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Problems description
Models in spatial segregation:

1- Adjacent segregation: Particles annihilate or interact on contact line
or, common surface of separation. Appears in modeling of population
density:

(A) Competition models of Lotka-Volterra type,
(B) Variational problems.

2- Segregation at Distance: Components interact at a distance from
each other.
More complex geometric problem: Recent work by L. Caffarelli, S.
Partrizi, V. Quitalo..

3- Singularly perturbed elliptic systems
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Adjacent segregation model Problem (A):
Let m be a fixed integer. We call the m-tuple U = (u1, · · · , um) ∈ (H1(Ω))m, pairwise
segregated states if

ui (x) · uj(x) = 0, a.e. for i 6= j, x ∈ Ω.

Let Ω ⊂ Rd be a connected, bounded domain with smooth boundary.

The density of i-th component ui (x) : i = 1, · · · ,m with the internal dynamic is
prescribed by fi .
The steady-states of m competing components in Ω is given by

−∆uε
i = − 1

ε
uε

i (x)
m∑

j 6=i
aij uε

j (x) + fi (x , uε
i (x)) in Ω

ui ≥ o in Ω
ui (x) = φi (x) on ∂Ω.

(1)

The boundary values φi are non-negative and have disjoint supports on the boundary, i.e,

φi · φj = 0 on ∂Ω.

L. Caffarelli, F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic
functions with free boundaries, J. Amer. Math. Soc. 21, no. 3, 847–862, (2008).

M. Conti, S. Terracini, and G. Verzini, Asymptotic estimate for spatial segregation of
competitive systems, Advances in Mathematics. 195, 524-560, (2005).
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An optimal partition problem

Given Ω we are looking for m-partition (Ω1,Ω2, · · ·Ωm) such that it minimize the following

inf
(Ω1,Ω2,··· ,Ωm)

m∑
i=1

λ1(Ωi ).

Here λ1(D) is the first eigenvalue of −∆ in D with zero boundary condition.
It can be reformulate as

Minimize E(u1, · · · , um) =
m∑

i=1

∫
Ω
|∇ui |2 dx ,

over the set

K = {(u1, . . . , um) ∈ (H1
0 (Ω))m : ui · uj = 0 for i 6= j, ‖ui‖L2(Ωi )

= 1}.
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An Optimal Partition problem
If (u1, u2, · · · , um) minimizes E on K and

Ωi = {x ∈ Ω : ui > 0}

is a good candidate to be an optimal partition.
To penalization the condition ui · uj = 0

Eε =
m∑

i=1

∫
Ω
|∇ui |2 +

1
ε

∫
Ω

∑
j<i

u2
i u2

j dx

Over the set over the set

K ′ = {(u1, . . . , um) ∈ (H1
0 (Ω))m : ‖ui‖L2(Ωi )

= 1}.

The minimizer satisfies 
−∆uε

i = λi uε
i − 1

ε
uε

i
m∑

j 6=i
(uε

j )
2 in Ω

uε
i ≥ 0 in Ω

ui = 0 on ∂Ω.
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Some references for numerics optimal partition problem

D. Bucur, G. Buttazzo, and A. Henrot, Existence results for some optimal partition
problems. Adv. Math. Sci. Appl. 8 (1998), no. 2, 571–579.

B. Bourdin, D. Bucur, and É. Oudet. Optimal partitions for eigenvalues. SIAM J. Sci.
Comput.31(2009), 4100–4114.

B. Helffer, On spectral minimal partitions: a survey. Milan J. Math. 78 (2010), no. 2,
575–590
F. Bozorgnia, Optimal partitions for first eigenvalues of the Laplace operator. NMPDE, 31
(2015) 923-949.

B. Bogosel, D. Bucur, and I. Fragalà,Phase Field Approach to Optimal Packing Problems
and Related Cheeger Clusters. Appl Math Optim (2018), 1-25.

B. Bogosel, Efficient algorithm for optimizing spectral partitions. Applied Mathematics and
Computation 333, (2018), 61-75.
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Adjacent segregation model (B)

Problem (B): Consider the following minimization problem

Minimize E(u1, · · · , um) =

∫
Ω

m∑
i=1

(
1
2
|∇ui |2 + fi ui

)
dx ,

over the set

K = {(u1, . . . , um) ∈ (H1(Ω))m : ui ≥ 0, ui · uj = 0 inΩ, for i 6= j, ui = φi on ∂Ω}.

Here φi · φj = 0, φi ≥ 0 on the boundary ∂Ω. Also we assume that fi is uniformly continuous
and fi (x) ≥ 0.

F. Bozorgnia, A Arakelyan, Numerical algorithms for a variational problem of the spatial
segregation of reaction-diffusion systems. Applied Mathematics and Computation 219,
(2013) 8863-8875.

M. Conti, S. Terracini, and G. Verzini, A varational problem for the spatial segregation of
reaction-diffusion systems, Indiana Univ. Math. J. 54, no 3, (2005) 779–815.
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Different cases for minimization Problem (B)
m = 1 : One phase Obstacle problem

Minimize E(u) =
∫
Ω

(
1
2
|∇u|2 + f u

)
dx ,

over the admissible set K = {u ∈ H1(Ω) : u ≥ 0, u = φ on ∂Ω}.
m = 2 : Two-phase membrane problem

E(v) =
∫
Ω

(
1
2
|∇v |2 + f1max(v , 0)− f2min(v , 0)

)
dx ,

over
K = {v ∈ H1(Ω), v = g on ∂Ω, g changes sign on ∂Ω.}

Minimizer solves {
∆u = f1χ{u>0} − f2χ{u<0} in Ω,
u = g on ∂Ω.

In E(v) set u1 = v+ = max(v , 0) u2 = v− = max(−v , 0) then

E(v) = E(u1, u2) =

∫
Ω

(
1
2
(|∇u1|2 + |∇u2|2) + f1u1 + f2u2

)
dx .

G.S . Weiss, An obstacle-problem-like equation with two phases: pointwise regularity of the
solution and an estimate of the Hausdorff dimension of the free boundary. Interfaces Free
Bound 2001, 3:121-128.
H. Shahgholian, G.S. Weiss,The two-phase membrane problem—an
intersection-comparison approach to the regularity at branch points. Adv. Math. 205
(2006) 487–503.
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Segregation at distance
System has similarity with system in Problem (A)
But: Annihilation of coefficients for u1(x) is based on values on u2 in full neighborhood so
→ we have to prescribe u1 and u2 in a neighborhood of Ω.

Denote (∂Ω)1 := {x ∈ Ωc : dist(x ,Ω) ≤ 1}.

Figure:
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The Model of segregation at distance
The model is described by the following system

−∆uε
i (x) = − 1

ε
uε

i (x)
∑
j 6=i

H(uε
j )(x) x ∈ Ω,

ui (x) = φi (x) x ∈ (∂Ω)1,
i = 1, · · · ,m.

(2)

where
H(uε

j )(x) =
∫

B1(x)
uε

j (y)dy ,

or
H(uε

j )(x) = sup
y∈B1(x)

uε
j (y).

Assumptions: φi (x) for i = 1, · · · ,m are non-negative C1,α functions such that have disjoint
supports in distance more than two

(supp φi (x))1 ∩ (supp φj(x))1 = ∅.

L. Caffarelli, S. Patrizi, and V. Quitalo, On a long range segregation model. J. Eur. Math.
Soc. 19,(2017) 3575-3628.

F. Bozorgnia, Uniqueness result for long range spatially segregation elliptic system. Acta
Applicandae Mathematicae, (2017), 1-14.
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A class of Singular Perturbed Elliptic system:
The m-tuple U = (u1, · · · , um) are called mutually segregated if

m∏
j=1

uj(x) = 0 x ∈ Ω.

Consider the following system, ∆uε
i = Ai (x)

ε
F(uε

1 , · · · , uε
m) in Ω,

uε
i ≥ 0, in Ω,

ui (x) = φi (x) on ∂Ω,

(3)

where

F(u1, · · · , um) =
m∏

j=1
uαj

j , αi ≥ 0.

(A1) φi are non-negative C1,α and
∏m

i=1 φi = 0 on ∂Ω.
(A2) The functions Ai (x) are smooth, nonnegative and

Ai (x) ≤
∑
j 6=i

Aj(x)

.
Aim: Existence, Uniqueness and numerical simulation for Systems (1), (2)and (3) for fixed ε
and the limit as ε tends to zero.
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Modeling

The system (3) and the limiting system for ε ↓ 0 appear in theory of flames and are
related to a model called Burke-Schumann approximation.
Oxidizer and reactant mix on a thin sheet and the flame precisely occurs there.
Introduce a large parameter called Damköhler number, denoted by Da, which is the
parameter measuring the intensity of the reaction
Then, the a chemical reaction is described by

Oxidizer + Fuel → Products.

Let YO and YF , respectively, denote the mass fraction of the oxidizer and the fuel:{
−∆YO + v(x).∇YO = Da YO YF in Ω,
−∆YF + v(x).∇YF = Da YO YF in Ω,

with given incompressible velocity field v and a Dirichlet boundary condition on ∂Ω.

L. Caffarelli and J. Roquejoffre,Uniform Hölder estimate in a class of elliptic systems and
applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal.
183, no. 3, (2007) 457–487.

F. Bozorgnia, M. Burger,On a Class of Singularly Perturbed Elliptic Systems with
Asymptotic Phase Segregation. arXiv(2019):1901.08750.
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Existence and Uniqueness
Theorem
For each ε > 0, there exist a unique positive solution (uε

1 , · · · , uε
m) of system in (1), (2) and (3).

Sketch of the Proof(for System 3)

Consider the harmonic extension u0
i for i = 1, · · · ,m given by{
−∆u0

i = 0 in Ω,
u0

i = φi on ∂Ω,
(4)

Given uk
i , consider the solution of the following linear system for system (1){

∆uk+1
i = Ai (x)

ε

uk
1 ···u

k
i−1uk+1

i uk
i+1···u

k
m + uk+1

1 ···uk+1
i−1uk+1

i uk
i+1···u

k
m

2 in Ω,

uk+1
i (x) = φi (x) on ∂Ω.

(5)

The following inequalities hold:

u0
i ≥ u2

i ≥ · · · ≥ u2k
i ≥ · · · ≥ u2k+1

i ≥ · · · ≥ u3
i ≥ u1

i , inΩ,

which implies
u2k

i → ui and u2k+1
i → ui uniformly in Ω.
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Existence and Uniqueness

We have : ui ≥ ui .

We will show that in fact the equality holds. To do this, first consider
the equations for the mth


∆um = Am(x)

2ε um
(
u1 · · · ui ui+1 · · · um−1 + u1 · · · ui ui+1 · · · um−1

)
in Ω,

∆um = Am(x)
2ε um

(
u1 · · · ui ui+1 · · · um−1 + u1 · · · ui ui+1 · · · um−1

)
in Ω,

um = um = φm(x) on ∂Ω,

(6)

which implies
um = um.

The argument is repeated backward which shows equality for every i.
Assume there exist another positive solution (w1, · · · ,wn), then by induction:

u2k+1
i ≤ wi ≤ u2k

i , for k ≥ 0, (7)

which shows
ui = wi .
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Goal: Analyze of Problem (A) as ε → 0 in first model

Assume aij = 1, fi (x , ui ) = 0. The case of two components m = 2:
∆uε

1 = 1
ε

uε
1 (x)uε

2 (x) in Ω

∆uε
2 = 1

ε
uε

2 (x)uε
1 (x) in Ω

+ Boundary conditions.

Easy fact: ∆(uε
1 − uε

2 ) = 0, ∀ε. This remains true when ε tends to zero.

Numerical investigation of long range segregation models 17 / 30



Theorem Let W be harmonic with the boundary data φ1 − φ2. Let u1 = W+, u2 = −W−,
then the pair(u1, u2) is the limit configuration of any sequences (uε

1 , uε
2 ) and:

‖ uε
i − ui ‖H1(Ω)≤ C(ε)1/6 as ε → 0, i = 1, 2.

M. Conti, S. Terracini, and G. Verzini, Asymptotic estimate for spatial segregation of
competitive systems, Advances in Mathematics. 195, 524-560, (2005).
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Goal: study the system as ε → 0 in model 1
Theorem1[CTV]:

Let Uε = (uε
1 , ..., uε

m) be the solution of system at fixed ε. Let ε → 0, then there exists
U ∈ (H1(Ω))m such that for all i = 1, · · · ,m:

1 up to a subsequences, uε
i → ui strongly in H1(Ω),

2 ui · uj = 0 if i 6= j a.e in Ω,
3 ∆ui = 0 in the set {ui > 0}.
4 Let x belongs to interface such that m(x) = 2 then

lim
y→x

∇ui (y) = − lim
y→x

∇uj(y) Free boundary condition.

Figure:
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Relation between problem A and B for m = 3

The case m = 3: Uniqueness of the limiting configuration as ε tends to zero on a planar
domain, with appropriate boundary conditions

−∆uε
i = −

1
ε

uε
i (x)

m∑
j 6=i

uε
j (x) i = 1, 2, 3,

Moreover the limiting configuration minimizes

Minimize E(u1, u2, u3) =

∫
Ω

3∑
i=1

(
1
2
|∇ui |2

)
dx ,

among all segregated states ui · uj = 0 a.e. with the same boundary conditions.

M. Conti, S. Terracini, and G. Verzini, Uniqueness and least energy property for solutions
to strongly competing systems. Interfaces and Free Boundaries 8 (2006), 437-–446.
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Examples for the first model
Let Ω = B1,m = 3. The boundary values φi for i = 1, 2, 3 are

φ1(1,Θ) =

{
| sin( 3

2Θ)| 0 ≤ Θ ≤ 2π
3

0 elsewhere φ2(1,Θ) =

{
| sin( 3

2Θ)| 2π
3 ≤ Θ ≤ 4π

3 ,
0 elsewhere.

φ3(1,Θ) =

{
4| sin( 3

2Θ)| 4π
3 ≤ Θ ≤ 2π,

0 elsewhere.
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Example

we applied second method with Ω = [0, 1]× [0, 1]
,φ1 = 1 − x2, φ2 = 1 − y2, φ3 = 1 − x2, φ4 = 1 − y2
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1D segregation example
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2D segregation example
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2D segregation example
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Relation between interfaces in model (1) and (2)
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Examples for Singular Perturbed system

Let Ω = B1,m = 3. The boundary values φi for i = 1, 2, 3 are defined by

φ1(1,Θ) =

{
| sin( 3

2Θ)| 0 ≤ Θ ≤ 4π
3 ,

0 elsewhere, φ2(1,Θ) =

{
| sin( 3

2Θ)| 2π
3 ≤ Θ ≤ 2π,

0 elsewhere.

φ3(1,Θ) =

{
| sin( 3

2Θ)| 4π
3 ≤ Θ ≤ 2π + 2π

3 ,
0 elsewhere.

Here the boundary conditions satisfy

φ1 · φ2 · φ3 = 0.
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Example for the singular perturbed system

Figure: surface of u1
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Example for the singular perturbed system

Figure: u1 + u2 + u3.
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Thanks for your attention
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