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Introduction

The aim of this work is to present some feedback controller to stabilize some
parabolic-elliptic systems in 1-D.

In particular we are going to consider:
ut(x , t)− uxx(x , t) + λu(x , t) = αv(x , t), x ∈ (0, L), t > 0,
−vxx(x , t) + γv(x , t) = βu(x , t), x ∈ (0, L), t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,
v(0, t) = 0, v(L, t) = 0, t > 0,

(1)

where α, β, λ ∈ R, γ > 0.
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Stability analysis

Is necessary to know the stability properties of the systems when is not controlled.
Easy calculations show us that the eigenvalues of the system are σn given by

σn =
βα(

nπ
L

)2
+ γ
− λ−

(nπ
L

)2

(2)

From here we can deduce that exist at most a finite number of unstable eigenmodes.

Now we do a finite dimensional approach. Following the ideas of

Coron and Trélat (2004) - Coron and Trélat (2006) . They deals with a
semilinear heat and wave equation respectively.

Prieur and Trélat (2018) - They work with a heat equation with delayed control.

Guzmán et al. (2019) . In this paper they proposed a feedback delayed
stabilization for a linear KS equation.
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Main Result

Follow this framework we consider the delayed controlled parabolic-elliptic system:
ut(x , t)− uxx(x , t) + λu(x , t) = αv(x , t), x ∈ (0, L), t > 0,
−vxx(x , t) + γv(x , t) = βu(x , t), x ∈ (0, L), t > 0,

u(0, t) = 0, u(L, t) = h(t − D) = hD(t), t > 0,
v(0, t) = 0, v(L, t) = 0, t > 0,

(3)

With the time of delay D > 0.

The main idea of this work is prove the next result:

Theorem (1 Parada-Cerpa-Morris)

Consider the closed-loop system consisting of (3) with delayed Dirichlet boundary
control. Then there exists a feedback delayed control hD(t) such that the controlled
system is exponentially stabilizable, that is there exist µ > 0 and C > 0 such that,
for all u0(·), v0(·) ∈ H1

0 (0, L), with u0(0) = 0

|h(t − D)|+ ‖(u, v)‖H1
0 (0,L)×H1

0 (0,L) ≤ Ce−µt‖(u0, v0)‖H1
0 (0,L)
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Spectral Decomposition

First we do a spectral decomposition.

Consider the time of delay D > 0. If we use change of variable and introducing the
operators F : L2(0, L)→ H1

0 (0, L) and A we obtain:

wt = Aw + a(·)hD(t) + b(·)h′

D(t), w(0, t) = w(L, t) = 0 (4)

where:
a(x) =

(
−λx

L
+ αβF (x)

)
b(x) = −x

L

and F ,A are defined by:

F (u) = v : −vxx + γv = u v(0) = v(L) = 0 (5)

A := ∂xx + αβF (·)− λId(·) (6)

With D(A) = H2(0, L) ∩ H1
0 (0, L).

Note that A is self-adjoint and with compact inverse.
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Spectral Decomposition

Let (ej) ⊂ H1
0 (0, L) ∩ C 4([0, L]) a Hilbert basis of eigenfunctions of A and (λj) the

eigenvalues that satisfies:

−∞ < · · · < λj < · · · < λ1 λj → −∞

With this, all solution w(t, ·) ∈ H2(0, L) ∩ H1
0 (0, L) and thus

w(t, ·) =
∞∑
j=1

wj(t)ej(·)

and if we define νD(t) = h
′

D(t) our controlled system is equivalent to:

h
′

D(t) = νD(t)
w

′
1(t) = λ1w1(t) + a1hD(t) + b1ν

′

D(t)
...

w
′
j (t) = λjwj(t) + ajhD(t) + bjν

′

D(t)

(7)

where

aj = 〈a(·), ej(·)〉L2 =
1

L

∫ L

0

(−λx + αβF (x))ej(x)dx

bj = 〈b(·), ej(·)〉L2 = −1

L

∫ L

0

xej(x)dx
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Spectral Decomposition

Let n ∈ N\{0} the number of positive eigenvalues and Π1 the orthogonal projection
to 〈{e1, · · · , en}〉 in L2(0, L) then

∀k < n λk < −η < 0

and let:

w 1 = Π1w =
n∑

j=1

wj(t)ej(·)

Then using the matrices:

X1(t) =


hD(t)
w1(t)

...
wn(t)

 B1(t) =


1
b1
...
bn

 A1 =


0 · · · · · · 0
a1 λ1 · · · 0
...

...
. . . 0

an 0 · · · λn

 (8)

we can construct the next unstable finite dimensional system:

X
′

1(t) = A1X1(t) + B1νD(t) (9)
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Stabilization of finite dimensional system

Consider an Artstein transformation:

Z1(t) = X1(t) +

∫ t

t−D
e(t−s−D)A1B1ν(s)ds (10)

We can transform the above system to

Z
′

1(t) = A1Z1(t) + e−DA1B1ν(t) (11)

The invertibility of the Artstein transformation is follow from Prieur and Trélat
(2018) and Bresch-Pietri et al. (2018) .

The Z1 system is stabilizate if satisfies the Kalman condition.
It is sufficient to show the Kalman condition for (A1,B1).
In our case:

0 6= det(B1,B1A1, · · · ,B1A
n) =

n∏
j=1

(aj + λjbj)Vdm(λ1, · · · , λn)

But Vdm(λ1, · · · , λn) 6= 0.
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(2018) and Bresch-Pietri et al. (2018) .

The Z1 system is stabilizate if satisfies the Kalman condition.
It is sufficient to show the Kalman condition for (A1,B1).
In our case:

0 6= det(B1,B1A1, · · · ,B1A
n) =

n∏
j=1

(aj + λjbj)Vdm(λ1, · · · , λn)

But Vdm(λ1, · · · , λn) 6= 0.

Hugo Parada Feedback stabilization with delay boundary control of some unstable elliptic-parabolic systemsAugust 19-30, 2019 8 / 20



Stabilization of finite dimensional system

So it is enough show that aj + λjbj 6= 0 for j = 1, · · · n. Moreover we have that:

aj + λjbj = −e ′

j (L)

In this context we have the next Lemma:

Lemma (1)

Suppose that γ > 0 and αβ > 0, then for all j = 1, · · · , n, we have that e
′
j (L) 6= 0

where ej is an eigenfunction of the operator A defined in (6).

Suppose for a moment that the above Lemma is true, then the systems

Z
′

1(t) = A1Z1(t) + e−DA1B1ν(t)

satisfies the Kalman condition and hence is stabilizable.

Corollary (1)

∀D ≥ 0, ∃K1(D) ∈ R1×(n+1) such that A2(D) = A1 + e−DA1B1K1(D) admits −1 has
an eigenvalue of order n + 1. Furthermore exists a symmetric positive definite matrix
P(D) such that:

P(D)A2(D) + A2(D)P(D) = −In+1 (12)
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Stabilization of finite dimensional system

In virtue of the Corollary the function:

V (Z1) =
1

2
ZT

1 P(D)Z1 (13)

is a Lyapunov function for the Z1 system. So the feedback control ν(t) = K1Z1

stabilizate this system.

We set:

ν(t) =

{
0 if t ≤ D

K1Z1 if t > D
(14)

Using the Artstein transformation we get:

ν(t) =

{
0 if t ≤ D

K1(D)X1(t) + K1(D)
∫ t

max(D,t−D)
e(t−D−s)A1B1ν(s)ds if t > D

(15)

and therefore the feedback control ν(t) makes X1(t) to go exponentially to zero as
t →∞
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Stabilization of finite dimensional system

In order the stability of the whole system we set:

VD(t) = M(D)V1(1) +M(D)

∫
(t−D,t)∩(D,∞)

V1(s)ds −
1

2
〈w(t),Aw(t)〉L2(0,L)

=
M(D)

2
Z1(t)

TP(D)Z1(t) +
M(D)

2

∫
(t−D,t)∩(D,∞))

Z1(s)
TP(D)Z1(s)ds

− 1

2

∞∑
j=1

λjwj(t)
2 (16)

Where M(D) is sufficiently large.
The next Lemmas tell us that VD is a Lyapunov functional for whole system.
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Stabilization of infinite dimensional system

Lemma (2)

Exists C2(D) > 0 such that:

VD(t) ≥ C2

(
hD(t)2 + ‖w(t)‖2

H1
0 (0,L)

)
(17)

For every t ≥ 0

Lemma (3)

Exist a constant C4(D) > 0 such that:

VD(t) ≤ C4(D)
(
hD(t)2 + ‖w(t)‖2

H1
0 (0,L)

)
(18)

For every t < D

Lemma (4)

The functional VD decreases exponentially to 0.

with this Lemmas the Theorem 1 can be deduced directly.
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Proof Lemma 1 (Sketch)

To conclude we have to prove the Lemma 1. We follow the idea from Cerpa (2014) .

Let (ej) ⊂ H1
0 (0, L) ∩ C 4([0, L]) the eigenfunctions of A = ∂xx + αβF (·)− λId(·) so

it possible to show that ej is solution of the next four order homogeneous boundary
problem:

e
′′′′
j − (λ + λj + γ)e

′′
j + (γ(λ + λj)− αβ)ej = 0

ej(0) = ej(L) = e
′′
j (0) = e

′′
j (L) = 0

(19)

Then

ej(x) =
4∑

i=1

Cie
δix (20)

where δi , i = 1, 2, 3, 4 are the roots of the polynomial:

x4 − (λ + λj + γ)x2 + (γ(λ + λj)− αβ) = 0
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Proof Lemma 1 (Sketch)

Imposing the boundary conditions and adding e
′
j (L) = 0, we obtain the next linear

system. 
1 1 1 1

eδ1L eδ2L eδ3L eδ4L

δ2
1 δ2

2 δ2
3 δ2

4

δ2
1e

δ1L δ2
2e

δ2L δ2
3e

δ3L δ2
4e

δ4L

δ1e
δ1L δ2e

δ2L δ3e
δ3L δ4e

δ4L



C1

C2

C3

C4

 =


0
0
0
0
0

 (21)

Recall that ej(x) =
∑4

i=1 Cie
δix , so it is sufficient to prove that the unique solution

of (21) is the null solution that is equivalent that C1 = C2 = C3 = C4 = 0.
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Proof Lemma 1 (Sketch)

We know δi , i = 1, 2, 3, 4 are the roots:

x4 − (λ + λj + γ)x2 + (γ(λ + λj)− αβ) = 0 (22)

Let
y 2 − (λ + λj + γ)y + (γ(λ + λj)− αβ) = 0 (23)

Then as αβ > 0 (23) only has real roots. So we have the next enlisted cases:

1 The roots of (23) are reals and
positive and therefore different.
In this case we have that the roots
of (22) are of the form A, −A, B
and −B , for A,B > 0 different.
The unique solution of (21) is the
null solution.

2 The roots of (23) are different
one positive and one negative.
Therefore the roots of (22) are of

the form A, −A, iB and −iB .
Similar, ej ≡ 0.

3 The roots of (23) are 0 and
other one positive (or
negative). In this case the roots of
(22) are of the form 0, 0, A and −A
(or iA and −iA ). Similar ej ≡ 0.

4 The roots of (23) are two
negative. This case is not possible.

Therefore we can conclude that in all possible case we have that ej ≡ 0, which is not
possible because ej is a non trivial eigenvalue of the operator A, which give us the
Lemma 1.
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Other Results

Recall that the controlled system is:
ut(x , t)− uxx(x , t) + λu(x , t) = αv(x , t), x ∈ (0, L), t > 0,
−vxx(x , t) + γv(x , t) = βu(x , t), x ∈ (0, L), t > 0,

u(0, t) = 0, u(L, t) = h(t), t > 0,
v(0, t) = 0, v(L, t) = 0, t > 0,

(24)

We consider some unstable cases where the instability is not too big.
This is the case if the parameters satisfy

αβ =


(
γ(1− δ1)−

(
π
L

)2
(1 + δ1)

)
2γ
((

π
L

)2
+ γ
)

−1((π
L

)2
+ δ2

)
, γ >

(
π
L

)2
(1 + δ1)

1− δ1

λ ∈

(
αβ

2γ
(1 + δ1),

βα(
π
L

)2
+ γ
−
(π
L

)2
)

(25)

for some δ1 ∈ (0, 1) and δ2 > 0.
The next results were proved using the Backstepping Method. See Krstic and
Smyshlyaev (2008).
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Other Results

Define T = {(x , y) ∈ 0 ≤ y ≤ x ≤ L}.

Theorem (2 Parada-Cerpa-Morris)

Let α, β, γ, λ ∈ R satisfy the conditions (25). There there exists k ∈ C 2(T ) such
that the solutions of (24) with the control

h(t) = −
∫ L

0

k(L, y)u(y , t)dy (26)

satisfy

‖(u(·, t), v(·, t))‖L2(0,L)×L2(0,L) ≤ R · e(−2λ+αβ(1+δ1))t‖u(·, 0)‖L2(0,L)

for some R > 0. Thus, this feedback law (26) exponentially stabilizes the origin.
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Other Results

Then, we considered the case where we can only measure the Neumann boundary
condition of the elliptic solution, i.e., vx(0, t). We build the following observer:


ût − ûxx + λû = αv̂ + p1(x)[vx(0)− v̂x(0)], x ∈ (0, L), t > 0,

−v̂xx + γv̂ = βû, x ∈ (0, L), t > 0,
û(0) = 0, û(L) = h(t) + p10[vx(0)− v̂x(0)], t > 0,

v̂(0) = 0, v̂(L) = 0 , t > 0,

(27)

where p(·) and p10 are chosen appropriately.
And obtained the next result

Theorem (3 Parada-Cerpa-Morris)

Let α, β, γ, λ ∈ R satisfy conditions (25). There there exists k ∈ C 2(T ) such that the
solutions of (24)-(27) with the control

h(t) = −
∫ L

0
k(L, y)û(y , t)dy (28)

satisfy

‖(u(·, t)− û(·, t), v(·, t)− v̂(·, t))‖L2(0,L)×L2(0,L) + ‖(û(·, t), v̂(·, t))‖L2(0,L)×L2(0,L)

≤ R · e(−2λ+αβ(1+δ1))t
{
‖u(·, 0)− û(·, 0)‖L2(0,L) + ‖û(·, 0)‖L2(0,L)

}
(29)

for some R > 0.
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Remarks

The condition αβ > 0 could be not necessary, but maybe we have to impose
some conditions on L.

Following the ideas here presented and for example Coron and Trélat (2006)
ideas we can consider other kind of coupling.

We can see that the backstepping result is more restrictive with the parameters
involved the system.

Thanks for your Attention.
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Jean-Michel Coron and Emmanuel Trélat. Global steady-state controllability of
one-dimensional semilinear heat equations. SIAM journal on control and
optimization, 43(2):549–569, 2004.

Jean-Michel Coron and Emmanuel Trélat. Global steady-state stabilization and
controllability of 1d semilinear wave equations. Communications in Contemporary
Mathematics, 8(04):535–567, 2006.

Patricio Guzmán, Swann Marx, and Eduardo Cerpa. Stabilization of the linear
kuramoto-sivashinsky equation with a delayed boundary control. 2019.

Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs: A course on
backstepping designs, volume 16. Siam, 2008.
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