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I. Introduction. Systems of conservation laws

I We consider the class of hyperbolic systems of conservation laws :

ut + f (u)x = 0 for (t, x) ∈ R+ × R,
u : R+ × R→ Rd and f : Ω ⊂ Rd → Rd ,

where for any u ∈ Ω :

df (u) has d distinct and real eigenvalues λ1 < · · · < λn.

Denote (ri (u)) a family of corresponding eigenvectors of df (u).

I This class appears in many applications : gas dynamics (Euler
equations), shallow-water flows (Saint-Venant equations),
chromatography, traffic flows, etc.

I It is frequent to add conditions the characteristic fields. One says
that (λi , ri ) is genuinely nonlinear/linearly degenerate when :

∀u ∈ Ω, ri (u) · ∇λi (u) 6= 0 / ∀u ∈ Ω, ri (u) · ∇λi (u) = 0.



A (much) simpler particular case : scalar conservation laws

I (1-D) scalar conservation laws correspond to d = 1 :

ut + f (u)x = 0 for (t, x) ∈ R+ × R,
u|t=0 = u0 on R,

where
u : R+ × R→ R and f : R→ R.

I We will mainly consider the case where the flux f is of class C 2

(though frequently, Lipschitz is sufficient).

I Genuine nonlinearity condition is transformed here into strict
uniform convexity :

f ′′ ≥ a > 0.



Singularities, entropy conditions

I It is quite classical (and easy to see using characteristics) that in
general the solutions of this equation become singular in finite time.

I It is hence natural to consider possibly discontinuous weak solutions.
But in this framework uniqueness is lost.



Entropy conditions

I One introduces then entropy conditions :

1. Vanishing viscosity condition : one requires that solutions can be
obtained by vanishing viscosity : u is limit of uε, ε→ 0+, where :

uεt + f (uε)x − εuεxx = 0.

2. One introduces the entropy couples (η, q) : Ω→ R2 as functions
that satisfy :

dq = dη df .

One requires that for all (η, q) with η convex, u satisfies :

η(u)t + q(u)x ≤ 0 in the sense of measures.



3. Conditions on the speed of propagation of discontinuities. Given a
discontinuity separating ul on the left and ur on the right, moving at
speed s given by Rankine-Hugoniot relations :

f (ur )− f (ul) = s(ur − ul),

one introduces Lax’s inequalities :

λi (ur ) < s < λi (ul),

so in the convex scalar case this gives :

ul ≥ ur .

I All these conditions are essentially equivalent in the convex/GNL
case.

I Regular solutions are in particular entropy solutions.



A general question

I Some of these systems present a form of nonlinear regularization
mechanism.

I Many references on the subject in the scalar case : Lax, Dafermos,
Lions-Perthame-Tadmor, Jabin-Perthame, De Lellis-Westdickenberg,
Cheverry, etc.

I The goal of this talk is not to prove of a new regularization property,
but to try to describe the compactification effect of this type of
equations, which is of course connected to this regularizing effect.



II. Simplest case : convex scalar equations

I Different authors, in particular E. Hopf, P.D. Lax and O. Oleinik,
have shown global existence and uniqueness of an entropy solution
for initial data in L1 ∩ L∞ (or even L1), with

‖u(t)‖L1 ≤ ‖u(0)‖L1 , ‖u(t)‖L∞ ≤ ‖u(0)‖L∞ and TV (u(t)) ≤ TV (u(0)).

I Moreover, P.D. Lax has shown a regularizing effect of the associated
nonlinear semi-group S(t). More precisely, given a bounded set
B ⊂ L1(R) and R > 0, one has :{

(S(t)u0)|(−R,R), u0 ∈ B
}
is relatively compact in L1(−R,R).



I The following question was raised by P.D. Lax in 2002 :

Is it possible to give a quantitative estimate of this regularizing
effect ?

I In 2005, C. De Lellis and F. Golse gave an answer to this question by
using the notion of ε-entropy (a.k.a. Kolmogorov’s entropy).



Kolmogorov’s entropy

Definition
Let (X , d) a metric space, and let K a totally bounded subset of X .
We call an ε-covering of K , a covering of K by subsets of diameter no
more than 2ε.
Let Nε(K ) the minimal number of subsets in an ε-covering of K . The
ε-entropy of K is defined as

Hε(K |X )
.

= log2 Nε(K ).

Example. Hε([0, L]n |Rn) ∼ −n log2(ε) as ε→ 0+ (whatever L and the
norm...)



Higher bound for the ε-entropy

Theorem (De Lellis-Golse, 2005)
For L > 0, m > 0 and M > 0, one defines

CL,m,M :=
{
u0 ∈ L∞(R) / Supp u0 ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M

}
.

Then for T > 0 and ε > 0 sufficiently small, the ε-entropy of
S(T )CL,m,M in L1(R) satisfies

Hε(S(T )CL,m,M | L1(R)) ≤ 4
ε

(
4L(T )2

a T
+ 4L(T )

√
2m
aT

)
,

with
L(T )

.
= L + 2 cM

√
2mT/a where cM

.
= max

[−M,M]
f ′′.

(Reminder : a is such that f ′′ ≥ a > 0.)

Above, L(T ) is an estimate of the support width at time T .



Lower bound for the ε-entropy

Theorem (Ancona-G.-Nguyen, 2012)
For L > 0, m > 0 and M > 0, one defines as before

CL,m,M
.

=
{
u0 ∈ L∞(R) / Supp u0 ⊂ [−L, L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤ M

}
.

Then for T > 0 and ε > 0 sufficiently small, the ε-entropy of
S(T )CL,m,M in L1(R) satisfies

Hε(S(T )CL,m,M | L1(R)) ≥ 1
ε

L2

48 ln(2) |f ′′(0)|T
.



Remarks

I As a consequence one has

Hε(S(T )CL,m,M | L1(R)) ≈ 1
ε
.

I A motivation for P.D. Lax’s question is numerical analysis of these
equations. Indeed, the result above gives an idea of the complexity
of a numerical scheme for such an equation (whatever its nature).

A scheme with precision ε in L1 norm must use at least O( 1
ε )

operations. . .



III. Extensions.
1. Conservation laws with source term

I A generalization of scalar conservation laws consist in scalar
conservation laws with source term :

ut + f (u)x = g(t, x , u),

where f is as before and g is a source term of class C 1, with at most
linear growth at infinity.

I Under reasonable assumptions, S. N. Kruzkov has shown global
existence and uniqueness of an entropy solution for initial data
u0 ∈ L∞. (Kruzkov’s result is actually much more general !)

I One can have in mind a flow in presence of external force, in
non-flat channels, etc.

I We denote E (t) the evolution operator which maps u0 into u(t).



Assumptions
In what follows one supposes that :

∀ (t, x) ∈ R+ × R, g(t, x , 0) = 0,
∃ C > 0 t.q. ∀ (t, x , u) ∈ R+ × R× R, |gx(t, x , u)| ≤ C |u|,

∃ ω ∈ L1
loc(R+) t.q. p.p. tout t ∈ R+, ∀ (x , u) ∈ R2, |gu(t, x , u)| ≤ ω(t).

The first condition ensures that for a compactly supported initial data,
the corresponding solution remains compactly supported for all times.

It can be replaced in what follows by : g is independent of x and

g(·, 0) ∈ L1
loc(R+),

and obtain a similar result.



Higher ε-entropy bound for conservation laws with source
term

Theorem (ibid.)
Under the above assumptions, for T > 0 and for ε > 0 sufficiently small,
one has :

Hε
(
E (T )(CL,m,M) | L1(R)

)
≤ 1
ε

8 L2
T

(
1 + 2(1 + aT 2K ) exp

(
‖ω‖L1

))
aT

,

where

K
.

= max
{
|gx(s, x , u)| ; (s, x) ∈ ∆, u ∈ [−MT ,MT ]

}
,

with

MT
.

= exp
(
‖ω‖L1

)
M, LT

.
= L + ‖f ′′‖L∞(−MT ,MT ) MT T ,

∆
.

=
{

(s, x) | s ∈ [0,T ],

−LT−(T−s) ‖f ′‖L∞(−MT ,MT ) ≤ x ≤ LT +(T−s) ‖f ′‖L∞(−MT ,MT )

}
.



Lower ε-entropy bounds for conservation laws with source
term

Theorem (ibid.)
Under the above assumptions, for T > 0 and for ε > 0 sufficiently small,
one has :

Hε
(
E (T )(CL,m,M) | L1(R)

)
≥ 1
ε

L2 exp
(
−‖ω‖L1)

48 ln(2) |f ′′(0)|T
.

Remark
Hence in that case also Hε

(
E (T )(CL,m,M)

)
≈ 1

ε .



2. Nonconvex conservation laws

I Now we consider the nonconvex case. In this situation, we use
instead the following nondegeneracy condition : f : R→ R is a
smooth, non convex function with a single inflection point at zero
having polynomial degeneracy, i.e. such that

f (j)(0) = 0 for all j = 2, . . . ,m, f (m+1)(0) 6= 0 ,

f ′′(u) · u · sign
(
f (m+1)(0)

)
> 0 ∀ u ∈ R \ {0}.

I In this nonconvex situation, the entropy condition becomes at the
level of a discontinuity (u`, ur ) :

f (u`)− f (u)

u` − u
≥ f (ur )− f (u)

ur − u

for every u between u` and ur . (Oleinik’s E-condition)



Nonconvex conservation laws, continued

Theorem (Ancona-G.-Nguyen, 2019)
For any given L,M,T > 0, and for every ε > 0 sufficiently small, the
following estimates hold :

Hε
(
ST (CL,M) | L1(R)

)
≤ Γ+

2 ·
1
εm

, (1)

Hε
(
ST (CL,M) | L1(R)

)
≥ Γ−2 ·

1
εm

, (2)

where

CL,M
.

=
{
u0 ∈ L∞(R) / Supp u0 ⊂ [−L, L], ‖u0‖L∞ ≤ M

}
,

Γ+
2 = c2

(
1 + L + T +

L2

T

)m+1

Γ−2 = c2 ·
Lm+1

T
.

for some constant c2 > 0 depending only on f and M.



3. Systems of conservation laws

I Now we consider systems of conservation laws. Here the functional
framework is different, and the standard one considers solutions with
(small) total variation in space.

I This goes back to Glimm (1965), and then T.P. Liu,
Bianchini-Bressan, etc.

I In that case, one can define a semigroup S : [0,∞[×D0 → D0
defined on a closed domain D0 ⊂ L1(R,RN), with the properties :
(i) {

v ∈ L1(R,Ω)
∣∣Tot.Var.(v) ≤ δ0

}
⊂ D0

⊂
{
v ∈ L1(R,Ω)

∣∣Tot.Var.(v) ≤ 2δ0
}
,

for suitable constant δ0 > 0.



(ii) For every u ∈ D0, the semigroup trajectory t 7→ Stu
.

= u(t, ·)
provides an entropy weak solution of the Cauchy problem, with initial
data

u(0, ·) = u,

that satisfy

Liu stability condition. A shock discontinuity of the i-th family
(u`, ur ), traveling with speed σi [u`, ur ], is Liu admissible if, for any
state u lying on the i-th Hugoniot curve between u` and ur , the
shock speed σi [u`, u] of the discontinuity (u`, u) satisfies

σi [u`, u] ≥ σi [u`, ur ] .



Result in the system case

Theorem (Ancona-G.-Nguyen, 2014)
Given any L,m,M,T > 0, for any interval I ⊂ R of length |I | = 2L, and
for ε > 0 sufficiently small, the following estimates hold.
(i)

Hε
(
ST
(
C[L,m,M] ∩ D0

)
| L1(R,Ω)

)
≥ c

N2L2

T
· 1
ε
,

where c > 0 is an ugly explicit constant depending on f .

(ii)

Hε
(
ST
(
L[I ,m,M] ∩ D0

)
| L1(R,Ω)

)
≤ 48Nδ0 · LT ·

1
ε
,

where

LT
.

= L +
∆∨λ

2
· T , ∆∨λ

.
= sup

{
λN(u)− λ1(v) ; u, v ∈ Ω

}
.



Other results

I Other results concern :

I strictly convex (but not uniformly strictly convex) scalar equations
(op. cit.)

I Temple systems (op. cit.)

I Hamilton-Jacobi equations (Ancona-Cannarsa-Nguyen, 2015)



IV. Ideas of proof (scalar convex case).
Higher ε-entropy bounds

I Let us begin by briefly describing De Lellis and Golse’s proof of the
conservative case.

I We cite two important ingredients in the proof.

I On the one side, one has the following L1-to-L∞ estimate :

Proposition (Lax)
If f ′′ ≥ a > 0, for u0 ∈ L1(R) and t > 0, one has :

‖S(t)u0‖L∞ ≤
√

2‖u0‖1
a t

.



I On the other side, another ingredient is Oleinik’s inequality :

Theorem (Oleinik)
If f ′′ ≥ a > 0, for all u0 ∈ L∞(R), one has, denoting u(t, ·) = S(t)u0 :

∀t > 0, ∀x < y ,
u(t, y)− u(t, x)

y − x
≤ 1

a t
.

(In particular u is locally BV for t > 0.)

I One can see that the first ingredient can be deduced from the
second one.

I A way to prove these two results is to use Lax-Oleinik’s formula
giving an explicit (yet nontrivial) form to solution of convex scalar
conservation laws scalaires.



I One deduces from what precedes and from the finite propagation
speed that

S(T )CL,m,M ⊂
{
uT ∈ L1(R) / ‖uT‖L1 ≤ m, ‖uT‖L∞ ≤

√
2m
aT

,

Supp(uT ) ⊂ [−L− 2cM
√

2mT/a, L + 2cM
√

2mT/a],

(uT )x ≤
1
a T

}
.

I In particular, denoting q : x 7→ x/aT , one has

q − S(T )CL,m,M ⊂ JL,V
.

=
{
w : [−L/2, L/2]→ [−V /2,V /2], w non-decreasing

}
,

for L and V that can easily be computed.



I After translation, we are hence interested in the ε-entropy of :

IL,V
.

=
{
w : [0, L]→ [0,V ], w non-decreasing

}
.

I Consequently the result is a consequence of :

Lemme (De Lellis-Golse)
For 0 ≤ ε < L V

6 , one has :

Hε(IL,V | L
1(0, L)) ≤ 4

⌊
LV

ε

⌋
.



I One introduces N ∈ N \ {0}, ∆x
.

= L/N and ∆y
.

= V /N.
I One considers suitable non-decreasing step-functions χ on this grid :

∆x

∆y

χ+

χ−

I One introduces the subsets U consisting in non-decreasing functions
between two such step-functions χ− and χ+ satisfying

χ−(k∆x) ≤ χ+(k∆x) ≤ χ−((k + 1)∆x) + ∆y .

I Choosing N so that these subsets are of diameter ≤ 2ε and counting
these subsets, we reach the result.



V. Ideas of proof in the convex scalar case.
Lower ε-entropy bounds

I To establish a lower bound on Hε(S(T )CL,m,M | L1(R)), we cut the
proof in two parts :
I We look for a class of functions AT , of simple form, and such that

AT ⊂ S(T )CL,m,M .

I One introduces next a finite family I of functions of AT , of cardinal
N large enough, and such that for each f ∈ I,

Card {f ∈ I / ‖f − f ‖L1 ≤ 2ε} .= Ñ(f ),

is sufficiently small. We can then conclude that the minimal number
of parts in a ε-covering satisfies :

Nε ≥
N

maxf Ñf

.

This last point uses arguments from Bartlett-Kulkarni-Posner (1997).



Part 1. Description of certain attainable states

I We know that states of the system at time T , associated to an
initial data in CL,m,M , satisfy naturally an L1 estimate, an L∞

estimate, Oleinik’s inequality, and are compactly supported.

I A first idea is to show that, changing the constants if necessary, one
can reach states that satisfy these conditions.

I More precisely, one has the following result.

Proposition
For L,m,M, b > 0, we fix :

A[L,m,M,b]
.

=
{
uT ∈ BV(R) | Supp (uT ) ⊂ [−L, L],

‖uT‖L1 ≤ m, ‖uT‖L∞ ≤ M, DuT ≤ b
}
,

Then for h > 0 sufficiently small, one has :

A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ⊂ S(T )(CL,m,M),
where

LT
.

= L− 2T |f ′′(0)| h.



Attainable states, continued

Remark
In the above statement, h is small, but not very small. If one replaces

A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ⊂ S(T )(CL,m,M),

with

A[LT , 2Lh, h, (T‖f ′′‖∞)−1] ⊂ S(T )(CL,m,M) with LT
.

= L− T‖f ′′‖∞ h,

the only constraint on h is h ≤ M and Lh ≤ m.
But the above formula yields a better estimate in the end.

Ideas of proof.
I To prove this resultat, one shows in a first time that

A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ∩ C 1(R) ⊂ S(T )(CL,m,M),



I For uT ∈ A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ∩ C 1(R), one applies the local
existence theory in C 1 to the initial data uT (−x).

I If one shows that the corresponding solution w exists in C 1 (without
blow-up) until time T and that w(T ,−x) ∈ CL,m,M , by invariance of
the regular solutions with respect to

(t, x)→ (T − t,−x),

one has etablished uT ∈ S(T )(CL,m,M).

I The question becomes : use the assumptions on uT to prove that
the solution remains regular till t = T .

I It suffices to show that

wx remains bounded in L∞(R) on any compact of [0,T ).



I Denoting v
.

= wx , we have the equation :

vt(t, x) + f ′(w(t, x)) · vx(t, x) = −f ′′(w(t, x)) · v(t, x)2

I Along characteristics x(t) associated to f ′(w(t, x)),
z(t)

.
= v(t, x(t)) satisfies

ż(t) = −f ′′(w(t, x(t))) · z2(t).

I It suffices to establish a lower bound for z . Oleinik’s condition gives
estimates on (z(0))−.

I With the a priori estimates on w in L∞, one sees that this suffices to
avoid the blow up of v in C 1 before time T .

I One finally deduces by a density argument that

A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ⊂ S(T )(CL,m,M),

thanks to the classical property of L1 contraction of the semi-group
S(t) :

‖S(T )u0 − S(T )ũ0‖L1 ≤ ‖u0 − ũ0‖L1 .



Part 2. Description of the finite family I
I We consider h as in the above proposition.

I One introduces for n ≥ 2, the family of functions Fι : R→ [−h, h]
for ι ∈ {−1, 1}n, supported in [−L, L] and defined in [−L, L] by

Fι(x) =


hn
2L

(
x + L− k 2L

n

)
if ιk = 1,

hn
2L

(
x + L− (k + 1) 2L

n

)
if ιk = −1,

for x ∈
[
− L + k 2L

n , −L + (k + 1) 2L
n

)
, and k ∈ {0, . . . , n − 1}.

2L
n

−h

h

−L 0 L

(The example corresponds to n = 10 and ι = (−1,−1, 1, 1, 1,−1, 1,−1,−1, 1))



I The functions Fι belong to A[L, 2Lh, h, b] as soon as :

nh

2L
≤ b.

I Clearly, there are 2n such functions.

I It remains to estimate, fixed ι ∈ {−1, 1}n, the number of functions
Fι such that :

‖Fι −Fι‖L1 ≤ 2ε.

I But

‖Fι −Fι‖L1 =
2hL
n

Card {k ∈ {1, . . . , n} | ιk 6= ιk} .

I We want to count ι ∈ {−1, 1}n such that

Card {k ∈ {1, . . . , n} | ιk 6= ιk} ≤
nε

hL
.

Remark that this cardinal doe not depend on ι. Call it C(ε).



I The number of ι differing from ι for exactly k indices is
(
n
k

)
.

I It follows that

C(ε) =

b nεhL c∑
k=0

(
n

k

)
.

I We can interpret the right-hand side in terms of a random walk in
an elementary manner.

I If X1, . . . ,Xn are i.i.d. Bernoulli variables with
P(Xi = 0) = P(Xi = 1) = 1

2 , then for all ` ≤ n one has :

P(X1 + · · ·+ Xn ≤ `) =
1
2n
∑̀
k=0

(
n

k

)
.



I We set Sn = X1 + · · ·+ Xn. One uses Chernoff-Hoeffding’s
inequality : for µ > 0,

P(Sn − E(Sn) ≤ −µ) ≤ exp

(
−2µ2

n

)
,

I We suppose (since ε is small !) that :

nε

hL
<

n

2
,

and we choose
µ =

n

2
−
⌊nε
hL

⌋
.

I We obtain

1
2n
C(ε) ≤ exp

(
−2

( n
2 − b

nε
hLc)

2

n

)
≤ exp

(
−n

2

(
1− ε

hL

)2
)
.



I It remains to minimize the expression

exp

(
−n

2

(
1− ε

hL

)2
)
,

with respect to n and h under the constraint

nh

2L
≤ b and

nε

hL
≤ n

2
.

I After computation we obtain

C(ε)

2n
≤ exp

(
−1
ε

4bL2

27

)
.

I The result follows.



Thank you for your attention !


