The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Controllability properties of a magnetic microswimmer

Pierre Lissy

Joint work with Laetitia Giraldi, Clément Moreau and Jean-Baptiste Pomet

CEREMADE, Université Paris-Dauphine

PDEs, optimal design and numerics, Benasque, August 21, 2019

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

4 Towards necessary conditions of STLC with 2 controls

General presentation •000000	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
General presentation			
Microswimming			

Definition

Swimming is the ability of moving in a fluid with suitable body deformation.

- At microscale, many natural organisms are able to swim (bacterias, spermatozoids...).
- Try to mimic the form and motion of them : Biomimetics.
- Medical applications : drug delivery, minimized invasive microchirurgical operations.
- One "non-intrusive" method : magnetized robot that deforms itself under the application of an exterior magnetic field.

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

General presentation

Low Reynolds number and time-reversibility

The Navier-Stokes equation

$$ho\left(\partial_t u + (u.
abla)u
ight) -
u\Delta u +
abla p = 0, ext{ div } u = 0.$$

- Size of robots : $\simeq 1 \mu m$.
- Water viscosity : $\simeq 1m^2/s$.
- Water density : $\simeq 1 kg/m^2$.
- Characteristic speed : $\simeq 10 \mu m/s$.
- \Rightarrow Reynolds Number $\simeq 10^{-6}$ at this scale, very low.

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

General presentation

Low Reynolds number and time-reversibility

The Navier-Stokes equation

$$\rho(\partial_{t}u + (u \cdot \nabla)u)) - \nu\Delta u + \nabla p = 0, \text{ div } u = 0.$$

- Size of robots : $\simeq 1 \mu m$.
- Water viscosity : $\simeq 1m^2/s$.
- Water density : $\simeq 1 kg/m^2$.
- Characteristic speed : $\simeq 10 \mu m/s$.
- \Rightarrow Reynolds Number $\simeq 10^{-6}$ at this scale, very low.

Fluide-structure interaction given by the Stokes equation, which is time-reversible, leading to some different phenomena than usual at the macroscopic scale.

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

General presentation

Low Reynolds number and time-reversibility (2)

Time-reversibility of the Stokes equation

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
000000	0000000	000000	00000000000
General presentation			

Life at low Reynolds number

Obstructions to swimming because of the time-reversibility : the scallop theorem (Purcell'77).

The Scallop Theorem

A self-propelled micro-swimmer with one degree of freedom cannot move, because it only makes time-reversible movements !

Not true anymore as soon as the swimmer can do non-time reversible movements.

Figure - Non-reversible movement

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

General presentation

Life at low Reynolds number (2)

The scallop theorem

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
General presentation			
Magnetic Micro	oswimmers		

Scallop Theorem not true anymore for magnetic microswimmers (Giraldi-Pomet'17, IEEE TAC).

- Swimmer which is made of 2 magnetized segments, subject to a uniform magnetic field, with elastic joint (2-link magnetic swimmer).
- One can move it and even control it locally around its equilibrium states (straight positions).

Main goal of the talk

Study a 2-link and a 3-link magnetic swimmer.

Long-term goal

Study a N-link magnetic swimmer, with N "very large" (discretization of a continuous model), pass to the limit.

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
000000			
General presentation			

(Incomplete) state of the art

- Dreyfus et al.'05 (Nature) : study of artificial swimmer that possesses a head plus a magnetic flexible tail. Control of velocity and position, numerical study.
- Gadelha'13 (Reg. and Chao. Dyn.) : numerical study of the optimal form of a magnetic head plus elastic tail system.
- Gutman-Or'14 (Phys. Rev. E) : study of a two-link model. Optimal controls to maximize displacement per cycle and average speed.
- Alouges et al.'15 (Soft Rob.) : discretization of the filament into magnetized segments. Prescription of a direction by sinusoidal magnetic field, numerical study.
- Giraldi-Pomet'17 (IEEE TAC) : theoretical study fo the 2-link swimmer. Proof of a "weak" STLC result.
- Alouges et al.'17 (IFAC) : focus on the Purcell (3-link) swimmer. Prescription of a direction by sinusoidal magnetic field, theoretical study (asymptotic analysis).

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
	0000000		
The 3-link swimmer			

- 2 The 3-link swimmer
- 3 The 2-link swimmer
- 4 Towards necessary conditions of STLC with 2 controls

General presentation	The 3-link swimmer o●oooooo	The 2-link swimmer	STLC with 2 controls
The 3-link swimmer			
Parametrization	ı		

Figure - Parametrization of the 3-link microswimmer

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 3-link swimmer

Computation of the net force (1)

Elastic forces

- Torque \mathbf{T}_2^{el} on S_2 given by $\mathbf{T}_2^{el} = \kappa \alpha_1 \mathbf{e}_z$;
- Torque T_3^{el} on S_3 given by $T_3^{el} = \kappa \alpha_2 \mathbf{e}_z$;

Steady states : $(x, y, \theta, 0, 0)$ with $(x, y, \theta) \in \mathbb{R}^3$.

Magnetic forces

- Uniform magnetic field H(t).
- Magnetic torque on S_i :

$$\mathsf{T}_i^m = M_i \mathbf{e}_{i,\parallel} \times \mathsf{H}.$$

Magnetic moments M_i assumed to be nonzero.

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 3-link swimmer

Computation of the net force (2)

Hydrodynamic effects

- Hydrodynamic coefficients ξ_i and η_i .
- Approximation : Resistive Force Theory (Gray-Hancock'55, Journal of Experimental Biology).
- Force \mathbf{F}_i^h on S_i :

$$\mathsf{F}^h_i = \int_{\mathcal{S}_i} \mathsf{f}_i(s) ds,$$

where

$$\mathbf{f}_i(s) = -\xi_i u_{i,\parallel} \mathbf{e}_{i,\parallel} - \eta_i u_{i,\perp} \mathbf{e}_{i,\perp}.$$

• Torque generated by S_i at point x_0 :

$$\mathsf{T}^h_{i,\mathsf{x}_0} = \int_{S_i} (\mathsf{x}_i(s) - \mathsf{x}_0) imes \mathsf{f}_i(s) ds.$$

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
The 3-link swimmer			
Equations of t	the model		

• We apply the second Newton law successively to $\{S_1 + S_2 + S_3\}$, $\{S_2 + S_3\}$ and $\{S_3\}$:

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
000000	00000000	000000	0000000000
The 3-link swimmer			

Equations of the model (2)

We denote by $Z = \begin{pmatrix} x & y & \theta & \alpha_1 & \alpha_2 \end{pmatrix}^T$. System can then be rewritten as

$$M(\alpha_1, \alpha_2)R_{-\theta}\dot{Z} = Y,$$

with

$$R_{\theta} = \left(\begin{array}{c|c} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right)$$

and

$$Y = \begin{pmatrix} 0 \\ 0 \\ H_{\parallel}(M_2 \sin \alpha_1 + M_3 \sin (\alpha_1 + \alpha_2)) - H_{\perp}(M_1 + M_2 \cos \alpha_1 + M_3 \cos (\alpha_1 + \alpha_2)) \\ -\kappa \alpha_1 + H_{\parallel}(M_2 \sin \alpha_1 + M_3 \sin (\alpha_1 + \alpha_2)) - H_{\perp}(M_2 \cos \alpha_1 + M_3 \cos (\alpha_1 + \alpha_2)) \\ -\kappa (\alpha_2) + H_{\parallel}M_3 \sin (\alpha_1 + \alpha_2) - H_{\perp}M_3 \cos (\alpha_1 + \alpha_2) \end{pmatrix}$$

 General presentation
 The 3-link swimmer
 The 2-link swimmer
 STLC with 2 controls

 0000000
 00000000
 00000000
 000000000

 The 3-link swimmer
 Equations of the model (3)
 000000000

- R_{θ} depends only on the shape parameters (α_1, α_2) .
- Equilibrium states when there is no control : $(x, y, \theta, 0, 0)$ with $(x, y, \theta) \in \mathbb{R}^3$.

M is invertible, hence we obtain a control system of the form

$$R_{-\theta}\dot{Z} = \mathsf{F}_{\mathsf{0}}(\alpha_{1},\alpha_{2}) + H_{\perp}(t)\mathsf{F}_{1}(\alpha_{1},\alpha_{2}) + H_{\parallel}(t)\mathsf{F}_{2}(\alpha_{1},\alpha_{2})$$

 F_0, F_1 and F_2 : linear combinations of the last three columns of M^{-1} (X₃, X₄ and X₅).

General presentation	The 3-link swimmer 0000000●	The 2-link swimmer	STLC with 2 controls
The 3-link swimmer			
Fauntions of t	ha model (1)		

$$\begin{aligned} \mathbf{F}_{0} &= -\kappa(\alpha_{1}\mathbf{X}_{4} + (\alpha_{2})\mathbf{X}_{5}) \\ \mathbf{F}_{1} &= -M_{1}\mathbf{X}_{3} - (M_{2}\cos\alpha_{1} + M_{3}\cos(\alpha_{1} + \alpha_{2}))(\mathbf{X}_{3} + \mathbf{X}_{4}) - M_{3}\cos(\alpha_{1} + \alpha_{2})\mathbf{X}_{5} \\ \mathbf{F}_{2} &= (M_{2}\sin\alpha_{1} + M_{3}\sin(\alpha_{1} + \alpha_{2}))(\mathbf{X}_{3} + \mathbf{X}_{4}) + M_{3}\sin(\alpha_{1} + \alpha_{2})\mathbf{X}_{5}. \end{aligned}$$

• H_{\parallel} and H_{\perp} are the controls.

- 2 controls for 5 states (x, y, θ, α₁, α₂). The controls does not appear in the two first equations (indirect controllability).
- Affine control system with drift.
- We have $F_2(0) = 0$. Hence, the parallel control acts "less" that the orthogonal control.

Question

Can we prove a positive controllability result?

General presentation	The 3-link swimmer	The 2-link swimmer •00000	STLC with 2 controls
The 2-link swimmer			

- 2 The 3-link swimmer
- 3 The 2-link swimmer
- 4 Towards necessary conditions of STLC with 2 controls

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

Small time local controllability for non-linear systems

Definition

Let $(y^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ an equilibrium of the control system $\dot{y} = f(y, u)$. This system is small time locally controllable around the equilibrium (y^e, u^e) (STLC) if for any $\epsilon > 0$, there exists $\eta > 0$ such that for any $(y^0, y^f) \in B_{\eta}(y^e) \times B_{\eta}(y^e)$, there exists a L^{∞} function $u : [0, \epsilon] \to \mathbb{R}^m$ such that (i) $\forall t \in [0, \epsilon] |u(t) - u^e| \le \epsilon$.

(i)
$$\forall t \in [0, \epsilon], |u(t) - u| \le \epsilon;$$

(ii) $\dot{y} = f(y, u), (y(0) = y^0 \Rightarrow (y(\epsilon) = y^f).$

Here, we assume that we have smallness in time and in control (as in Coron'07). STLC is ensured for instance by the linear test (Kalman rank condition).

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

The 2-link swimmer

What happens for the 2-link swimmer?

Giraldi-Pomet'17 (IEEE TAC) : same modelization with two links. Goal : obtain local controllability results around the equilibriums without smallness assumptions on the control (even for small displacements!)

- We cannot control with only one of the controls.
- The Kalman rank condition at the equilibrium points does not hold. Cannot use the standard linearization method.
- The Sussman conditions on the bad and good Lie brackets (1987) do not hold.
- \Rightarrow Use of the return method of Coron'92, MCSS.

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
The 2-link swimmer			
A remark			

The control created does not lead STLC! Indeed, the control H_{\perp} can be as small as we want, but H_{\parallel} in this construction is such that

$$||H_{\parallel}||_{\infty} \geqslant \frac{2\kappa|M_1 + M_2|}{|M_1M_2|}$$

This leads to the following definition.

Definition (STLC(q))

Let $q \ge 0$. The control system $\dot{y} = f(y, u)$ is STLC(q) at (y_e, u_e) if and only if, for every $\varepsilon > 0$, there exists $\eta > 0$ such that, for every y_0, y_1 in the ball centered at y_e with radius η , there exists a solution $(y(\cdot), u(\cdot)) : [0, \varepsilon] \to \mathbb{R}^{n+m}$ such that $y(0) = z_0$, $y(\varepsilon) = z_1$, and, for almost all t in $[0, \varepsilon]$,

 $\|u(t)-u_e\|\leq q+\varepsilon$.

General presentation	The 3-link swimmer	The 2-link swimmer 00000●	STLC with 2 controls
The 2-link swimmer			
A strange beh	aviour		

Theorem (Giraldi-Lissy-Moreau-Pomet'18 (IEEE TAC))

Assume $M_1 + M_2 \neq 0$. If $\xi \neq \eta$, $M_1 \neq M_2$ and $M_1 + M_2 \neq 0$, then the two-link swimmer is not STLC at O (but it is STLC(q) for some q > 0).

Proof : "by hand", using a contradiction argument. In fact, we have now an optimal result.

Theorem (Moreau'19, IEEE L-CSS, Giraldi-Lissy-Moreau-Pomet'19)

Assume $M_1 \neq 0$, $M_2 \neq 0$, $M_1 \pm M_2 \neq 0$. Then, the two-link swimmer is $STLC(\frac{2\kappa|M_1+M_2|}{|M_1M_2|})$ but not STLC(q) for $q < \frac{2\kappa|M_1+M_2|}{|M_1M_2|}$.

The positive result can be proved by making an adequate translation in time of the system and using already known criterium.

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
Conclusion			

- 2 The 3-link swimmer
- 3 The 2-link swimmer
- Towards necessary conditions of STLC with 2 controls

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
Conclusion			

Definition

Lie Brackets

Let

 $X = (X^1, \dots, X^n) \in C^{\infty}(\Omega, \mathbb{R}^n), Y = (Y^1, \dots, Y^n) \in C^{\infty}(\Omega, \mathbb{R}^n)$ The *j*-th component of the Lie Bracket [X, Y] is

$$[X,Y]^j := \sum_{k=1}^n \left(\partial_{x_k} X^j \right) Y^k - X^k \left(\partial_{x_k} Y^j \right).$$

Principal interest from control theory point of view : enables to reach new directions. For affine control systems without drift

$$x'=\sum_{i=1}^d u_i f_i(x),$$

we have the Chow-Rashevskii-Hörmander Theorem : we have STLC if (and only if, in case of analytic vector fields) $Lie(f_1, \ldots, f_d) = R^n$.

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

Necessary conditions of STLC with 1 controls (1)

Let us recall a well-known necessary condition for affine control for affine control system with scalar control of the form

$$y' = f_0(y) + u_1 f_1(y).$$
 (Affine-1-Cont)

Let $k \in \mathbb{N}^*$. We introduce S_k the span of the Lie brackets of f_0 and f_1 that contains only f_1 less that k times, and $S_k(0)$ its value at t = 0.

Theorem (Sussman, 1983 (SICON))

Assume $f_0(0) = 0$ and $[f_1, [f_0, f_1]](0) \notin S_1(0)$. Then (Affine-1-Cont) is not STLC(q) for no $q \ge 0$.

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

Necessary conditions of STLC with 1 controls (2)

This is exactly the first obstruction on the following sufficient condition :

Theorem (Sussman, 1983 (SICON))

Assume $f_0(0) = 0$, $Lie(f_0, f_1)(0) = \mathbb{R}^n$ and $S_{2k+2}(0) \subset S_{2k+1}(0)$ for any $k \in \mathbb{N}$. Then (Affine-1-Cont) is STLC.

Other works by Sussman, Kawski, Krastanov, Stefani, Beauchard-Marbach'17 JDE (in fact, non-STLC in $W^{-1,\infty}$ norm, higher obstructions in higher Sobolev spaces).

Natural question

Find necessary conditions for STLC with 2 controls?

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

Necessary conditions of STLC with 2 controls (1)

We introduce R_1 the span of Lie brackets of f_0 , f_1 , f_2 where f_1 appears only one time. $R_1(0)$: value at 0.

Theorem

Assume that $f_0(0) = 0$, $f_2(0) = 0$ (so that $(0, 0, u_2^{eq})$ is an equilibrium for all u_2^{eq}), and $[f_1, [f_0, f_1]](0) \notin R_1(0)$. Then, if $f_1, [f_0, f_1]](0) \in Span(R_1(0), f_1, [f_2, f_1]](0)$ and $\beta \in \mathbb{R}$ is such that

 $[f_1, [f_0, f_1]](0) + \beta [f_1, [f_2, f_1]](0) \in R_1(0),$

system is not STLC at $(0, 0, u_2^{eq})$ for $u_2^{eq} \neq \beta$. Notably, the system is not STLC(q) for $q < |\beta|$ around (0, 0, 0).

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

Necessary conditions of STLC with 2 controls (2)

Proof : based on Chen-Fliess series (Chen'57 (Annals), Fliess'78 (CRAS)) in the spirit of Sussman'83 (SICON). Choose of a good ϕ , real-valued, such that $\phi(0) = 0$ and $\phi(x(T)) \ge 0$ for all control. This prevents controllability of states x^T verifying $\phi(x^T) < 0$. We have to ensure that such states exist (it is the case if $d\phi(0) \ne 0$).

The 3-link swimmer

The 2-link swimmer

STLC with 2 controls

Conclusion

Necessary conditions of STLC with 2 controls (3)

We can write

$$\phi(x(T)) = \sum_{I} \left(\int_{0}^{T} u_{I} \right) (f_{I}\varphi)(0),$$

I: multi-index $(i_1, \ldots i_k)$ with $k \in \mathbb{N}^*$, $j \in \{1, \ldots, k\}$, $i_j \in \{0, 1, 2\}$. $\int_0^T u_I$: iterated integral

 $\int_0^T \int_0^{\tau_k} \dots \int_0^{\tau_1} u_{i_k}(\tau_k) \dots u_{i_1}(\tau_1) d\tau_k \dots d\tau_1. f_l : f_{i_1} f_{i_2} \dots f_{i_k}.$ The product to be understood in terms of composition of differential operators associated to the $f_i = (f_i^1, \dots, f_i^n)$:

$$f_i\phi(x)=\sum_{k=1}^n f_i^k(x)\partial_{x_k}\phi(x).$$

One has to understand how to choose ϕ , isolate 6 different types of terms in the series, find the dominant one, and compare the others.

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
Conclusion			

We have many examples of application of this result, notably the 3-link swimmer (and also the 2-link swimmer).

Theorem (Moreau'19, IEEE L-CSS, Giraldi-Lissy-Moreau-Pomet'19)

Under some assumptions on the coefficients, the three-link swimmer is STLC at $(0_{\mathbb{R}^5}, (0, \gamma))$ with

lne lnree-iink

$$\gamma = \kappa \frac{17m - 16M}{-7M_2^2 + 9M_2m - 5M_1M_3}$$

but not STLC at $(0_{\mathbb{R}^5}, (q, 0))$ for $q \neq \gamma$. Notably, it is not STLC(q) for $q < |\gamma|$ around $(0_{\mathbb{R}^5}, (0, 0))$.

The positive result is obtained through a clever change of unknowns and applications of positive results by Sussman.

In the spirit of Beauchard-Marbach, we also investigated higher Lie Brackets, in order to prove some non-STLC results in higher Sobolev norms. Many technical difficulties appear in the treatment of the Chen-Fliess series, preventing us to obtain similar results as in their article. Still, we are able to obtain non STLC-results in $W^{1,\infty}$ norm for the first control and L^{∞} norm for the second control.

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
Conclusion			
Perspectives			

- Replacing the Resistive Force Theory by the Stokes equation? (coupling between ODEs and PDEs)
- More links? Convergence to a continuous model?
- Other shapes of microswimmers?

References

- L. Giraldi, , P. Lissy, C. Moreau, J.-B. Pomet, Addendum to "Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer", IEEE TAC 63 (2018), no. 7, 2303–2305.
- L. Giraldi, , P. Lissy, C. Moreau, J.-B. Pomet, *A necessary* condition of local controllability for systems with two scalar controls, submitted.

General presentation	The 3-link swimmer	The 2-link swimmer	STLC with 2 controls
Conclusion			
Perspectives			

- Replacing the Resistive Force Theory by the Stokes equation? (coupling between ODEs and PDEs)
- More links? Convergence to a continuous model?
- Other shapes of microswimmers?

References

- L. Giraldi, , P. Lissy, C. Moreau, J.-B. Pomet, Addendum to "Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer", IEEE TAC 63 (2018), no. 7, 2303–2305.
- L. Giraldi, , P. Lissy, C. Moreau, J.-B. Pomet, *A necessary* condition of local controllability for systems with two scalar controls, submitted.

Thank you for your attention.