Fluid-Structure models arising in blood-flow models

Debayan Maity

Universidad Autónoma de Madrid

VIII Partial differential equations, optimal design and numerics, Benasque, 23 August
Outline

1. Introduction
2. Linearized system
3. Main results
4. Future direction of work
Outline

1. Introduction
2. Linearized system
3. Main results
4. Future direction of work
Motivation: Blood flow in large arteries. Viscous fluid interacts with a thin elastic structure located on one part of the fluid domain.

The fluid domain depends on the structure displacement. We have a free boundary value problem.
The reference configuration:

\[
\Omega = \left\{ (z_1, z_2, z_3) \in \mathbb{R}^3 \mid z_1 \in (0, L), \sqrt{z_2^2 + z_3^2} \leq 1 \right\}
\]

\(\Gamma_s\) is the lateral boundary, which is deformable. \(\Gamma_{in}\) and \(\Gamma_{out}\) are inflow and outflow boundaries respectively.

Current configuration: Let \(\vec{d}(t, \cdot)\) displacement of the shell from the reference configuration \(\Gamma_s\). Displacement is only in the radial direction. Thus \(\vec{d}(t, z_1, \theta) = \eta(t, z_1, \theta)e_r(\theta)\).

\[
\Omega_{\eta(t)} = \left\{ (z_1, x, y) \in \mathbb{R}^3 \mid z_1 \in (0, L), \sqrt{x^2 + y^2} \leq 1 + \eta(t, \cdot) \right\},
\]

\[
\Gamma_{\eta(t)} = \left\{ (z_1, x, y) \in \mathbb{R}^3 \mid z_1 \in (0, L), \sqrt{x^2 + y^2} = 1 + \eta(t, \cdot) \right\}.
\]
Governing equations

- **Fluid equation**: The fluid is Newtonian, viscous and incompressible. The fluid velocity u and pressure p satisfy
 \[
 \rho_f \left(\partial_t u + u \cdot \nabla u \right) - \text{div} \sigma(u, p) = 0, \quad \text{div} \, u = 0 \quad \text{in} \ (0, T) \times \Omega_{\eta(t)},
 \]
 where $\sigma(u, p) = (\nabla u + \nabla u)^\top - pl$.

- **Boundary conditions**:
 \[
 \sigma(u, p)n = 0 \quad \text{on} \ \Gamma_{\text{in}} \cup \Gamma_{\text{out}}.
 \]

- **Structure equation**: η satisfies viscoelastic cylindrical nonlinear Koiter shell equation:
 \[
 \partial_{tt}\eta + \mathcal{L}_{\text{mem}} \eta + \Delta_s^2 \eta - \beta_2 \Delta_s \partial_t \eta = \mathcal{H}(u, p, \eta) \quad \text{on} \ \Gamma_s,
 \]

- **
 \[
 \eta = \frac{\partial \eta}{\partial n} = 0 \quad \text{on} \ \partial \Gamma_{\text{in}} \cup \partial \Gamma_{\text{out}}.
 \]
Interface conditions

Coupling between the fluid and the structure is expressed through the kinematic and dynamic lateral boundary conditions:

• Continuity of the velocity (the no-slip condition) at the interface Γ_{η}

$$u = \partial_t \eta e_r \text{ on } \Gamma_{\eta}$$

• Balance of the contact forces at the interface

$$\mathcal{H}(u, p, \eta) = -J(\sigma(u, p)\tilde{n})|_{\Gamma_{\eta}} \cdot e_r,$$

\tilde{n} is the unit normal to Γ_{η}.

Goal: To study existence and uniqueness of strong solutions in L^2 framework.
State of the art

- **Strong Solution and 2D/1D model:**
 - Structure equation: \(\partial_{tt}\eta + \alpha \partial_{xxxx}\eta - \beta \partial_{xx}\eta - \gamma \partial_{txx}\eta = H. \)
 - fluid boundary conditions at the inlet and outlet.

- **Local in time existence:** Lequeurre (11 and 13), Casanova (18), Grandmont, Hilariet and Lequeurre (18), Badra and Takahashi (19), Djebour and Takahashi (19), ...
 - \(\gamma = 0 \) and periodic boundary condition at the inlet/outlet.
 - \(\gamma > 0 \), Dirichlet / pressure boundary conditions.

- **Global in time existence:** Grandmont and Hilariet (2016), \(\gamma > 0 \), \(\alpha > 0 \) and periodic boundary conditions.

Our result: Local in time existence with \(\gamma > 0 \), \(\alpha > 0 \) and Neumann boundary condition at the inlet/outlet.
Outline

1. Introduction
2. Linearized system
3. Main results
4. Future direction of work
Monolithic approach:

- Rewrite the system in the fixed domain: Lagrangian or Geometric change of variables.
- System in fixed domain

\[z'(t) = \mathcal{A}_{FS} z(t) + \mathcal{N}(z), \quad z(0) = z_0. \]

- Linearized FSI system in a suitable space \(\mathcal{X} \):

\[z'(t) = \mathcal{A}_{FS} z(t) + f(t), \quad z(0) = z_0. \]

- Regularity of linear system.

- Fixed point argument. (local in time or global in time for small initial data)
Linearized problem in 2D/1D setting

\[\Omega = (0, L) \times (0, 1), \Gamma_s = (0, L) \times \{1\}, \Gamma_{in} = \{0\} \times (0, 1) \text{ and } \Gamma_{out} = \{L\} \times (0, 1) \]

\[\begin{cases} \partial_t u - \Delta u + \nabla p = f, \text{div} u = 0, & \text{in } \Omega, \\ u = \partial_t \eta e_2 & \text{on } \Gamma_s, \\ \sigma(u, p)n = 0 & \text{on } \Gamma_{in} \cup \Gamma_{out}, \\ \partial_{tt} \eta + \partial_{xxxx} \eta - \partial_{txx} \eta = p|_{\Gamma_s} + h & \text{in } \Gamma_s \end{cases} \]

- The linear fluid-structure operator generates an analytic semigroup.
- The fluid operator (with homogeneous BC) and the structure operator generates analytic semigroup.
- The coupling can be seen as compact perturbation.
• Remove pressure from the fluid and structure equation.
• Use Leray projector to remove the pressure from fluid equation.
 \[\partial_t P u = A_F P u + B \partial_t \eta. \]
• The pressure can be written as
 \[\Delta p = 0, \quad \frac{\partial p}{\partial n} = -\partial_{tt} \eta + \Delta u \cdot n \text{ on } \Gamma_s, \quad p = \varepsilon(u)n \cdot n \text{ on } \Gamma_{in/out}. \]

 Thus \(p = N_0(\partial_{tt} \eta) + N_1(u). \)
• The structure equation becomes:
 \[(I + \gamma_s N_0) \partial_{tt} \eta - A_s = \gamma_s N_1(u). \]
• The operator \((I + \gamma_s N_0)\) is known as “added mass” operator and is invertible in \(L^2(\Gamma_s)\).
The fluid-structure operator

The system can be written as

\[
\frac{d}{dt} \begin{pmatrix} P u \\ \eta_1 \\ \eta_2 \end{pmatrix} = A_{FS} \begin{pmatrix} P u \\ \eta_1 \\ \eta_2 \end{pmatrix} + \text{source term}.
\]

\[
A_{FS} = \begin{pmatrix} I & 0 & B \\ 0 & 0 & I \\ (I + \gamma_s N_0)^{-1} & N_1(u) & -\Delta^2 & \Delta \end{pmatrix}
\]

- \(\mathcal{X} = L^2_\sigma(\Omega) \times H^2(\Gamma_s) \times L^2(\Gamma_s) \)
- \(\mathcal{D}(A_{FS}) \sim H^{3/2+\epsilon_0} \times H^4(\Gamma_s) \times H^2(\Gamma_s) \)
- Loss of regularity for fluid due to mixed boundary condition and the angle of Dirichlet-Neumann junction is \(\pi/2 \).
- Study the weak form of \(N_1(u) \) and to show it is a compact operator.
- \((u, \eta_1, \eta_2) \in L^2(0, T; \mathcal{D}(A_{FS})) \cap H^1(0, T; \mathcal{X})\).
Outline

1 Introduction
2 Linearized system
3 Main results
4 Future direction of work
Main result

Theorem (DM, J.-P. Raymond, A. Roy)

Let \(\eta(0) = 0, \ (u_0, \partial_t \eta(0)) \in H^1(\Omega) \times H^1(\omega) \) with compatibility conditions. Then there exists a \(T > 0 \), depending only on the initial data such that the system admits a strong solution

\[
u \in L^2(0, T; H^{3/2+\varepsilon_0}(\Omega_{\eta(\cdot)})) \cap H^1(0, T; L^2(\Omega_{\eta(\cdot)})) \cap C([0, T]; H^1(\Omega_{\eta(\cdot)})),
\]

\[
p \in L^2(0, T; H^{1/2+\varepsilon_0}(\Omega_{\eta(\cdot)})), \quad \text{div} \ \sigma(u, p) \in L^2(\tilde{Q}_T),
\]

\[
\eta \in L^2(0, T; H^4(\omega)) \cap H^2(0, T; L^2(\omega)),
\]

\[
1 + \eta(t, \cdot) > 0, \quad t \in [0, T]
\]

for some \(\varepsilon_0 \in (0, 1/2) \).
$L^p - L^q$ regularity

- We look for solutions of fluid and structure in $L^p(0, T; L^q)$.
- The idea is the same: $L^p - L^q$ regularity of fluid and structure with compactness of the fluid-structure coupling.
- $L^p - L^q$ regularity is no longer characterised by analyticity of the linear semigroup. We need to show \mathcal{R}-sectoriality of the resolvent operator.

Theorem (DM, T. Takahashi)

The reference domain is smooth. Let us assume that $\frac{1}{p} + \frac{n}{2q} < \frac{3}{2}$. For suitable initial data with compatibility conditions, we have local in time existence of strong solutions:

- $u \in L^p(0, T; W^{2,q}) \cap W^{1,p}(0, T; L^q)$
- $\eta \in L^p(0, T; W^{4,q}) \cap W^{2,p}(0, T; L^q)$.
Outline

1. Introduction
2. Linearized system
3. Main results
4. Future direction of work
Future direction of work

- In the 3D case, can we remove the viscosity of the structure.
- Wave or damped wave.
- Global existence in 2D, without the damping term.
- Other fluid models: Compressible Navier-Stokes-Fourier.
Thank you very much.