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Two problems related to the Steklov eigenvalue

I The composite membrane problem - Steklov version
Joint work with Ki-Ahm Lee and Taehun Lee (Seoul
National University)

I Higher order versions of the Steklov eigenvalue
Joint work with Mariel Sáez (Santiago de Chile)

M.d.M. González, UAM Steklov eigenvalue and generalizations 2 / 13



The Steklov eigenvalue

Let Ω be a smooth domain in Rn with boundary Σ := ∂Ω.
Consider the eigenvalue problem{

∆u =0 in Ω

∂νu =λu on Σ.

Let λ1 be the first non-zero eigenvalue. Note that

λ1 = inf∫
Σ u=0

∫
Ω |∇u|

2∫
Σ u

2
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Motivation: the composite membrane problem

Build a membrane in Ω with varying densities such that has
prescribed mass and frequency as small as possible.

I Chanillo, Grieser, Imai, Kurata, Ohnishi, 2000. Symmetry breaking
and other phenomena in the optimization of eigenvalues for composite
membranes.

I Chanillo, Kenig, To, 2008. Regularity of the minimizers in the
composite membrane problem in R2.

I Chanillo, Kenig, 2007. Weak uniqueness and partial regularity for the

composite membrane problem.
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The composite membrane problem - Steklov version

Build a membrane in Ω with varying density concentrated at the
boundary Σ = ∂Ω, such that has prescribed mass and frequency
as small as possible.
More precisely, find:
I A density ρ such that

h ≤ ρ ≤ H,
∫

Σ
ρ = m the total mass,

I A function u in H1(Ω) with
∫

Σ ρu = 0,

which realize the realize the double infimum

inf
ρ

inf
u

∫
Ω |∇u|

2∫
Σ ρu

2

that corresponds to minimizing the eigenvalue for{
∆u =0 in Ω

∂νu =λρu on Σ.
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The free boundary

The best one can do is ρ taking two only values in Σ:
I h in D ⊂ Σ

I H in Dc

We get a free boundary between D and Dc.

Thus we set (u,D) unknowns and consider the eigenvalue
problem {

∆u = 0 in Ω

∂νu+ αχDu = λu on Σ

where D ⊂ ∂Σ is any measurable subset. Denote by λ(D) the
first eigenvalue and define

Λ(a) = inf
|D|=a

λ(D) optimal configuration
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Fractional version

Fix s ∈ (0, 1), consider the eigenvalue problem in Σ ⊂ Rn{
(−∆)su+ αχDu = λu on Rn

u = 0 on Rn \ Σ,

where D ⊂ Σ is any measurable subset. Denote by λ(D) the
first eigenvalue and define

Λ(a) = inf
|D|=a

λ(D).

Theorem (G.-Lee-Lee)

Let (u,D) be the optimal configuration. Then D is a sublevel
set of u.
Also, symmetry & symmetry breaking.
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Ideas in the proof

I Bathtub lemma: {u < t} ⊂ D ⊂ {u ≤ t}.
I Difficulty:

I the regularity of the free boundary ∂D.
I locally constant does not imply zero “fractional derivative”.

I Weiss type monotonicity formula.

I Classification of blow up limits
At singular points, these satisfy

(−∆)sw = c1χD − c2χDc ,

and are homogeneous of degree 2s.

M.d.M. González, UAM Steklov eigenvalue and generalizations 8 / 13



Fourth order generalizations

Fourth order energy:

E [u] =
1

2

∫
Ω

(∆u)2 +
2

3

∫
Σ
H|∇̃u|2h dσ −

∫
Σ
Aij∇̃iu∇̃ju dσ.

Boundary condition: ∂νu = 0 on Σ
Third order boundary operator: conformal!!

B3u = −∂η∆u+ 2〈A0, D̃
2u〉 − 2

3
H∆̃u+

2

3
〈∇̃H, ∇̃u〉.

Eigenvalue problem: 
∆2u = 0 in Ω,

∂νu = 0 on Σ,

B3u = µu on Σ.

Rayleigh-quotient

µ1 = min
∂νu=0,

∫
Σ u=0

E [u]∫
Σ u

2 dσ
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The Steklov eigenvalue in conformal geometry
(Fraser-Schoen)

I Now Ω is a 2-surface with boundary Σ = ∂Ω. Let λ1 be the
first Steklov eigenvalue for Ω.

I Alternative formulation: Let M be a surface with
coordinates given by (first) Steklov eigenfunctions. Then
M is a minimal surface in the unit ball B which meets ∂B
orthogonally.

I Theorem: for genus γ with k boundary components, we
have

λ1|Σ| ≤ 2(γ + k)π

I Sharp for γ = 1, k = 0 (Weinstock).
I Nor sharp for an annulus (explicit calculation).

I Theorem: To maximize.
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Work in progress

Assume |Σ| = 1 (normalization).

I For the unit ball B4,

µm = 2m(m+ 1)(m+ 2), for m ≥ 1,

with multiplicity 4.

I For the annulus we have an increasing sequence of
eigenvalues, value of µ1 is explicit (numerics).

I In general, consider the embedding given by the Steklov
eigenfunctions:

µ1|Σ| ≤
1

2

∫
Ω
|H̄|2 dv +

∫
Σ
H dσ

Here H̄ represents the mean curvature of the embedding
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Applications

I Liu-Wu. An Energetic Variational Approach for the
CahnHilliard Equation with Dynamic Boundary Condition:
Model Derivation and Mathematical Analysis

I Du-Liu-Ryham-Wang. A phase field formulation of the
Willmore problem
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Thank you!!
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