Greedy Algorithm for Parameter Dependent Operator Lyapunov Equations.
Application to Control Problems

Martin Lazar, Jerome Weston
University of Dubrovnik

VIII PDEs, optimal design and numerics
Benasque, August 2019
Table of Contents

Problem formulation

Greedy methods

Implementation

Application to control theory

Numerical examples
We consider a family of parameter-dependent operator Lyapunov equations

\[A_\nu P_\nu + P_\nu A^{\ast}_\nu = -Q_\nu \]

(OLE\(\nu\))

- \(\nu\) – a parameter ranging over compact set \(\mathcal{N} \subseteq \mathbb{R}^d\)
- \(A_\nu\) – an unbounded operator on a Hilbert space \(X\)
- \(Q_\nu\) – a bounded operator on \(X\), \(Q_\nu \geq 0\)
- \(P_\nu\) – the solution

Problem
Find the efficient algorithm for solving (OLE\(\nu\)) for a wide range of parameters.
Assumptions

For each ν

- $D(A_\nu)$ is dense in X
- the operator A_ν is closed and stable

Then there exists a unique nonnegative solution $P \in \mathcal{L}(X)$

$$P_\nu = \int_0^\infty e^{tA_\nu} Q_\nu e^{tA^*_\nu} dt$$

Different methods for computing the solution.

- Bartels, Stewart *Comm. ACM*, 1972. - the Schur decomposition
- Saad (1990) - Krylov subspace methods
- Simoncini *SIAM Rev.*, 2016. - iterative methods

Computational expensive.

Can we construct the solution manifold

$$\mathcal{P} = \{P_\nu : \nu \in K\}$$

without applying the above methods for each new value of ν?
The idea

To determine a finite number of values of ν that yield the best possible approximation of the solution manifold \mathcal{P}

The idea

To determine a finite number of values of \(\nu \) that yield the best possible approximation of the solution manifold \(\mathcal{P} \)

In order to achieve this goal we rely on greedy algorithms and reduced bases methods for parameter dependent PDEs or abstract equations in Banach spaces.

The pure greedy method

\(X \) – a Banach space \(K \subset X \) – a compact subset.

- The method approximates \(K \) by a series of finite dimensional linear spaces \(V_n \) (a linear method).
- **Offline** procedure generates approximation subspace within given precision error; **Online** routine calculates approximations for any element in \(K \).

The algorithm

The first step Choose \(x_1 \in K \) such that

\[
\|x_1\|_X = \max_{x \in K} \|x\|_X.
\]

The general step Having found \(x_1..x_n \), denote \(V_n = \text{span}\{x_1, \ldots, x_n\} \).

Choose the next element

\[
x_{n+1} := \arg \max_{x \in K} \text{dist}(x, V_n).
\] (1)

The algorithm stops when \(\sigma_n(K) := \max_{x \in K} \text{dist}(x, V_n) \) becomes less than the given tolerance \(\varepsilon \).
In order to estimate the efficiency of the (weak) greedy algorithm we compare its approximation rates $\sigma_n(K)$ with the best possible one.

The Kolmogorov n width, $d_n(K)$

- measures how well K can be approximated by a subspace in X of a fixed dimension n.

\[
d_n(K) := \inf_{\dim Y = n} \sup_{x \in K} \inf_{y \in Y} \|x - y\|_X.
\]

Thus $d_n(K)$ represents optimal approximation performance that can be obtained by a n-dimensional linear space. The greedy approximation rates have same decay as the Kolmogorov widths.

Theorem

(Cohen, DeVore ’15) \(^3\)

For any $\alpha > 0, C_0 > 0$

\[
d_n(K) \leq C_0 n^{-\alpha} \implies \sigma_n(K) \leq C_1 n^{-\alpha}, \quad k \in \mathbb{N},
\]

where $C_1 := C_1(\alpha, C_0, \gamma)$.

Performance obstacles

- The set \(K \) in general consists of infinitely many vectors.

- In practical implementations the set \(K \) is often unknown (e.g. it represents the family of solutions to parameter dependent problems).
The set K in general consists of infinitely many vectors.

Finite discretisation of K.

In practical implementations the set K is often unknown (e.g. it represents the family of solutions to parameter dependent problems).
Performance obstacles

- The set K in general consists of infinitely many vectors.
 Finite discretisation of K.

- In practical implementations the set K is often unknown (e.g. it represents the family of solutions to parameter dependent problems).
 One uses some **surrogate** value replacing the exact distance by some uniformly equivalent term.
Performance obstacles

- The set K in general consists of infinitely many vectors.
 Finite discretisation of K.

- In practical implementations the set K is often unknown (e.g. it represents the family of solutions to parameter dependent problems).
 One uses some surrogate value replacing the exact distance by some uniformly equivalent term.

Practical realisations depends crucially on an existence of an appropriate surrogate!
Implementation: Residual Analysis

Knowing P_1 how to measure

$$\text{dist}(P_1 - P_\nu)$$

without knowing P_ν?

Check residual

$$R_\nu(P_1) := A_\nu P_1 - P_1 A_\nu + B_\nu B_\nu^*$$
Implementation: Residual Analysis

Knowing P_1 how to measure

\[\text{dist}(P_1 - P_\nu) \]

without knowing P_ν?

Check residual

\[R_\nu(P_1) := A_\nu P_1 - P_1 A_\nu + B_\nu B_\nu^* \]

Theorem

Suppose that

1) A_ν is sectorial, i.e it is a generator of an analytical semigroup ;
2) $D(A_{\nu_1}) = D(A_{\nu_2})$ and $D(A_{\nu_1}^*) = D(A_{\nu_2}^*)$ for $\nu_1, \nu_2 \in \mathcal{N}$.

Then

\[\|R_\nu\| \sim \|P_1 - P_\nu\| \]
Implementation: Residual Analysis

Knowing P_1 how to measure

$$\text{dist}(P_1 - P_\nu)$$

without knowing P_ν?

Check residual

$$R_\nu(P_1) := A_\nu P_1 - P_1 A_\nu + B_\nu B_\nu^*$$

Theorem

Suppose that

1) A_ν is sectorial, i.e it is a generator of an analytical semigroup ;

2) $D(A_{\nu_1}) = D(A_{\nu_2})$ and $D(A_{\nu_1}^*) = D(A_{\nu_2}^*)$ for $\nu_1, \nu_2 \in \mathbb{N}$.

Then

$$||R_\nu|| \sim ||P_1 - P_\nu||$$

Tricky part - functional setting (norms in which spaces?)

Result in finite dimensional setting

Implementation: Residual Analysis

Knowing P_1 how to measure

$$\text{dist}(P_1 - P_\nu)$$

without knowing P_ν?

Check residual

$$R_\nu(P_1) := A_\nu P_1 - P_1 A_\nu + B_\nu B_\nu^*$$

Theorem

Suppose that

1) A_ν is sectorial, i.e it is a generator of an analytical semigroup ;
2) $D(A_{\nu_1}) = D(A_{\nu_2})$ and $D(A_{\nu_1}^*) = D(A_{\nu_2}^*)$ for ν_1, $\nu_2 \in \mathcal{N}$.

Then

$$\|R_\nu\|_{\mathcal{L}(X_1^d, X_{-1})} \sim \|P_1 - P_\nu\|_{\mathcal{L}(X_1^d, X)}$$
Implementation: Residual Analysis

Knowing P_1 how to measure

$$\text{dist}(P_1 - P_\nu)$$

without knowing P_ν?

Check residual

$$R_\nu(P_1) := A_\nu P_1 - P_1 A_\nu + B_\nu B_\nu^*$$

Theorem

Suppose that

1) A_ν is sectorial, i.e it is a generator of an analytical semigroup;
2) $D(A_{\nu_1}) = D(A_{\nu_2})$ and $D(A_{\nu_1}^*) = D(A_{\nu_2}^*)$ for $\nu_1, \nu_2 \in \mathbb{N}$.

Then

$$||R_\nu||_{\mathcal{L}(X^d_{-1}, X)} \sim ||P_1 - P_\nu||_{\mathcal{L}(X^d_1, X)}$$

Collateral result:

Theorem

Lyapunov operator $L_A(P) = AP + PA^*$ is a bounded and coercive operator from $\mathcal{L}(X^d_1, X)$ to $\mathcal{L}(X^d_1, X_{-1})$.
Control problem

Consider the control system

\[
\begin{cases}
\frac{d}{dt} x(t) &= Ax(t) + Bu(t), \quad 0 \leq t \leq T \\
x(0) &= x_0
\end{cases}
\]

where \(B \) is an admissible control operator.

Suppose that \(x_T \) is a reachable state.

Then the optimal norm control \(\hat{u} \) is of the type

\[
\hat{u} = B^* e^{(T-t)A^*} \phi_T
\]

for some vector \(\phi_T \) which corresponds to initial datum of the adjoint equation.

In addition, the following equation holds

\[
x_T - e^{tA} x_0 = \Lambda_T \phi_T,
\]

where \(\Lambda_T \) is the Gramian operator

\[
\Lambda_T = \int_0^T e^{tA} B B^* e^{tA} dt
\]

The minimal control energy is given by

\[
\|\hat{u}\|^2 = \Lambda_T \phi_T \cdot \phi_T.
\]
For dissipative systems Λ_T can be well approximated by the infinite time Gramian operator.

$$\Lambda_\infty = \int_0^\infty e^{tA}BB^*e^{tA}dt$$
For dissipative systems Λ_T can be well approximated by the infinite time Gramian operator.

$$\Lambda_\infty = \int_0^\infty e^{tA} BB^* e^{tA} \, dt$$

which is the solution to (OLE) with $Q = BB^*$

Solving for Λ_∞ is much easier than constructing Λ_T (which satisfies differential Lyapunov equation).

But we even want to avoid solving for Λ_∞!
For dissipative systems Λ_T can be well approximated by the infinite time Gramian operator.

$$\Lambda_{\infty} = \int_{0}^{\infty} e^{tA} BB^* e^{tA} dt$$

which is the solution to (OLE) with $Q = BB^*$

Solving for Λ_{∞} is much easier than constructing Λ_T (which satisfies differential Lyapunov equation).

But we even want to avoid solving for Λ_{∞}!

We introduce parameter dependence

\[
\begin{cases}
\frac{d}{dt} x_{\nu}(t) = A_{\nu} x_{\nu}(t) + B_{\nu} u_{\nu}(t), & 0 \leq t \leq T \\
x_{\nu}(0) = x_{0,\nu}
\end{cases}
\]

We apply the greedy algorithm for solving (approximately) $\Lambda_{\infty,\nu}$

The algorithm is independent of x_0, x_T and T!
Example 1: 1D Heat Equation

\[
\begin{aligned}
\frac{\partial}{\partial t} z - \nu \Delta z &= 0 \quad \text{in} \quad (0, 1) \times (0, T), \\
z(0, t) &= 0, \\
z(x, 0) &= z_0.
\end{aligned}
\]

The parameter \(\nu \) ranges within \(\mathcal{N} = [0.7, 1300] \)

The greedy algorithm has been applied with

- discretized system of dimension \(N = 40 \),
- \(\epsilon = 0.01 \),
- uniform discretization of \(\mathcal{N} \) in \(l = 100 \).

The offline algorithm stops after only one iteration in approximately 0.06 seconds!
Example 1: 1D Heat Equation

\[
\begin{align*}
\frac{\partial}{\partial t} z - \nu \Delta z &= 0 \quad \text{in} \quad (0, 1) \times (0, T), \\
z(0, t) &= 0, \quad z(1, t) = u_{\nu}(t), \\
z(x, 0) &= z_0.
\end{align*}
\]

The parameter \(\nu \) ranges within \(\mathcal{N} = [0.7, 1300] \)

The greedy algorithm has been applied with
- discretized system of dimension \(N = 40 \),
- \(\epsilon = 0.01 \),
- uniform discretization of \(\mathcal{N} \) in \(l = 100 \).

The offline algorithm stops after only one iteration in approximately 0.06 seconds!

By change of variables:

\[
A_{\nu} = \nu A \quad \Rightarrow \quad \Lambda_{\infty, \nu} = \nu \Lambda_{\infty}
\]

(Holds just for \(T = \infty \))
Example 1: 1D Heat Equation - Online part

We aim to steer the system

- from $z_0 = 0$ to $z_1 = \sin(\pi x)$
- in time $T = 0.1$
- for $\nu = 23$

Calculation of the approximate Gramian is rather straightforward. It is applied for construction of the optimal control. It drives the system to final state z^1 within the error $|z^1 - z(T)| = 3.77 \times 10^{-5}$.

Figure: Evolution of a) the approximate control and b) the solution of semi-discretized example problem.
Example 2: Anisotropic 2D Heat Equation

\[
\frac{\partial}{\partial t} z - \Delta_\nu z = 0 \quad \text{in} \quad (0, 1)^2 \times (0, T),
\]
\[
z(x, t) = v_0(x, t), \quad \text{for} \quad x \in \partial([0, 1]^2)
\]
\[
z(x, 0) = 0
\]

\[
\Delta_\nu = \frac{\partial^2}{\partial x_1^2} + (1 + \nu) \frac{\partial^2}{\partial x_2^2}, \quad \nu \in \mathcal{N} = [0, 1]
\]

\[
v_0(x, t) = \begin{cases}
 u_\nu(t), & x_1 = 1 \\
 0, & \text{otherwise}
\end{cases}
\]

The greedy algorithm has been applied for the discretized system of dimension \(N = 400 \) with \(\epsilon = 0.05 \), and the uniform discretization of \(\mathcal{N} \) in \(l = 40 \).

The offline algorithm stops after 12 iterations, choosing 12 parameter values out of 40 in a zigzag manner.
Example 2: Anisotropic 2D Heat Equation-cont.

We aim to steer the system
- from $z_0 = 0$ to $z_1 = \sin(\pi x) \ast \sin(\pi x_2)$
- in time $T = 1$
- for $\nu = 0.1$

$\Lambda_{\infty,\nu}$ is approximated by a suitable linear combination of $\Lambda_{\infty,i}, i = 1..12$.

Elapsed time is 0.21 s and the error is $|z^1 - z(T)| = 2.0 \times 10^{-4}$.

![Graph of $u(t)$](image1)

![Graph of states $z(T)$ and z^1](image2)

Figure: a) Evolution of the approximate control and b) the states $z(T)$ (dashed) and z^1.
Conclusion

Done:
- Greedy algo for solving parameter dependent OLE
- Provides approximation of infinite time control Gramians (*independent of initial and final data, and final time!*)
- Enables construction of optimal controls for dissipative systems

Further work:
- **Differential** Lyapunov equation
- It would provides approximation of *finite time* control Gramians
- Enables construction of optimal controls for *non-dissipative* systems
Conclusion

Done:

- Greedy algo for solving parameter dependent OLE
- Provides approximation of infinite time control Gramians (independent of initial and final data, and final time!)
- Enables construction of optimal controls for dissipative systems

Further work:

- Differential Lyapunov equation
- It would provides approximation of finite time control Gramians
- Enables construction of optimal controls for non-dissipative systems

Thanks for your attention!