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joint work with Takéo Takahashi (IECL)
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Introduction

Motivations

Definition (To swimm)

To propel oneself in water by natural means (such as movements of the limbs, fins, or
tail).

The action of swimming is seen as a control problem. Given two points, can the fish
reach one from another?

The displacement of the fish
is due to fluid-structure interac-
tions.
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Introduction

The fluid

The Reynolds number: Re =
ρUL

µ
.

Re << 1 Re >> 1
- Re

Stokes
Equations

Navier-Stokes
Equations

Euler Equations
(perfect fluid),

turbulence

Examples :

L (cm) U (cm.s−1) T (s) Re

Bacteria 10−5 10−3 10−4 10−5

Spermatozoon 10−3 10−2 10−2 10−3

fish 50 100 0.5 5.104

Pigeon 25 103 5.10−1 105
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Introduction

The coupled problem

S†(t)

Navier-Stokes equation

Continuity of velocities

+ Newton’s principle, ma = ΣF

Fluid domain F †(t)

Swimmer domain
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Introduction

The coupled problem

S†(t)

Steady-state Stokes equation

Continuity of velocities

+ Forces equilibrium, 0 = ΣF

Fluid domain F †(t)

Swimmer domain
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Introduction

The deformations I

All deformations are not interesting for the motion...

Theorem (Scallop Theorem, Purcell 1977)

If the swimmer’s deformation is reversible in time, then the displacement of the swimmer
is null.

No motion
⇒

in Stokes fluid

Taylor’s experience
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Introduction

The deformations II

Purcell’s swimmer
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Helical deformation

Motion
⇒

in Stokes fluid

Taylor’s experience
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Introduction
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Introduction
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Modeling

1 Modeling the swimming problem

2 Lie brackets computations

3 Generic controllability result

4 Conclusion
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Modeling

The swimmer mechanism

The swimmer is located by the position of it’s mass center h(t) ∈ IR3 and an angular
position Q(t) ∈ SO(3).

SS2S2

S†(t)

Q(t)Id + h(t)

X (t) Id + Ψ0
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Modeling

Construction of X

Given Θ ∈ C k(S2,TS2), we define the map

S2 −→ S2

y 7−→ expy (Θ(y)) = cos |Θ(y)| y + sinc |Θ(y)|Θ(y).

Consider δ = (δ1, . . . , δd) ∈ C k(S2,TS2)d , for every s = (s1, . . . , sd) ∈ IRd , we set

Xδ(s) = expy

(
d∑

j=1

sjδj(y)

)
.

Given δ, we define J̃ (δ) ⊂ IRd , the set of s ∈ IRd such that Xδ(s) is a
C 1-diffeomorphism of S2, and J (δ) the connected component of J̃ (δ) containing 0.

Lemma

J (δ) is a nonempty open subset of IRd .
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Modeling

Hypothesis on Ψ0

Set

C k
0 (IR3) =

{
ϕ ∈ C k(IR3) | lim

|x|→∞
∂ j
xiϕ(x) = 0, i ∈ {1, 2, 3}, j ∈ {0, . . . , k}

}
endowed with the norm

‖ϕ‖Ck
0 (IR3) =

k∑
j=0

3∑
i=1

sup
x∈IR3

|∂ j
xiϕ(x)|.

We define

D̃k
0 =

{
Ψ ∈ C k

0 (IR3)3 | IdIR3 + Ψ is a C 1-diffeomorphism of IR3
}

and Dk
0 the connected component of D̃k

0 containing 0.

Lemma

Dk
0 is a nonempty open subset of C k

0 (IR3)3.

We assume Ψ0 ∈ Dk
0 , so that the shape of the swimmer is

Sc = (IdIR3 + Ψ0) (S2),

with c = (Ψ0, δ) the swimmer configuration.
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Modeling

Global deformation

Finally, we set

Xc(s) = (IdIR3 + Ψ0) ◦ Xδ(s) (c = (Ψ0, δ), s ∈ J (δ)).

Xc(s) is a C k -diffeomorphism from S2 to Sc .

Proposition

The set
Ak(d) =

{
(Ψ0, δ, s) ∈ Dk

0 × C k(S2,TS2)d × IRd | s ∈ J (δ)
}

is a nonempty connected open set of C k
0 (IR3)3 × C k(S2,TS2)d × IRd .
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Modeling

Rigid motion of the swimmer

While immersed in the fluid, the swimmer can rotate and translate. The physical
deformation of the swimmer is

X †(h,Q, s)(y) = QXc(s)(y) + h.

We also set
S†(h,Q) = QSc + h.

The deformation velocity is then

v†(t, x) = Q̇Q(x − h) + ḣ + Q
dXc(s)

dt

(
Xc(s)−1

(
Q>(x − h)

))
= Q̇Q(x − h) + ḣ + Q

(
d∑

j=1

ṡj∂sjXc(s)
(
Xc(s)−1

(
Q>(x − h)

)))
(x ∈ S†(h,Q)).
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Modeling

The coupled problem I

−∆u† +∇p† = 0 in F†(h,Q),

div u† = 0 in F†(h,Q),

lim
|x|→∞

u†(t, x) = 0,

u†= v† on S†(h,Q),∫
S†(h,Q)

σ(u†, p†)n† dΓ = 0,∫
S†(h,Q)

(x − h)× σ(u†, p†)n† dΓ = 0,

with σ(u†, p†) = ∇u† +∇u†> − p†I3, the Cauchy stress tensor.
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Modeling

The coupled problem II

By the change of variables, u†(t, x) = Qu
(
t,Q(t)>(x − h(t))

)
and

p†(t, x) = p
(
t,Q(t)>(x − h(t))

)
, we obtain,

−∆u +∇p = 0 in Fc ,

div u = 0 in Fc ,

lim
|x|→∞

u(t, x) = 0,

u= `+ ω × x +
d∑

j=1

ṡj∂sjXc(s) ◦ Xc(s)−1 on Sc ,∫
Sc
σ(u, p)ndΓ = 0,∫

Sc
x × σ(u, p)ndΓ = 0,

with
ḣ = Q` and Q̇ = QA(ω),

where A(ω) is such that A(ω)x = ω × x .
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Modeling

A geometric control problem I

Define for i ∈ {1, 2, 3} and j ∈ {1, . . . , d} the solutions


ui
c

ui+3
c

v j
c(s)

of the Stokes system

with boundary conditions


ui
c = ei

ui+3
c = ei × x

v j
c(s) = D j

c(s) = ∂sjXc(s) ◦ Xc(s)−1
on Sc .

Then we have,

u(t, x) =
3∑

i=1

`i (t)ui
c(x) +

3∑
i=1

ωi (t)ui+3
c (x) +

d∑
j=1

ṡj(t)v j
c(s(t))(x).
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Modeling

A geometric control problem II

Noticing that,∫
Sc

ei · σ(u, p)ndΓ = 2

∫
Fc

D(u) : D(ui
c) and∫

Sc
(ei × x) · σ(u, p)ndΓ = 2

∫
Fc

D(u) : D(ui+3
c ) (i ∈ {1, 2, 3}),

the relations

∫
Sc
σ(u, p)ndΓ = 0 and

∫
Sc

x × σ(u, p)ndΓ = 0 read as

Kc

(
`
ω

)
= Nc(s)ṡ,

with

Kc = 2

(∫
Fc

D(ui ) : D(uj)

)
i,j∈{1,...,6}

and Nc(s) = −2

(∫
Fc

D(ui
c) : D(v j

c(s))

)
i∈{1,...,6}
j∈{1,...,d}

.
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Modeling

A geometric control problem III

Lemma

The mapping (c, s) ∈ Ak(d) 7→ (Kc ,Nc(s)) ∈M6(IR)×M6,d(IR) is analytic.
In addition, for every c, Kc is positive definite.

Consequently, the system can be rewritten as

ḣ = Q`, (1a)

Q̇ = QA(ω), (1b)

ṡ = λ, (1c)(
`
ω

)
= K−1

c Nc(s)λ, (1d)

with state (h,Q, s) ∈ IR3 × SO(3)× IRd and control λ ∈ IRd .
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Modeling

Well-posedness

Proposition

For every (h0,Q0, s0) ∈ IR3 × SO(3)× J (δ), the system (1) endowed with the initial
condition (h,Q, s)(0) = (h0,Q0, s0) and control λ ∈ L1

loc(IR+)d (resp. ∈ C p−1(IR+)d)
admits a unique maximal solution (h,Q, s) which is absolutely continuous (resp. of
class C p).

Furthermore, given T > 0, if for every t ∈ [0,T ], s0 +

∫ t

0

λ(τ) dτ ∈ J (δ), then the

solution (h,Q, s) is well-defined on [0,T ].
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Lie brackets computations

1 Modeling the swimming problem

2 Lie brackets computations

3 Generic controllability result

4 Conclusion
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Lie brackets computations

formulation in a Lie group I

Define the Lie group

E(3, d) =
{
P(h,Q, s), (h,Q, s) ∈ IR3 × SO(3)× IRd

}
,

with P(h,Q, s) =


(
Q h
0 1

)
0

0

(
Id s
0 1

)
 ∈Md+5(IR).

Its Lie algebra is

e(3, d) =
{
p(`, ω, λ), (`, ω, λ) ∈ IR3 × IR3 × IRd

}
,

with p(`, ω, λ) =


(
A(ω) `

0 0

)
0

0

(
0 λ
0 0

)
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Lie brackets computations

formulation in a Lie group II

Defining fjc(s) = p
(
`jc(s), ωj

c(s), ej
)

=


(
A(ωj

c(s)) `jc(s)
0 0

)
0

0

(
0 ej
0 0

)
 ∈ e(3, d),

with

(
`jc(s)
ωj
c(s)

)
= K−1

c Nc(s)ej , the system writes

dP(h,Q, s)

dt
= I (Q)

d∑
j=1

fjc(s)λj =
d∑

j=1

f jc (h,Q, s)λj ,

with I (Q) = P(0,Q, 0) =


(
Q 0
0 1

)
0

0

(
Id 0
0 1

)
 .
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Lie brackets computations

Lie brackets computations I

Remind that

[f jc , f
i
c ](h,Q, s) = Df ic (h,Q, s) · f jc (h,Q, s)−Df jc (h,Q, s) · f ic (h,Q, s).

We have,

[f jc , f
i
c ] = I (Q)p̃

(
∂sjV

i
c − ∂siV

j
c + V j

c ∧ V i
c

)
,

[f kc , [f
j
c , f

i
c ]] = I (Q)p̃

(
∂sk

(
∂sjV

i
c − ∂siV

j
c

)
+ ∂skV

j
c ∧ V i

c + V j
c ∧ ∂skV

i
c

+V k
c ∧

(
∂sjV

i
c − ∂siV

j
c + V j

c ∧ V i
c

))
,

with V i
c (s) =

(
`ic(s)
ωi
c(s)

)
= K−1

c Nc(s)ei , V
j
c ∧ V i

c =

(
ωj
c × `ic − ωi

c × `jc
ωj
c × ωi

c

)
and

p̃

((
`
ω

))
= p(`, ω, 0) =

(
A(ω) ` 0

0 0 0

)
.
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Lie brackets computations

Lie brackets computations II

Lemma

dim Lie(h,Q,s)

{
f 1
c , . . . , f

d
c

}
= dim Lie(0,I3,s)

{
f 1
c , . . . , f

d
c

}
.

Furthermore,

d + 6 > dim Lie(0,I3,s)

{
f 1
c , . . . , f

d
c

}
> d + dim

(
Span

{
p̃−1

(
[f jc , f

i
c ](0, I3, s)

)
, i , j ∈ {1, . . . , d}

}
+ Span

{
p̃−1

(
[f kc , [f

j
c , f

i
c ]](0, I3, s)

)
, i , j , k ∈ {1, . . . , d}

})
.
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Lie brackets computations

Lie brackets computations III

In order to compute these brackets, one needs to compute the derivatives of
s 7→ V j

c (s) = K−1
c Nc(s)ej . But

∂αs Nc(s)ej = −2

(
∂αs

(∫
Fc

D(ui
c : D(v j

c(s))

))
i∈{1,...,6}

= −2

(∫
Fc

D(ui
c : D(∂αs v

j
c(s))

)
i∈{1,...,6}

= −


∫
Sc
σ(w , r)ndΓ∫

Sc
x × σ(w , r)ndΓ

 ,

with (w , r) solution of

−∆w +∇r = 0 in Fc ,

divw = 0 in Fc ,

w = ∂αs D
j
c(s) = ∂αs

(
∂sjXc(s) ◦ Xc(s)−1

)
on Sc ,

lim
|x|→∞

w(x) = 0.
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Generic controllability result

1 Modeling the swimming problem

2 Lie brackets computations

3 Generic controllability result

4 Conclusion
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Generic controllability result

Main Theorem

Theorem

Given d > 3, ε, η > 0, c̄ = (Ψ̄0, δ̄) ∈ SC2(d), T > 0 and
(h̄, Q̄, s̄) ∈ C 0

(
[0,T ], IR3 × SO(3)× J (δ̄)

)
.

There exists c = (Ψ0, δ) ∈ SC∞(d) such that

‖c − c̄‖ < ε,

and there exists s ∈ C∞([0,T ], IRd), with

s(t) ∈ J (δ), s(0) = s̄(0), s(T ) = s̄(T ) and |s(t)− s̄(t)| 6 η (t ∈ [0,T ]),

such that the corresponding position (h,Q) of the swimmer, with the initial conditions

h(0) = h̄(0), Q(0) = Q̄(0)

satisfies
sup

t∈[0,T ]

(
|h(t)− h̄(t)|+ |Q(t)− Q̄(t)|

)
< η

together with
h(T ) = h̄(T ), Q(T ) = Q̄(T ).
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Generic controllability result

Schedule of the proof

1 Pick d = 3 and Consider the case Ψ0 = 0.
According to Lamb (1932) in the case of a Sphere, the solution of the Stokes problem
can be explicitly computed in terms of a sum of functions involving spherical
harmonics.
We make a particular choice of δ, based on spherical harmonics.
To compute the drag and torque forces, we use the strategy proposed in Brenner
(1963).
Finally, we check that dim Lie(0,I3,0){f 1

(0,δ)
, f 2

(0,δ)
, f 3

(0,δ)
} = 3 + 6 for a correct choice of

vector fields δ1, δ2 and δ3.
That is to say that we check that the dimension of the Lie algebra evaluated at s = 0
is maximal.

2 To conclude we use the analytic properties of the vector fields with respect to s
and c, the fact that the dimension of the Lie algebra is independent of h and Q and
Chow Theorem.
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Conclusion

Open problems

Controllability with 2 parameters?

Swimmer controllability in a bounded domain?

THANK YOU, FOR YOUR ATTENTION!
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