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EIKONAL EQUATION

ASSUMPTION (H)

• Ω ⊂ Rn is a bounded open set with boundary, Γ, given by a C∞-manifold
of dimension n − 1.

• Ω′ ⊃ Ω is an open set of Rn and {X1, . . . ,XN} is a system of Hörmander
vector fields on Ω′, i.e., Lie({Xi}N

i=1)[x ] = Rn for all x ∈ Ω′ (N ≤ n).

We consider the Dirichlet problem

{ ∑N
j=1(XjT )2(x) = 1 in Ω,

T = 0 on Γ.

Ω

We study the regularity and the structure of the singular support of its
viscosity solution T .
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HÖRMANDER BRACKET GENERATING CONDITION

• Taking two C∞ vector fields on Ω′,

X (x) =
n∑

i=1

fi (x)∂xi , Y (x) =
n∑

i=1

gi (x)∂xi , x ∈ Ω′,

where fi , gi ∈ C∞(Ω′), the introduce the Lie bracket

[X ,Y ](x) =
n∑

i=1

hi (x)∂xi where hi =
n∑

j=1

(
fj∂xj gi − gj∂xj fi

)
.

• Lie algebra generated by {Xi}N
i=1: Lie({Xi}N

i=1) =
⋃∞

k=1 Liek ({Xi}N
i=1),

where Liek ({Xi}N
i=1) is defined recursively by taking

Lie1({Xi}N
i=1) = span {Xi}N

i=1

and for k ≥ 1

Liek+1({Xi}N
i=1)

= span
(

Liek ({Xi}N
i=1) ∪

{
[X ,Xj ] : X ∈ Liek ({Xi}N

i=1), j = 1, . . . ,N
})
.

• Hörmander bracket condition: Lie({Xi}N
i=1)[x ] = Rn for all x ∈ Ω′.
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HÖRMANDER BRACKET GENERATING CONDITION. CONT.

DEFINITION

Degree of nonholonomy at x :

the smallest integer r = r(x) ≥ 1 such that Lier ({X1, . . . ,XN}) = Rn.

EXAMPLE (NONHOLOMONIC INTEGRATOR)

In R3,

f1(x) =

 1
0
x2

 , f2(x) =

 0
1
−x1

 , [f1, f2](x) =

 0
0
2

 .

Thus, Lie2({f1, f2})[x ] = span{f1, f2, [f1, f2]}[x ] = R3.
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MINIMUM TIME PROBLEM

The solution T of { ∑N
j=1(XjT )2(x) = 1 in Ω,

T = 0 on Γ

can be caracterized as the minimum time function: for x ∈ Ω,

T (x) = min τΓ(x , u) over all controls u : [0,+∞[→ B1(0) ⊂ RN

where τΓ is the transfer time to Γ

τΓ(x , u) = inf
{

t ≥ 0 : y x,u(t) ∈ Γ
}

and y x,u(·) is the unique solution of the Cauchy problem: for t ≥ 0,

y ′(t) =
N∑

j=1

uj (t)Xj (y(t)), y(0) = x .
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SUB-RIEMANNIAN DISTANCE

• X1, . . . ,XN are smooth vector fields linearly independent for all x ∈ Rn.
• ∆(x) := span{X1(x), . . . ,XN(x)} for all x ∈ Rn.
• Let g(·, ·) be a Riemannian metric on Rn, associated with a smooth

positive definite symmetric matrix Q(x), that is gx (v ,w) = 〈Q(x)v ,w〉 for
all x ∈ Rn, v and w in Rn.

• (∆, g): sub-Riemannian distribution of rank N ≤ n on Rn.
• Sub-Riemmanian distance

dSR(x , y) := inf
{∫ 1

0
gγ(t)(γ̇(t), γ̇(t))dt : γ̇(t) ∈ ∆(γ(t)) a.e. on [0, 1],

γ(0) = x , γ(1) = y
}
.

• Let (∆, g) be a sub-Riemannian structure on Rn, then the topology
defined by dSR coincides with the original topology of Rn. In particular,
the sub-Riemannian distance dSR is continuous on Rn × Rn.

T (·) = dSR(Γ, ·), Sub-Riemannian distance from Γ.

Γ

x
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VISCOSITY SOLUTIONS

When T is continuous, it is the viscosity solution of{ ∑N
j=1(XjT )2(x) = 1 in Ω,

T = 0 on Γ.

Crandall, Ishii, Lions (1992), User’s guide to viscosity solutions of
second order partial differential equations.
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KNOWN FACTS

Under the Hörmander condition
• the control problem is locally controllable (Chow-Rashevsky Theorem).
• T is finite and continuous.
• The Dirichlet problem has a unique viscosity solution.

THEOREM

T is 1/rΩ- Hölder continuous, where

rΩ = max
x∈Ω

min{k ≥ 1 : Liek ({Xi}N
i=1)[x ] = Rn}.

(Nagel-Stein-Wainger 1985, Evans-James 1989).

For instance, [X1, [X1,X2]] has length 3.
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NON-DEGENERATE EQUATIONS

• Our eikonal equation can be recast as

〈A(x)DT (x),DT (x)〉 = 1 in Ω,

where A(·) is a suitable positive semidefinite n × n matrix with smooth
entries and DT = (∂x1 T , . . . , ∂xn T ).

• If for any x ∈ Ω, span{X1, . . . ,XN}(x) = Rn, then the equation is
nondegenerate. Any viscosity solution T is locally Lipschitz on Ω and,
under mild assumptions (x 7→ 〈A(x)p, p〉 semiconvex), T is locally
semiconcave on Ω.

• Petrov’s condition (optimal control): here, if for any x ∈ Γ,

sup
u∈U
〈

N∑
i=1

uiXi (x),∇dΓ(x)〉 > 0,

then T is locally Lipschitz on Ω (Veliov 1997), and moreover locally
semiconcave (Cannarsa, Sinestrari 1995).

DEFINITION

A function f : U → R is locally semiconcave in U if for every V b U there
exists a constant C such that D2f ≤ CI in D′(V ) (in the sense of quadratic
forms). f is said to be semiconvex if −f is semiconcave.
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DEGENERATE EQUATIONS: DEFINITIONS
Hamiltonian: for any (x , p) ∈ Ω′ × Rn,

h(x , p) =
∑N

j=1〈Xj (x), p〉2 =
(

supu∈B1(0)

∑N
j=1 uj〈Xj (x), p〉

)2
.

DEFINITION

• Characteristic set:
Char({Xi}N

i=1) = {(x , p) ∈ Ω′ × Rn r {0} : h(x , p) = 0}.
• Characteristic (boundary) points

E = {x ∈ Γ : span({Xi (x)}N
i=1) ⊂ TΓ(x)}.

EXAMPLE (HEISENBERG VECTOR FIELDS)

In R3, X1 = ∂x1 , X2 = ∂x2 + x1∂x3 .

Char(X1,X2) =
{

(x1, x2, x3, 0,−x1p3, p3) : (x1, x2, x3) ∈ Ω, p3 6= 0
}

is a smooth submanifold of R6 of codimension 2.

Singular time-optimal trajectories may occur, and these may destroy the
regularity of T (well known idea, see Sussmann (1992), Agrechev (1998),
and then Trélat, Cannarsa and Rifford...)
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PONTRYAGIN MAXIMUM PRINCIPLE

Pontryagin Hamiltonian: H(x , p, u) =
∑n

j=1 uj〈Xj (x), p〉.

THEOREM

For every time-optimal trajectory starting from x, y = y x,u , there exist
p(·) ∈ AC([0,T (x)];Rn) and ν ∈ {0, 1} such that, for a.e. t ∈ [0,T (x)],

1. (p(·), ν) 6= 0.

2. p′k (t) = −
∑N

j=1 uj (t)〈∂xk Xj (y(t)), p(t)〉 for every k = 1, . . . , n.

3. p(T (x)) ∈ NΓ(T (x)).

4. H(y(t), p(t), u(t)) = maxv∈B1(0) H(y(t), p(t), v).

5. H(y , p, u) ≡ ν.

Note that p : [0,T (x)]→ Rn r {0}.

DEFINITION

An extremal lift is a 4-tuple (y , p, ν, u) solving (1)-(4). The extremal lift is
normal if ν 6= 0 and abnormal if ν = 0. An optimal trajectory is said singular if
it admits an abnormal extremal lift.
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EXAMPLE

Strict abnormal minimizers may destroy the regularity of T .

EXAMPLE (LIU-SUSSMANN 1994)

In R3 consider vector fields

X1 = ∂x1 , X2 = (1− x1)∂x2 + x2
1∂x3 .

Then, there exists a bounded open set Ω ⊂ R3, with C∞ boundary, such that
the viscosity solution of the Dirichlet problem (X1T )2 + (X2T )2 = 1 in Ω,

T |Γ = 0,

fails to be locally Lipschitz in Ω.

This is a minimum time function T that is not better than Hölder continuous
somewhere!
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SINGULAR TIME-OPTIMAL TRAJECTORIES

DEFINITION

y is time-optimal singular if there exists an extremal lift such that
〈p(t),Xj (y(t))〉 = 0 for all j = 1, . . . , n, i.e. (y(t), p(t)) ∈ Char({Xj}N

j=1).

THEOREM

Let x ∈ Ω and let y = y x,u be a time-optimal trajectory. Then y is singular
⇐⇒ y x,u(T (x)) ∈ E = {x ∈ Γ : span({Xi (x)}N

i=1) ⊂ TΓ(x)}.

Proof. Let (y , p) be such that (y(t), p(t)) ∈ Char({Xj}N
j=1). The function

t 7→ h(y(t), p(t)) is constant. This implies that

y(T (x)) ∈ E ⇔ h(y(T (x)), p(T (x)) = 0⇔ (y(t), p(t)) ∈ Char({Xj}N
j=1).

THEOREM (DERRIDJ, 1972)

E ⊂ Γ is a closed set and Hn−1(E) = 0.
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SINGULAR-TIME OPTIMAL TRAJECTORIES

DEFINITION

We say that a function f : Ω→ R is Lipschitz at a point x0 ∈ Ω if there exists a
neighbourhood U of x0 and a constant L ≥ 0 such that

|f (x)− f (x0)| ≤ L|x − x0| ∀x ∈ U ∩ Ω.

THEOREM

Assume (H) and let x0 ∈ Ω. Then T fails to be Lipschitz at x0 if and only if
there exists a singular time-optimal y x0,u .
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INTERIOR REGULARITY

THEOREM (INTERIOR REGULARITY)

Under assumption (H), the following properties are equivalent:

1. the minimum time problem admits no singular time-optimal trajectory;

2. T is locally semiconcave in Ω;

3. T is locally Lipschitz continuous in Ω.

Proof. 2⇒ 3 is well-known. The theorem in the previous slide shows that
3⇒ 1. The implication 1⇒ 2 follows by a combination of

THEOREM (CANNARSA-SINESTRARI, 1995)

For a smooth controlled system, the minimum time is locally semiconcave
whenever the target is a noncharacteristic smooth compact manifold.

and

THEOREM (DERRIDJ, 1972)

E ⊂ Γ is a closed set and Hn−1(E) = 0.
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BOUNDARY REGULARITY

DEFINITION

We say that a function f : Ω→ R is Hölder continuous of exponent α ∈]0, 1]
at a point x0 ∈ if there exist a neighborhood U ⊂ of x0 and a constant C ≥ 0
such that

|f (x)− f (x0)| ≤ C|x − x0|α ∀x ∈ U ∩ Ω.

THEOREM

Assume (H). Then:

1. for any x ∈ Γ \ E, T is C∞ in a neighborhood of x;

2. for any x ∈ E, T is Hölder continuous at x of exponent 1/k(x), with k(x)
given by

k(x) = min
{

k ≥ 1 : Liek ({Xi}N
i=1)[x ] = Rn} (x ∈ Ω).
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EXCLUDING SINGULAR-TIME OPTIMAL TRAJECTORIES

• {Xi}N
i=1 is strongly bracket generating on Ω if for every

v = (v1, . . . , vN) ∈ RN \ {0},

span{Xi}N
i=1[x ] + span


N∑

j=1

vj [Xj ,Xi ]


N

i=1

[x ] = Rn ∀x ∈ Ω.

Example: Heisenberg vector field.
• Γ is noncharacteristic and Char(X1, . . . ,XN) is a sympletic manifold.
• Systems of vector fields admitting, in general, singular time-optimal

trajectories may have a better behaviour when Ω enjoys specific
properties.

EXAMPLE (LIU-SUSSMAN’S EXAMPLE)

In R3 consider vector fields

X1 = ∂x1 , X2 = (1− x1)∂x2 + x2
1∂x3

and let Ω be a bounded convex open set with C∞ boundary. Then, there are
no singular time-optimal trajectory.
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SINGULAR SUPPORT

What happens if singular-time optimal trajectories may appear?

DEFINITION

For any x ∈ Ω and any k ∈ N ∪ {∞},

x 6∈ sing suppLip T ⇐⇒ ∃ an open set U 3 x : T ∈ Lip(U).

x 6∈ sing suppCk T ⇐⇒ ∃ an open set U 3 x : T ∈ Ck (U).

Finally, sing supp T := sing suppC∞ T .

Properties under Assumption (H)
• sing suppLip T is a closed set
• sing suppLip T has null Lebesgue measure (Nguyen, 2010).
• T is locally semiconcave on Ω r sing suppLip T .
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SINGULAR SUPPORT

THEOREM

Under Assumption (H), sing suppC∞ T = sing suppC1,1 T .

Proof. We show that Ω \ sing suppC1,1 T ⊆ Ω \ sing supp T .
• For any x ∈ Ω \ sing suppC1,1 T , there exists a unique (nonsingular)

optimal trajectory starting from x , say y x,ux .
• y x,ux (T (x)) := ξx is noncharacteristic point.
• We introduce the system of characteristic: for ξ ∈ V ⊂ Γ nghd of ξx ,{

−Ẋ (t) = ∇pH(X (t),P(t)), X (0) = ξ,

Ṗ(t) = ∇x H(X (t),P(t)), P(0) = g(ξ) := H(ξ, ν(ξ))−1ν(ξ).

• Since T ∈ C1,1 in a nghb of x , there are no conjugate times for x , and T
is of class C1,1 on a neighborhood of y x,u([0,T (x)) (Cannarsa-S. 2015).

• By the method of characteris-
tics, T ∈ C∞ on a nghb of x .

x

y(T (x))

y(·)

Γ

TERESA SCARINCI SUBELLIPTIC EIKONAL EQUATIONS AUGUST 2019 20 / 23



MINIMUM TIME PROBLEM AND EIKONAL EQUATION PART 1: SEMICONCAVITY IN ABSENCE OF SINGULAR TRAJECTORIES PART 2: SINGULAR SUPPORT

SINGULAR SUPPORT

THEOREM

Under Assumption (H), sing suppC∞ T = sing suppC1,1 T .

Proof. We show that Ω \ sing suppC1,1 T ⊆ Ω \ sing supp T .
• For any x ∈ Ω \ sing suppC1,1 T , there exists a unique (nonsingular)

optimal trajectory starting from x , say y x,ux .
• y x,ux (T (x)) := ξx is noncharacteristic point.
• We introduce the system of characteristic: for ξ ∈ V ⊂ Γ nghd of ξx ,{
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SINGULAR SUPPORT

In the complement of a closed set of measure zero T has the same regularity
of the data of the Dirichlet problem:

THEOREM

sing supp T is a closed set of Lebesgue measure zero.

Proof. We show that sing suppC1,1 T has null Lebesgue measure.

sing suppC1,1 T = sing suppLip T ∪
(
sing suppC1,1 T r sing suppLip T

)
.

Now note that
• sing suppLip T has null Lebesgue measure by Nguyen, 2010.
• T is locally semiconcave in Ω r sing suppLip T ⇒ T has a second-order

expansion a.e. on Ω r sing suppLip T by Alexandroff⇒ There exists a set
of full measure in Ω r sing suppLip T which lies in the complement of
sing suppC1,1 T r sing suppLip T (follows from Cannarsa- S. 2015).
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SOME KNOWN FACTS AND OPEN PROBLEMS WHEN THE TARGET IS A
SINGLETON

• Known fact: semiconcavity for the sub-Riemannian distance for vector
fields admitting no singular minimizing controls in a bracket generating
subRiemannian manifold. 1

• At a point x along a strictly abnormal minimizer leaving from x0, the
distance from x0 can not be expected to be Lipschitz at x .

• Lack of semiconcavity for some classes of problems with
normal-abnormal minimizers.2

• Open Problem: “Sard conjectures” in sub-Riemannian geometry: the
distance from a point is not smooth on a set that is the complement of an
open and dense set, but it is not known whether it has measure zero. 3

A sub-Riemannian sphere
1P. Cannarsa and L. Rifford, Semiconcavity results for optimal control problems admitting no

singular minimizing controls, 2008.
2A. Montanari, D. Morbidelli. On the lack of semiconcavity of the sub- Riemannian distance in a

class of Carnot groups, 2016.
3See A. Figalli and L. Rifford. Mass transportation on sub-Riemannian manifolds, 2010, and L.

Rifford and E. Trélat, Morse-Sard type results in sub-Riemannian geometry, 2005.
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Thank you for the attention!
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