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Introduction

Strong damped nonlocal wave equation

Let @ C RN (N > 1) be a bounded open set with a Lipschitz continuous

boundary 09Q2. We consider the control problem of the strong damped nonlocal
wave equation:

ug + (=AY u+6(—A)Puy =0 in Qx(0,7),
(1) U= gXox(,T) in (RM\ Q) x (0, T),
u(+,0) = wg, u(-,0) =1y in Q,
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Introduction

Strong damped nonlocal wave equation

Let @ C RN (N > 1) be a bounded open set with a Lipschitz continuous

boundary 09Q2. We consider the control problem of the strong damped nonlocal
wave equation:

ug + (=AY u+6(—A)Puy =0 in Qx(0,7),
(1) U= gXox(,T) in (RM\ Q) x (0, T),
u(+,0) = wg, u(-,0) =1y in Q,
where
> u = u(x,t) is the state to be controlled.

> g = g(x, t) is the control function which is localized on a subset O of RV \ Q.
> 9 >0and 0 <s <1 are real numbers.

> (—A)® denotes the fractional Laplace operator.
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Main Goal

» Our first main result says that if 6 > 0, then the system is not exact or null
controllable at any time T > 0.

> \We also obtain that the adjoint system associated with (1) satisfies the
unique continuous property for evolution equations.

» The third main result states that the system (1) is approximately controllable

By



Fractional Laplacian

» The fractional Laplacian (—A)® is defined by the following singular integral

S} u(x) — u(y) N
(_A) U(X) = CN,S P.V. /]RN m d_y, x € R".
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Fractional Laplacian

» The fractional Laplacian (—A)® is defined by the following singular integral

S} u(x) — u(y) N
(_A) U(X) = CN,S P.V. /]RN m d_y, x € R".

» The following Dirichlet problem

(=AY u="f in €,
u=20 on 0f).
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Fractional Laplacian

» The fractional Laplacian (—A)® is defined by the following singular integral

S} u(x) — u(y) N
(_A) U(X) = CN,S P.V. /]RN m d_y, x € R".

» The following Dirichlet problem

“APu=f inQ
(=A)u n 25 is ILL POSED.
u=0 on 0.
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Fractional Laplacian

» The fractional Laplacian (—A)® is defined by the following singular integral

S} u(x) — u(y) N
(_A) U(X) = CN,S P.V. /]RN m d_y, x € R".

» The following Dirichlet problem

“APu=f inQ
(=A)u n 25 is ILL POSED.
u=0 on 0.

» Then, the EXTERIOR CONTROL is the right notion that replaces the
classical boundary control problems associated with local operators.
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Introduction

> Let (—A)3 be the selfadjoint operator in L?(£2) with domain

D((-8)p) = {ue WG>(@), (-ayue ()}, (-A)pu:=(-A)u
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Introduction

> Let (—A)3 be the selfadjoint operator in L?(£2) with domain

D((-8)p) = {ue WG>(@), (-ayue ()}, (-A)pu:=(-A)u

> (—A)3 has a compact resolvent and its eigenvalues form a non-decreasing
sequence of real numbers 0 < A\; < X\ < --- < ), < --- satisfying
lim,_ 00 Ap = 00. In addition, the eigenvalues are of finite multiplicity.
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Introduction

> Let (—A)3 be the selfadjoint operator in L?(£2) with domain

D((-8)p) = {ue WG>(@), (-ayue ()}, (-A)pu:=(-A)u

> (—A)3 has a compact resolvent and its eigenvalues form a non-decreasing
sequence of real numbers 0 < A\; < X\ < --- < ), < --- satisfying
lim,_ 00 Ap = 00. In addition, the eigenvalues are of finite multiplicity.

» Let (¢n)nen be the orthonormal basis of eigenfunctions associated with
(An)nen- Then ¢, € D((—A)3) for every n € N, (p,)nen is total in L2(Q)
and satisfies

(_A)SLPn = An®n in Q,
wn =20 in RV\ Q.
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Introduction

Nonlocal normal derivative

» We introduce the nonlocal normal derivative N given by

Nsu(x) = Cy /| u(y)d% xeRV\ Q,

‘N+2s

where Cy s is the constant given in the definition of the fractional Laplacian.

M. Warma. Approximate controllability from the exterior of space-time fractional diffusion:
equations with the fractional Laplacian. Applied Mathematics & Optimization, 2018
e



Nonlocal normal derivative

» We introduce the nonlocal normal derivative N given by

Nsu(x) = Cy /| — uly) dy, xecRVN\Q,

y‘N+2s

where Cy s is the constant given in the definition of the fractional Laplacian.

» Unique Continuation Property for the fractional Laplacian?:

Lemma (Warma 2018)

Let A > 0 be a real number and © C RV \ Q a non-empty open set. If
p € D((—A)3) satisfies

(~A)pe=Ap in Q and Nsp=0in O, = ¢=0inR"

M. Warma. Approximate controllability from the exterior of space-time fractional diffusion::::
equations with the fractional Laplacian. Applied Mathematics & Optimization, 2018
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Introduction

s — 1"

Lemma
Let u e W01’2(Q) — W05’2(§) be such that (—A)Su, Au € L?(Q). Then the following assertions
hold.

@ Foreveryve W01‘2(Q)3,

lim / v(—=A)udx = — / vAu dx.
JQ

sT1— JQ

@ For every v € WH2(RN)b,

Iim/ vNsu dx:/ voyu do,
st1= JrM\Q o9

where Oy u is the normal derivative of u in direction of the outer normal vector U.

2L. Brasco, E. Parini, and M. Squassina. Stability of variational eigenvalues for the
fractional p—Laplacian. Discrete Contin. Dyn. Systm., 36(4)1813-1845, 2016.

bg, Dipierro, X. Ros—Oton, and E. Valdinoci. Nonlocal problems with Neumann
boundary conditions. Rev. Mat. Iberoam., 33(2):377-416, 2017.
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Strong damped nonlocal wave equation

Strong damped nonlocal wave equation: Series
representation

We consider the control problem of the strong damped nonlocal wave
equation:

uge + (=A)u+6(=A)¢u =0 in Qx(0,T),
(2) U= gX0x(0,T) in (RV\ Q) x (0, T),
u(+,0) = up, w(+,0) = in £,

T



Strong damped nonlocal wave equation

We shall denote by (¢,)nen the orthornormal basis of eigenfunctions of the
operator (—A)7, associated with the eigenvalues (\,)nen.
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Strong damped nonlocal wave equation

We shall denote by (¢,)nen the orthornormal basis of eigenfunctions of the
operator (—A)7, associated with the eigenvalues (\,)nen.

Let 6 > 0 and set
DS = 02)2 — 4,

We have the following two situations.

> If6>0,since0< A <A<~ <A, <+ and im0 Ay = 400, it

follows that there is a number Ny € N := NU {0} such that 62\, < 4 for all
n < Np. In that case we shall use the following notations.

> If DS >0, that is, if 6°X\, — 4 > 0, then we shall let

O LV RVAY:
n f

TS



Strong damped nonlocal wave equation

> if D) < 0, that is, if 62\, — 4 < 0, then we shall let

i~ iy/ D]

2 )
~ —0A ~ —D?¢
a,:=Re(\)) = T Ba=Im(\)) = L
2 2
» If § =0, then 02 = —4)\, < 0 for all n € N. In that case we shall let

A= 4y A, ap=0 and B, = An

W



Strong damped nonlocal wave equation

> if D) < 0, that is, if 62\, — 4 < 0, then we shall let

—6An +i/—D?

Ne oo SO kiVDL
n 2 )
~ —0A ~ —D?¢
a,:=Re(\)) = T Ba=Im(\)) = n.
2 2
» If § =0, then 02 = —4)\, < 0 for all n € N. In that case we shall let

A= 4y A, ap=0 and B, = An

» An immediate and important consequence is the following. If D) > 0, then
we have that AF < 0 for all n > Ny, and

(3) A= =38, A — —00, as n— oo.
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Strong damped nonlocal wave equation

Theorem
For every (up, u1) € WOS’Z(E) x L2(Q) and g € L2((RV \ Q) x (0, T)), the system (2) has a
unique solution (u, ut) given by

u(x, £) = >~ (An(t) (o, #n) 2y + Balt)(t1, 90) 2@ ) P (x)
n=1
ad 1

" nz::l </ot (g(" TLNSW”)LZ(RN\Q) YnB;/(t - T)dT> @n(x).

TR



Strong damped nonlocal wave equation

Theorem
For every (up, u1) € Wos’z(ﬁ) x L2(Q) and g € L2((RV \ Q) x (0, T)), the system (2) has a
unique solution (u, ut) given by

u(x, £) = >~ (An(t) (o, #n) 2y + Balt)(t1, 90) 2@ ) P (x)
n=1

o]

" nz:‘i (/0‘ <g(" T)’N“D")B(RN\Q)A%BA/“ a T)dT> en(x)-

where
(cos(B,,t) _an sin(ﬁ,,t)) et if n < Np,
Bn
An(t) = )\—e/\;rt _ )\+e)\;t
LAY if n > No,
An = AF
and
Ln/(gﬁnt) et if n < Ny,
Bn(t) = ex;? At
_ if n > No.
An = AF

TR



Adjoint problem

Now we consider the dual system. That is, the backward system

Ve + (—A)Y — §(—A)Y, =0 in Qx(0,7),
(4) =0 in (RV\ Q) x (0, T),
1/}('7 T) = w()v _Ut(~ T) =1 in Q:

Let

Yo.n = (Yo, Pn)2(@) and Y1, = (Y1, ¥n)12()-

B/



Strong damped nonlocal wave equation

Theorem
For every (1o, v1) € W05’2(§) x L2(Q), the dual system (4) has a unique weak solution (1, )
given by

5) =" (Yo.0An(T = 1) = b1.0Ba(T = 1) ) pu(x),

n=1

WO



Strong damped nonlocal wave equation

Theorem

For every (1o, v1) € Wos’z(ﬁ) x L2(Q), the dual system (4) has a unique weak solution (1, )
given by

(5) =3 (YomAn(T = 1) = $1,0Ba(T = ) ) on(x),

n=1

@ There is a constant C > 0 such that for all t € [0, T],

(6) 190 O,y + (e Ol < € (1001203 + 1By )
and
() e OBy sy < (IWolleagy + Wl )-

@ We have that ¢y € C([0, T); D((—A)%)) N L°((0, T); L2(Q)).

© The mapping [0, T) > t — Ntb(-, t) € L2(RV \ Q), can be analytically extended to the
half-plane X7 :={z € C: Re(z) < T}.

WO



Controllability problems

The set of reachable states is given by

R((o, un), T) = { (ul, T), ue(-, T)) : g € L3((0, T); W3RV \ @)) }.

We shall consider the following three notions of controllability.
» The system is said to be null controllable at T > 0, if

(0,0) € R((uo, un), T).

» The system is said to be exact controllable at T > 0, if
R((uo, u1), T) = L2(Q) x W=2(Q).

» The system is said to be approximately controllable at T > 0, if
R((uo, u1), T) is dense in L%(Q) x W~53(Q),

G/



Strong damped nonlocal wave equation

Lemma

The following assertions hold.

@ The system (2) is null controllable if and only if for each initial condition

(ug, u1) € Wos’z(ﬁ) x L2(R), there exists a control function g such that the solution
(1), 1t) of the dual system (4) satisfies

(1, 9 0)) () — (0, e 03y + (. 6(~A)w(,0))5

’ %
:/ / (g(X-, t) + dgt(x, t))Nsw(x, t)dxdt,
Jo  JRN\Q

for each (v0,91) € L2(Q) x W—52(Q).

@ The system (2) is exact controllable at time T > 0, if and only if there exists a control
function g such that the solution (¢, ;) of (4) satisfies

1
35

1
v2

(s T), )iz + (ule T )y g = (e T, 6(=8)"%o)y

T .
:/ / (g(X7 t) + dge(x, t))./\fsw(x, t)dxdt,
o JrM\Q

for each (1o, %1) € L2(Q) x W—52(Q).
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Lack of controllability

Theorem 1
Let 6 > 0. Then the system (2) is not exact or null controllable at time T > 0. J

TS



Lack of controllability

Theorem 1
Let 6 > 0. Then the system (2) is not exact or null controllable at time T > 0. J

Definition

The system (2) is said to be spectrally controllable if any finite linear combination
of eigenvectors, that is,

M M
to = Z Yo,n®n, U1 = Z u1,n@n, M 2>1 arbitrary,
n=1

n=1

can be steered to zero by a control function g.

TS



Remark

Taking the limit in the Lemma as s T 17, we can deduce that

(u1,9(+,0))2(0) — (b0, e(-,0))1,—1 — (o, 6AY(-,0))1, -1
4 JWP\ X
= / / g(x, t) + dgi(x, t)) (%‘é 1) dodt,
0 o0 1%

for every (1, 11) € L2(Q) x (W) ?(Q))*, and

—(ue(- T),%o0) 2y + (u(, T),91)1,—1 — (u(, T), 0A%0)1,—1

-
/ g(x, t) + dg(x, t)) dl/)éx t) dodt,
o0

0

respectively.

T/



Main results

These are the notions of null and exact controllabilities, respectively, of the
following (possible) strong damping local wave equation:

Uy — Au— 6Au; =0 in Qx(0,7),

(8) U= gXwx(0,T) on 9Q x (0, T);
u(',O) = Up, Ut(',o) =1 in Q.
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Main results

These are the notions of null and exact controllabilities, respectively, of the
following (possible) strong damping local wave equation:

Uy — Au—6Au, =0 in Qx(0,7),
(8) U= gXwx(0,T) on 9Q x (0, T);
U(',O) = Up, Ut(',O) = in Q.

Remark:

Following the techniques we developed, we anticipate that the lack of exact/null
controllability of the system (8) proved by Rosier and Rouchon? for one space
dimension, is also valid for any dimension N > 1.

?L. Rosier and P. Rouchon. On the controllability of a wave equation with
structural damping. Int. J. Tomogr. Stat, 5(WO07):79-84, 2007.

TS



Main results

Unique Continuation Property

Theorem 2

Let (1o, 1) € W32(Q) x L2(Q) and let (1, 1)) be the unique weak solution of
(4). Let O C RN\ Q be an arbitrary non-empty open set. If

Nstp =01in O x (0,T), then p =0in Q x (0, T).

Here, Nsv is the nonlocal normal derivative of 1.

Proof: By hand, using the series representation of the nonlocal normal derivative

oo

Ne(x,8) = 3 (VoA T = ) = Y1.0Ba(T = 1)) Noa(x),

n=1

and complex analysis (residue Theorem).

G



Main results

Approximate controllability

Theorem 3

The system (2) is approximately controllable for any T > 0 and
g € L2(O x (0, T)), where O C RV \ Q is an arbitrary non-empty open set.

Sebastian Zamorano
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Remark

Using similar ideas we can also prove that the following nonlocal Sobolev—Galpern
type equation, known as nonlocal Barenblatt—Zheltov—Kochina equation,

Ve + (=AYy +6(=A)Py; =0 in Qx(0,7),
(9) Y = gXox(0,T) in (RV\ Q) x (0, T),
y(+,0) = yo in Q,

satisfy the following controllability properties:

G



Remark

Using similar ideas we can also prove that the following nonlocal Sobolev—Galpern
type equation, known as nonlocal Barenblatt—Zheltov—Kochina equation,

Ve + (=AYy +6(=A)Py; =0 in Qx(0,7),
(9) Y = gXox(0,T) in (RV\ Q) x (0, T),
y(+,0) = yo in Q,

satisfy the following controllability properties:

> The system (9) is not exact or null controllable at time T > 0.

»> The system (9) is approximately controllable for any T > 0 and
g € L2(0 x (0, T)), where O C RN\ Q is an arbitrary non-empty open set.
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Nonlocal Heat Equation

We are interested in the null controllability of the fractional heat equation in the
interval (=1,1). That is,

Owu+(=02)*u=0 in (=1,1)x (0, T),
(10) U= gXox(,T) in (R\ (717 1)) X (07 T)v
u(-,0) = up in (—1,1).
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Nonlocal Heat Equation

Nonlocal Heat Equation

We are interested in the null controllability of the fractional heat equation in the
interval (—=1,1). That is,

Owu+(=02)*u=0 in (=1,1)x (0, T),
(10) u:gXOX(O,T) in (R\(ilvl)) X (07 T)7
u(-,0) = up in (—1,1).
More precisely, given up, find g such that the solution of (10) satisfies:
u(-,T)=0, in (-1,1).
Here O C (R\ (—1,1)).

G



Nonlocal Heat Equation

Main result

Theorem 4

Let 0 <s<1landlet O C (R\(—1,1)) be an arbitrary nonempty open set. Then
the following assertions hold.

(a) If £ <s <1, then the system (10) is null controllable at any time T > 0.
(b) If 0 <'s < 1, then the system (10) is not null controllable at time T > 0.

(b) If 2 <'s <1, then the system (10) is exactly controllable to the trajectories
at any time T > 0.

A



Nonlocal Heat Equation

Proof of Theorem

The system (10) is null controllable if and only if the following observability
inequality holds for the dual system: there exists a constant C > 0 such that

T
(11) 100 O) a1y < c'/o ./@ N, 1) .

G



Nonlocal Heat Equation

Proof of Theorem

The system (10) is null controllable if and only if the following observability
inequality holds for the dual system: there exists a constant C > 0 such that

T
(11) (- O)Ba 1y < € / /O N, 1) .

Using the representations of ) and N1, and employing the orthonormality of the
eigenfunctions in L2(—1,1), then the observability inequality (11) becomes

oo T
> ltoale 7 < C/ /
n=1 0 o

2
dxdt.

> done M T INp(x)
n=1

G



Proof of Theorem...

IF [ Ns@nll2(0y IS UNIFORMLY BOUNDED FROM BELOW BY 7 > 0, we can

deduce that
2 T
dxdt > n? /
0

[

2
dt.

> tone M TN g4 (%)
n=1

Z wo nef)\,,(Tft)
n=1

G



Proof of Theorem...

IF ||/\/;sﬁn\\L2(o) IS UNIFORMLY BOUNDED FROM BELOW BY 7 > 0, we can
deduce that

I

Thus, the observability inequality (11) holds if the following estimate is proved:

2
dt.

2
AT=ONon(x)| dxdt > n? / -t

2

(12) > g ne > C> |vonl?e™MT
n=1 12(0,T) n=1

It is a well known result for parabolic equations, that an inequality of the type
(12) holds if and only if the eigenvalues {\,} en satisfy the following Miintz
condition. That is, the series

(13) >

is convergent.
26/30



Proof of Theorem...

The eigenvalues {\,},>1 satisfy

(7 (2 —28)r 2 1
e (T (1)

Therefore, we have the following two situations.

> If0<s< % then the series (13) will have the behavior of the harmonic
series, which implies that it is divergent.

> On the other hand, if 3 <s <1, hence, 2s > 1, then using (14) we can
deduce that the series (13) is convergent.

The proof of Parts (a) and (b) is complete.

T



Nonlocal Heat Equation

Lemma

Let {¢k}ken be the orthogonal basis of normalized eigenfunctions associated with
the eigenvalues {A}ken. Then, for every nonempty open set O C (R\ (—1,1)),
there exists a scalar n > 0 such that for every k € N, the function Ny is
uniformly bounded from below by 1 in L2(0). Namely,

In >0, VkeN, [[Nsoklizo) = n.

28/30
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Nonlocal Heat Equation
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Nonlocal Heat Equation
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