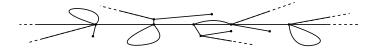
Bilinear control problems on quantum graphs

Alessandro Duca

Institut Fourier, Université Grenoble Alpes, France alessandro.duca@univ-grenoble-alpes.fr

VIII Partial differential equations, optimal design and numerics, Benasque, Aug 18 – Aug 30, 2019.

Quantum graph



- Set of points (vertices) connected by segments or half-lines (edges),
- equipped with a metric structure (equipped with a distance),
- equipped with a self-adjoint operator as a Schrödinger Hamiltonian.

Let the bilinear Schrödinger equation in $\mathscr{H} = L^2(\mathscr{G}, \mathbb{C})$ for \mathscr{G} a graph

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), \\ \psi(0) = \psi^0. \end{cases}$$
(BSE)

- The operator $-\Delta$ is a self-adjoint Laplacian.
- The operator B is bounded and symmetric in \mathcal{H} .
- The function $u \in L^2((0, T), \mathbb{R})$ is the control for T > 0.
- We call Γ_t^u the unitary propagator of the (BSE).
- Let S be the unit sphere in \mathcal{H} .

Let the bilinear Schrödinger equation in $\mathscr{H} = L^2(\mathscr{G}, \mathbb{C})$ for \mathscr{G} a graph

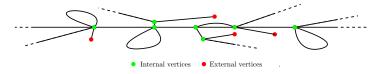
$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), \\ \psi(0) = \psi^0. \end{cases}$$
(BSE)

- The operator $-\Delta$ is a self-adjoint Laplacian.
- The operator B is bounded and symmetric in \mathcal{H} .
- The function $u \in L^2((0, T), \mathbb{R})$ is the control for T > 0.
- We call Γ_t^u the unitary propagator of the (BSE).
- Let S be the unit sphere in \mathcal{H} .

Aim: Study the controllability of the (*BSE*) in a suitable $X \subset \mathcal{H}$.

$$\forall \psi^1, \psi^2 \in X \cap S, \ \exists T > 0, \ u \in L^2((0,T), \mathbb{R}) \implies \Gamma^u_T \psi^1 = \psi^2.$$

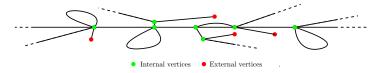
Boundary conditions of $-\Delta$



Let N(v) be the set of edges containing an internal vertex v.

Neumann-Kirchhoff: $\begin{cases} f \text{ is continuous in } v, \\ \sum_{e \in N(v)} \frac{\partial f}{\partial x_e}(v) = 0. \end{cases}$

Boundary conditions of $-\Delta$



Let N(v) be the set of edges containing an internal vertex v.

Neumann-Kirchhoff:
$$\begin{cases} f \text{ is continuous in } v, \\ \sum_{e \in N(v)} \frac{\partial f}{\partial x_e}(v) = 0. \end{cases}$$

Let v be an external vertex of the graph.

Dirichlet:
$$f(v) = 0$$
, **Neumann:** $\frac{\partial f}{\partial x}(v) = 0$.

~ ~

Heuristically speaking: Let $(\lambda_k)_{k \in \mathbb{N}^*}$ be the (ordered) spectrum of $-\Delta$.

If \mathscr{G} is an interval $\implies \inf_{k \in \mathbb{N}^*} |\lambda_{k+1} - \lambda_k| > 0,$ (1) \implies well-posedness and local exact controllability. **Heuristically speaking:** Let $(\lambda_k)_{k \in \mathbb{N}^*}$ be the (ordered) spectrum of $-\Delta$.

If \mathscr{G} is an interval $\implies \inf_{k \in \mathbb{N}^*} |\lambda_{k+1} - \lambda_k| > 0,$ (1) \implies well-posedness and local exact controllability.

If
$$\mathscr{G}$$
 is generic \implies $\begin{cases} (1) \text{ is not guaranteed but} \\ \text{there exists } \mathcal{M} \in \mathbb{N}^* \text{ so that} \\ \inf_{k \in \mathbb{N}^*} |\lambda_{k+\mathcal{M}} - \lambda_k| > 0. \end{cases}$

Further assumptions are required.

Controllability on compacts graphs

Let $\{\phi_k\}_{k\in\mathbb{N}^*}$ be the eigenfunctions of $-\Delta$ on \mathscr{G} composed by the edges $\{e_j\}_{j\leq N}$. For s > 0, let $H^s_{\mathscr{G}} := D(|\Delta|^{\frac{s}{2}})$ and $H^s := \prod_{j=1}^N H^s(e_j, \mathbb{C})$.

Theorem (D.)

Let \mathscr{G} be a compact graph and, for $d \in [0, 1/2)$,

$$\begin{split} B: H_{\mathscr{G}}^{2} \to H_{\mathscr{G}}^{2}, & B: H_{\mathscr{G}}^{3+d} \to H^{3+d} \cap H_{\mathscr{G}}^{2}, \\ \exists C > 0 \quad : \quad |\langle \phi_{k}, B\phi_{1} \rangle_{L^{2}}| \geq \frac{C}{k^{3}} & \forall k \in \mathbb{N}^{*}, \\ \exists C_{1} > 0 \quad : \quad |\lambda_{k+1} - \lambda_{k}| \geq \frac{C_{1}}{k^{\frac{d}{\mathcal{M}-1}}} & \forall k \in \mathbb{N}^{*}. \end{split}$$

If, for $k, l, m, n \in \mathbb{N}^*$ distinct such that $\lambda_k - \lambda_l - \lambda_m - \lambda_n = 0$, we have $\langle \phi_k, B\phi_k \rangle_{L^2} - \langle \phi_l, B\phi_l \rangle_{L^2} - \langle \phi_m, B\phi_m \rangle_{L^2} + \langle \phi_n, B\phi_n \rangle_{L^2} \neq 0$, then the (BSE) is well-posed and globally exactly controllable in $H^{3+d}_{\mathscr{G}}$: $\forall \psi^1, \psi^2 \in H^{3+d}_{\mathscr{G}} \cap S, \exists T > 0, u \in L^2((0, T), \mathbb{R}) \implies \Gamma^u_T \psi^1 = \psi^2$.

Thank you for your attention!