Methods based on shape derivative for the optimal design on annulus

Petar Kunštek
Joint work with Marko Vrdoljak
University of Zagreb, Croatia

VIII Partial differential equations, optimal design and numerics
21 August 2019
Part I: Construction of classical solutions for optimal design problems
Introduction

Let $\Omega \subset \mathbb{R}^d$ be open and bounded set.
Two phases each with different isotropic conductivity: α, β
$(0 < \alpha < \beta)$.
q_α is the prescribed volume of the first phase α $(0 < q_\alpha < |\Omega|)$.
$\chi \in L^\infty(\Omega)$ such that

$$\int_{\Omega} \chi(x) \, dx = q_\alpha.$$

where

Conductivity can be expressed as

$$A(\chi) := \chi \alpha I + (1 - \chi) \beta I,$$

β
Ω
α
State functions $u_i \in H^1_0(\Omega), \ i = 1, 2, \ldots, m$ are given as a solution of the following boundary value problems:

\[
\begin{align*}
\text{(S)} & \quad \begin{cases}
-\text{div}(A \nabla u_i) = f_i & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases} \\
& \quad i = 1, 2, \ldots, m,
\end{align*}
\]

with $A = \chi \alpha I + (1 - \chi) \beta I$. Denote $u = (u_1, \ldots, u_m)$.

Energy functional:

\[
J(\chi) := \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i(\mathbf{x}) u_i(\mathbf{x}) \, d\mathbf{x},
\]

where $\mu_i > 0, \ i = 1, 2, \ldots, m$.
Optimal design problem:

\[
J(\chi) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \rightarrow \max
\]

\[
\begin{aligned}
&\text{s.t.} & \chi &\in L^\infty(\Omega, \{0, 1\}), & \int_{\Omega} \chi \, d\mathbf{x} = q_\alpha, \\
& & \mathbf{u} &\text{solves (S) with } \mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}.
\end{aligned}
\]

If solution \(\chi \) exists for (P) we call it \textit{classical solution}.

\textbf{Important:} For general optimal design problems the classical solutions usually do not exist.
Results from general theory

\[
I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \rightarrow \text{max}
\]

\[
(I) \quad \begin{cases}
I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \rightarrow \text{max} \\
\text{s.t.} \quad \theta \in L^\infty(\Omega, [0, 1]), \quad \int_{\Omega} \theta = q_{\alpha}, \quad \text{where } u_i \text{ satisfies} \\
- \text{div}(\lambda_\theta^{-1} \nabla u_i) = f_i, \quad u_i \in H^1_0(\Omega), \ i = 1, 2, \ldots, m
\end{cases}
\]

where \(\lambda_\theta^{-1}(x) = \left(\frac{\theta(x)}{\alpha} + \frac{1-\theta(x)}{\beta} \right)^{-1} \).

For spherically symmetric problem such that:

- \(\Omega = R(\Omega) \) for any rotation \(R \)
- \(f_i \) are radial functions

it can be proved that there exists radial solution \(\theta^*_R \) of \((I) \).

In particular, it can be shown that if \(\theta^*_R \) is classical it is also a solution of problem \((P) \). Also, state functions \(u_i \) and fluxes \(\sigma_i = a \nabla u_i \) are radial functions and \(\sigma_i \) are unique.
Define

\[\Psi := \sum_{i=1}^{m} \mu_i |\sigma_i^*|^2. \]

Lemma

The necessary and sufficient condition of optimality for solution \(\theta^* \) of optimal design problem (I) simplifies to the existence of a Lagrange multiplier \(c \geq 0 \) such that

\begin{align*}
\Psi > c & \Rightarrow \theta^* = 1, \\
\Psi < c & \Rightarrow \theta^* = 0.
\end{align*}

(1)
Single state optimal design problem

Single state equation:

\[
\begin{aligned}
(2) \quad & \begin{cases}
- \text{div}(\lambda_\theta(x) \nabla u) = 1 & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega
\end{cases} \\
& \text{where } \lambda_\theta(x) = \left(\frac{\theta(x)}{\alpha} + \frac{1 - \theta(x)}{\beta} \right)^{-1}.
\end{aligned}
\]

Optimization problem:

\[
\begin{aligned}
(3) \quad & \begin{cases}
I(\theta) = \int_{\Omega} u \, dx \rightarrow \text{max} \\
 s.t. \quad & \theta \in L^\infty(\Omega, [0, 1]), \quad \int_{\Omega} \theta = q_\alpha, \text{ where } u \text{ satisfies (2)}
\end{cases}
\end{aligned}
\]
Single state optimal design problem

One can rewrite (2) in polar coordinates:

$$-\frac{1}{r^{d-1}}(r^{d-1} \underbrace{\lambda_{\theta} u'(r)}_{\sigma})' = 1 \text{ in } \langle r_1, r_2 \rangle, \quad u(r_1) = u(r_2) = 0.$$

Observe that σ satisfies

$$\sigma = -\frac{r}{d} + \frac{\gamma}{r^{d-1}}, \quad \gamma > 0$$

$\sigma(r) : \langle 0, \infty \rangle \to \mathbb{R}$ is a strictly decreasing function.
The necessary and sufficient condition of optimality for θ^* states

$$|\sigma^*| > c \implies \theta^* = 1,$$
$$|\sigma^*| < c \implies \theta^* = 0.$$

There are only three possible candidates for optimal design:

1) $\theta^*(r) = \begin{cases}
1, & r \in [r_1, r_+) \\
0, & r \in [r_+, r_-) \\
1, & r \in (r_-, r_2]
\end{cases}$

2) $\theta^*(r) = \begin{cases}
1, & r \in [r_1, r_+) \\
0, & r \in [r_+, r_2]
\end{cases}$

3) $\theta^*(r) = \begin{cases}
0, & r \in [r_1, r_-) \\
1, & r \in (r_-, r_2]
\end{cases}$
Simplification to a non-linear system

From condition of optimality a non-linear system (with unknowns γ, c, r_+, r_-) is created:

\[
\begin{align*}
\left\{ \begin{array}{l}
S_d \int_{r_1}^{r_2} \theta(\rho) \rho^{d-1} \, d\rho = q_\alpha \\
u(r_2) = 0 \iff \gamma \int_{r_1}^{r_2} \left(\frac{1}{a(\rho) \rho^{d-1}} \right) \, d\rho = \int_{r_1}^{r_2} \frac{\rho}{a(\rho)} \, d\rho \\
\sigma(r_+) = c, \quad \sigma(r_-) = -c, \quad \text{where } c > 0
\end{array} \right.
\end{align*}
\]

where

\[
\sigma(r) = \frac{\gamma}{r^{d-1}} - \frac{r}{d}, \quad \& \quad a(r) = \left(\frac{\theta(r)}{\alpha} + \frac{1 - \theta(r)}{\beta} \right)^{-1}.
\]

Important: For solving (NS) optimal design is assumed.
With previous assumptions problem (I) admits optimal solution with two possible designs:

1) \[\theta^*(r) = \begin{cases}
1, & r \in [r_1, r_+) \\
0, & r \in [r_+, r_-) \\
1, & r \in [r_-, r_2]
\end{cases} \]

2) \[\theta^*(r) = \begin{cases}
1, & r \in [r_1, r_+) \\
0, & r \in [r_+, r_2)
\end{cases} \]

If \(q_\alpha \) is small design 2) is optimal.

\[\text{alpha-beta} \quad (q_\alpha < \text{critical value}) \]

\[\text{alpha-beta-alpha} \quad (q_\alpha > \text{critical value}) \]
Part II: Numerical methods based on shape derivative

description of methods, numerical solutions in 2D & 3D.
Shape derivative

Perturbation of the set Ω is given with

$$\Omega_t = (\text{Id} + t\psi)\Omega$$

where $\psi \in W^{k,\infty}(\mathbb{R}^d, \mathbb{R}^d)$.

Definition (Shape derivative)

Let $J = J(\Omega)$ be a shape functional. J is said to be shape differentiable at Ω in direction ψ if

$$J'(\Omega, \psi) := \lim_{t \searrow 0} \frac{J(\Omega_t) - J(\Omega)}{t}$$

exists and the mapping $\psi \mapsto J'(\Omega, \psi)$ is linear and continuous. $J'(\Omega, \psi)$ is called the shape derivative.
Single state problem

For single state optimal design problem (with transmission condition):

\[
\begin{cases}
J(\chi) = \int_{\Omega} fu \, dx \rightarrow \max \\
\text{s.t.} \quad \chi \in L^\infty(\Omega, \{0, 1\}), \quad \int_{\Omega} \chi \, dx = q_\alpha,
\end{cases}
\]

\[u \text{ solves (S) with } A = \chi \alpha I + (1 - \chi) \beta I\]

shape derivative is given with:

\[
J'(\Omega, \psi) = \int_{\Omega} A(- \text{div}(\psi) + \nabla \psi + \nabla \psi^\top) \nabla u \cdot \nabla u \, dx
\]

\[+ \int_{\Omega} 2 \text{div}(f \psi) u \, dx\]

where \(u\) is solution of BVP (S) on domain \(\Omega\) with \(A = \chi \alpha I + (1 - \chi) \beta I\).
Gradient method based on shape derivative

Heuristics: do several iterations of the method, check results and adapt parameters.

Algorithm 1: iteration of the method

1. Input: interface is given implicitly (LSF) or explicitly as discretized set of points - triangulation mesh \mathcal{T}_k

2. Create function space $Vh_{\mathcal{T}_k}$ (P1,P2,...)

3. Determine ascent vector $\psi \in Vh$ from shape derivative (consists of solving several PDEs)

4. Output: update interface (depends highly on considered representation of interface)

- above implemented methods are fairly stable with minimal user intervention
- in 2D it quickly approximates the optimal shape and script is under 100 lines of code
Numerical results

The graph shows the relationship between the radius r_+ and the parameter η. The blue line represents the optimal radius r_+, while the red squares represent the numerical radius r_+. The data points are plotted at $\eta = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8$, with corresponding values of r_+. The graph visually demonstrates how r_+ increases with η. The values for η range from 0.3 to 0.8, and the r_+ values are approximately 1.15, 1.2, 1.25, 1.3, 1.35, and 1.4, respectively.
Numerical results

$\begin{align*}
\eta & \quad r_- \quad \text{optimal} \\
0.3 & \quad 1.8 \\
0.4 & \quad 1.7 \\
0.5 & \quad 1.6 \\
0.6 & \quad 1.5 \\
0.7 & \quad 1.4 \\
0.8 & \quad 1.3
\end{align*}$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow) (b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)

(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
(a) 3D representation of material β (yellow)
(b) slice of volume representation at $z = 0$
Part III: Second order shape derivative

Work in progress
We are interested in the second order expansions of J:

$$J((\text{Id} + \psi)\Omega) = J(\Omega) + J'(\Omega; \psi) + \frac{1}{2} J''(\Omega; \psi, \psi) + o(\|\psi\|^2_k)$$

Important: This is not a variations of first order shape derivative

$$J''(\Omega; \psi_1, \psi_2) \neq (J'(\Omega; \psi_1))'(\Omega; \psi_2) = \lim_{t \to 0} \frac{1}{t} (J'(\text{Id} + t\psi_2)\Omega; \psi_1) - J'(\Omega; \psi_1).$$

but the following identity holds

$$J''(\Omega; \psi_1, \psi_2) = (J'(\Omega; \psi_1))'(\Omega; \psi_2) - J'(\Omega; \nabla\psi_1\psi_2).$$
By standard method of using local derivative $u'(\psi)$:

\[
J''(\Omega; \psi_1, \psi_2) = \\
\alpha \int_{\Gamma} (\psi_1 \cdot n_\alpha)(\psi_2 \cdot n_\alpha) \left\{ \mathbf{H} \left[2 \left| \frac{\partial u_\alpha}{\partial n_\alpha} \right|^2 - |\nabla u_\alpha|^2 \right] + \frac{\partial}{\partial n_\alpha} \left[2 \left| \frac{\partial u_\alpha}{\partial n_\alpha} \right|^2 - |\nabla u_\alpha|^2 \right] \right\} \, dS \\
- \beta \int_{\Gamma} (\psi_1 \cdot n_\alpha)(\psi_2 \cdot n_\alpha) \left\{ \mathbf{H} \left[2 \left| \frac{\partial u_\beta}{\partial n_\alpha} \right|^2 - |\nabla u_\beta|^2 \right] + \frac{\partial}{\partial n_\alpha} \left[2 \left| \frac{\partial u_\beta}{\partial n_\alpha} \right|^2 - |\nabla u_\beta|^2 \right] \right\} \, dS \\
- \frac{2(\beta + \alpha)\alpha}{\beta - \alpha} \int_{\Omega_\alpha} \nabla u'_\alpha(\psi_1) \cdot \nabla u'_\alpha(\psi_2) \, dx + \frac{2(\beta + \alpha)\beta}{\beta - \alpha} \int_{\Omega_\beta} \nabla u'_\beta(\psi_1) \cdot \nabla u'_\beta(\psi_2) \, dx \\
+ \frac{2\alpha\beta}{\beta - \alpha} \int_{\Gamma} u'_\beta(\psi_1) \frac{\partial u'_\alpha(\psi_2)}{\partial n_\alpha} + u'_\alpha(\psi_2) \frac{\partial u'_\beta(\psi_1)}{\partial n_\alpha} + u'_\alpha(\psi_1) \frac{\partial u'_\beta(\psi_2)}{\partial n_\alpha} + u'_\beta(\psi_2) \frac{\partial u'_\alpha(\psi_1)}{\partial n_\alpha} \, dS \\
+ \alpha \int_{\Gamma} Z(\psi_1, \psi_2) \left[2 \left| \frac{\partial u_\alpha}{\partial n_\alpha} \right|^2 - |\nabla u_\alpha|^2 \right] \, dS - \beta \int_{\Gamma} Z(\psi_1, \psi_2) \left[2 \left| \frac{\partial u_\beta}{\partial n_\alpha} \right|^2 - |\nabla u_\beta|^2 \right] \, dS
\]
where

\[Z(\psi_1, \psi_2) = \nabla n_\alpha^T (\psi_1)_{\Gamma} \cdot (\psi_2)_{\Gamma} - \nabla_{\Gamma} (\psi_1 \cdot n_\alpha) \cdot (\psi_2)_{\Gamma} - \nabla_{\Gamma} (\psi_2 \cdot n_\alpha) \cdot (\psi_1)_{\Gamma} \]

and \(u \) is a solution of (S). Local derivative \(u'(\psi) \in H^1(\Omega_\alpha \cup \Omega_\beta) \) is a solution of the following transmission problem with discontinuous jumps on the interface:

\[
\begin{aligned}
\Delta u'(\psi) &= 0 \quad \text{in } \Omega_\alpha \cup \Omega_\beta, \\
\left\{ \begin{array}{l}
 u'_\alpha(\psi) - u'_\beta(\psi) = \frac{\alpha - \beta}{\beta} (\nabla u_\alpha \cdot n_\alpha)(\psi \cdot n_\alpha) \\
 \alpha \nabla u'_\alpha(\psi) \cdot n_\alpha - \beta \nabla u'_\beta(\psi) \cdot n_\alpha = (\alpha - \beta) \text{div}_{\Gamma} (\nabla_{\Gamma} u(\psi \cdot n_\alpha)) \\
 u'(\psi) = 0
\end{array} \right. \quad \text{on } \Gamma, \\
& \quad \text{on } \partial \Omega.
\end{aligned}
\]
Volume representation:

\[J''(\Omega; \psi_1, \psi_2) = \int_{\Omega} a \left[- \text{div} \psi_1 \text{div} \psi_2 \mathbf{I} + \nabla \psi_1 : \nabla \psi_2^T \mathbf{I} - \nabla \psi_1 \nabla \psi_2^T - \nabla \psi_2 \nabla \psi_1^T \right] \nabla u \cdot \nabla u \, dx \]

\[+ \int_{\Omega} a \left[- \nabla \psi_1 \nabla \psi_2 - \nabla \psi_2 \nabla \psi_1 - \nabla \psi_1^T \nabla \psi_2^T - \nabla \psi_2^T \nabla \psi_1^T \right] \nabla u \cdot \nabla u \, dx \]

\[+ \int_{\Omega} a \left[\text{div} \psi_1 (\nabla \psi_2 + \nabla \psi_2^T) + \text{div} \psi_2 (\nabla \psi_1 + \nabla \psi_1^T) \right] \nabla u \cdot \nabla u \, dx \]

\[+ 2 \int_{\Omega} [f \text{div} \psi_1 \text{div} \psi_2 + \psi_1 \cdot \nabla f \text{div} \psi_2 + \psi_2 \cdot \nabla f \text{div} \psi_1 + Hf \psi_2 \cdot \psi_1] u \, dx \]

\[- 2 \int_{\Omega} \nabla \psi_1 : \nabla \psi_2^T f u \, dx + \frac{1}{2} \int_{\Omega} a \nabla v(\psi_1) \cdot \nabla v(\psi_2) \, dx \]

where \(u \) is a solution of (S) and \(v(\psi) \in H^1_0(\Omega) \) satisfies following equality for any \(\varphi \in H^1_0(\Omega) \):

\[\int_{\Omega} a \nabla v(\psi) \cdot \nabla \varphi \, dx = 2 \int_{\Omega} \text{div}(f\psi) \varphi \, dx + 2 \int_{\Omega} a \left[- \text{div}(\psi) \mathbf{I} + \nabla \psi + \nabla \psi^T \right] \nabla u \cdot \nabla \varphi \, dx. \]

Henrot, A., Pierre M. *Shape Variation and Optimization* (2018)
