

$$\dim \operatorname{Lie}_{(h,Q,s)}\left\{f_c^1, \dots, f_c^d\right\} = \dim \operatorname{Lie}_{(0,\mathbf{I}_3,s)}\left\{f_c^1, \dots, f_c^d\right\}.$$

Furthermore,

$$\begin{aligned} d+6 &\ge \dim \operatorname{Lie}_{(0,\mathrm{I}_3,s)}\left\{f_c^1, \dots, f_c^d\right\} \\ &\geqslant d + \dim\left(\operatorname{Span}\left\{\tilde{\mathfrak{p}}^{-1}\left(\left[f_c^j, f_c^i\right](0,\mathrm{I}_3,s)\right), \ i,j \in \{1,\dots,d\}\right\} \right. \\ &+ \operatorname{Span}\left\{\tilde{\mathfrak{p}}^{-1}\left(\left[f_c^k, \left[f_c^j, f_c^i\right]\right](0,\mathrm{I}_3,s)\right), \ i,j,k \in \{1,\dots,d\}\right\}\right). \end{aligned}$$

< □ > < □ > < □

Lie brackets computations III

In order to compute these brackets, one needs to compute the derivatives of $s \mapsto V_c^j(s) = K_c^{-1} N_c(s) e_j$. But

$$\begin{split} \partial_s^{\alpha} N_c(s) e_j &= -2 \left(\partial_s^{\alpha} \left(\int_{\mathcal{F}_c} \mathrm{D}(u_c^i : \mathrm{D}(\mathbf{v}_c^j(s)) \right) \right)_{i \in \{1, \dots, 6\}} \\ &= -2 \left(\int_{\mathcal{F}_c} \mathrm{D}(u_c^i : \mathrm{D}(\partial_s^{\alpha} \mathbf{v}_c^j(s)) \right)_{i \in \{1, \dots, 6\}} = - \left(\int_{\mathcal{S}_c} \sigma(w, r) \mathrm{n} \, \mathrm{d}\Gamma \\ \int_{\mathcal{S}_c} x \times \sigma(w, r) \mathrm{n} \, \mathrm{d}\Gamma \right), \end{split}$$

with (w, r) solution of

 $-\Delta w + \nabla r = 0 \qquad \qquad \text{in } \mathcal{F}_c,$

$$\operatorname{div} w = 0 \qquad \qquad \text{in } \mathcal{F}_c$$

$$w = \partial_s^{\alpha} D_c^j(s) = \partial_s^{\alpha} \left(\partial_{s_j} X_c(s) \circ X_c(s)^{-1} \right) \qquad \text{on } \mathcal{S}_c.$$

 $\lim_{|x|\to\infty}w(x)=0.$

Image: A mathematical states of the state

1 Modeling the swimming problem

2 Lie brackets computations

3 Generic controllability result

Conclusion

-

Main Theorem

Theorem

Given $d \ge 3$, $\varepsilon, \eta > 0$, $\bar{c} = (\bar{\Psi}_0, \bar{\delta}) \in SC^2(d)$, T > 0 and $(\bar{h}, \bar{Q}, \bar{s}) \in C^0([0, T], \mathbb{R}^3 \times SO(3) \times \mathcal{J}(\bar{\delta}))$. There exists $c = (\Psi_0, \delta) \in SC^{\infty}(d)$ such that

$$\|\boldsymbol{c}-\boldsymbol{\bar{c}}\|<\varepsilon,$$

and there exists $s \in C^{\infty}([0, T], \mathbb{R}^d)$, with

 $s(t)\in \mathcal{J}(\delta), \hspace{1em} s(0)=ar{s}(0), \hspace{1em} s(T)=ar{s}(T) \hspace{1em} and \hspace{1em} |s(t)-ar{s}(t)|\leqslant\eta \hspace{1em} (t\in[0,T]),$

such that the corresponding position (h, Q) of the swimmer, with the initial conditions

$$h(0) = ar{h}(0), \quad Q(0) = ar{Q}(0)$$

satisfies

$$\sup_{t\in [0,\mathcal{T}]} \left(|h(t)-ar{h}(t)|+|Q(t)-ar{Q}(t)|
ight) <\eta$$

together with

$$h(T) = \overline{h}(T), \quad Q(T) = \overline{Q}(T).$$

Schedule of the proof

• Pick d = 3 and Consider the case $\Psi_0 = 0$.

- According to Lamb (1932) in the case of a Sphere, the solution of the Stokes problem can be explicitly computed in terms of a sum of functions involving spherical harmonics.
- We make a particular choice of δ , based on spherical harmonics.
- To compute the drag and torque forces, we use the strategy proposed in Brenner (1963).
- Finally, we check that dim $\text{Lie}_{(0,l_3,0)}\{f^1_{(0,\delta)}, f^2_{(0,\delta)}, f^3_{(0,\delta)}\} = 3 + 6$ for a correct choice of vector fields δ_1 , δ_2 and δ_3 .

That is to say that we check that the dimension of the Lie algebra evaluated at s = 0 is maximal.

O To conclude we use the analytic properties of the vector fields with respect to s and c, the fact that the dimension of the Lie algebra is independent of h and Q and Chow Theorem.

(日)

Modeling the swimming problem

- 2 Lie brackets computations
- 3 Generic controllability result
- Conclusion

Open problems

- Controllability with 2 parameters?
- Swimmer controllability in a bounded domain?

Open problems

- Controllability with 2 parameters?
- Swimmer controllability in a bounded domain?

THANK YOU, FOR YOUR ATTENTION!