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Introduction

Strong damped nonlocal wave equation

Let Ω ⊂ RN (N ≥ 1) be a bounded open set with a Lipschitz continuous
boundary ∂Ω. We consider the control problem of the strong damped nonlocal
wave equation:

utt + (−∆)su + δ(−∆)sut = 0 in Ω× (0,T ),

u = gχO×(0,T ) in (RN \ Ω)× (0,T ),

u(·, 0) = u0, ut(·, 0) = u1 in Ω,

(1)

where

I u = u(x , t) is the state to be controlled.

I g = g(x , t) is the control function which is localized on a subset O of RN \Ω.

I δ ≥ 0 and 0 < s < 1 are real numbers.

I (−∆)s denotes the fractional Laplace operator.
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Introduction

Main Goal

I Our first main result says that if δ > 0, then the system is not exact or null
controllable at any time T > 0.

I We also obtain that the adjoint system associated with (1) satisfies the
unique continuous property for evolution equations.

I The third main result states that the system (1) is approximately controllable
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Introduction

Fractional Laplacian

I The fractional Laplacian (−∆)s is defined by the following singular integral

(−∆)su(x) := CN,s P.V.

∫
RN

u(x)− u(y)

|x − y |N+2s
dy , x ∈ RN .

I The following Dirichlet problem{
(−∆)su = f in Ω,

u = 0 on ∂Ω.
is ILL POSED.

I Then, the EXTERIOR CONTROL is the right notion that replaces the
classical boundary control problems associated with local operators.
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Introduction

I Let (−∆)sD be the selfadjoint operator in L2(Ω) with domain

D((−∆)sD) :=
{
u ∈W s,2

0 (Ω), (−∆)su ∈ L2(Ω)
}
, (−∆)sDu := (−∆)su.

I (−∆)sD has a compact resolvent and its eigenvalues form a non-decreasing
sequence of real numbers 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · satisfying
limn→∞ λn =∞. In addition, the eigenvalues are of finite multiplicity.

I Let (ϕn)n∈N be the orthonormal basis of eigenfunctions associated with
(λn)n∈N. Then ϕn ∈ D((−∆)sD) for every n ∈ N, (ϕn)n∈N is total in L2(Ω)
and satisfies {

(−∆)sϕn = λnϕn in Ω,

ϕn = 0 in RN \ Ω.
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Introduction

Nonlocal normal derivative

I We introduce the nonlocal normal derivative Ns given by

Nsu(x) := CN,s

∫
Ω

u(x)− u(y)

|x − y |N+2s
dy , x ∈ RN \ Ω,

where CN,s is the constant given in the definition of the fractional Laplacian.

I Unique Continuation Property for the fractional Laplacian1:

Lemma (Warma 2018)

Let λ > 0 be a real number and O ⊂ RN \ Ω a non-empty open set. If
ϕ ∈ D((−∆)sD) satisfies

(−∆)sDϕ = λϕ in Ω and Nsϕ = 0 in O, ⇒ ϕ = 0 in RN .

1M. Warma. Approximate controllability from the exterior of space-time fractional diffusion
equations with the fractional Laplacian. Applied Mathematics & Optimization, 2018
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Introduction

s → 1−

Lemma

Let u ∈W 1,2
0 (Ω) ↪→W s,2

0 (Ω) be such that (−∆)su,∆u ∈ L2(Ω). Then the following assertions
hold.

1 For every v ∈W 1,2
0 (Ω)a,

lim
s↑1−

∫
Ω
v(−∆)su dx = −

∫
Ω
v∆u dx .

2 For every v ∈W 1,2(RN)b,

lim
s↑1−

∫
RN\Ω

vNsu dx =

∫
∂Ω

v∂νu dσ,

where ∂νu is the normal derivative of u in direction of the outer normal vector ~ν.

aL. Brasco, E. Parini, and M. Squassina. Stability of variational eigenvalues for the
fractional p–Laplacian. Discrete Contin. Dyn. Systm., 36(4)1813–1845, 2016.

bS. Dipierro, X. Ros–Oton, and E. Valdinoci. Nonlocal problems with Neumann
boundary conditions. Rev. Mat. Iberoam., 33(2):377–416, 2017.
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Strong damped nonlocal wave equation

Strong damped nonlocal wave equation: Series
representation

We consider the control problem of the strong damped nonlocal wave
equation: 

utt + (−∆)su + δ(−∆)sut = 0 in Ω× (0,T ),

u = gχO×(0,T ) in (RN \ Ω)× (0,T ),

u(·, 0) = u0, ut(·, 0) = u1 in Ω,

(2)
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Strong damped nonlocal wave equation

We shall denote by (ϕn)n∈N the orthornormal basis of eigenfunctions of the
operator (−∆)sD associated with the eigenvalues (λn)n∈N.

Let δ ≥ 0 and set

Dδ
n := δ2λ2

n − 4λn.

We have the following two situations.

I If δ > 0, since 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · and limn→∞ λn = +∞, it
follows that there is a number N0 ∈ N0 := N ∪ {0} such that δ2λn < 4 for all
n ≤ N0. In that case we shall use the following notations.
I If Dδ

n ≥ 0, that is, if δ2λn − 4 ≥ 0, then we shall let

λ±n :=
−δλn ±

√
Dδ

n

2
.
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Strong damped nonlocal wave equation

I if Dδ
n < 0, that is, if δ2λn − 4 < 0, then we shall let

λ̃±n : =
−δλn ± i

√
−Dδ

n

2
,

αn : = Re(λ̃+
n ) =

−δλn
2

βn = Im(λ̃+
n ) =

√
−Dδ

n

2
.

I If δ = 0, then D0
n := −4λn < 0 for all n ∈ N. In that case we shall let

λ̃±n := ±i
√
λn, αn = 0 and βn =

√
λn.

I An immediate and important consequence is the following. If Dδ
n ≥ 0, then

we have that λ±n < 0 for all n > N0, and

λ+
n → −δ, λ−n → −∞, as n→∞.(3)
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Strong damped nonlocal wave equation

Theorem

For every (u0, u1) ∈W s,2
0 (Ω)× L2(Ω) and g ∈ L2((RN \ Ω)× (0,T )), the system (2) has a

unique solution (u, ut) given by

u(x , t) =
∞∑
n=1

(
An(t)(u0, ϕn)L2(Ω) + Bn(t)(u1, ϕn)L2(Ω)

)
ϕn(x)

+
∞∑
n=1

(∫ t

0

(
g(·, τ),Nsϕn

)
L2(RN\Ω)

1

λn
B′′n (t − τ)dτ

)
ϕn(x).

where

An(t) =


(

cos(βnt)−
αn

βn
sin(βnt)

)
eαnt if n ≤ N0,

λ−n eλ
+
n t − λ+

n e
λ−
n t

λ−n − λ+
n

if n > N0,

and

Bn(t) =


sin(βnt)

βn
eαnt if n ≤ N0,

eλ
−
n t − eλ

+
n t

λ−n − λ+
n

if n > N0.
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Strong damped nonlocal wave equation

Adjoint problem

Now we consider the dual system. That is, the backward system

(4)


ψtt + (−∆)sψ − δ(−∆)sψt = 0 in Ω× (0,T ),

ψ = 0 in (RN \ Ω)× (0,T ),

ψ(·,T ) = ψ0, −ψt(·,T ) = ψ1 in Ω,

Let

ψ0,n := (ψ0, ϕn)L2(Ω) and ψ1,n := (ψ1, ϕn)L2(Ω).
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Strong damped nonlocal wave equation

Theorem

For every (ψ0, ψ1) ∈W s,2
0 (Ω)× L2(Ω), the dual system (4) has a unique weak solution (ψ,ψt)

given by

ψ(x , t) =
∞∑
n=1

(
ψ0,nAn(T − t)− ψ1,nBn(T − t)

)
ϕn(x),(5)

1 There is a constant C > 0 such that for all t ∈ [0,T ],

(6) ‖ψ(·, t)‖2

W
s,2
0 (Ω)

+ ‖ψt(·, t)‖2
L2(Ω)

≤ C

(
‖ψ0‖2

W
s,2
0 (Ω)

+ ‖ψ1‖2
L2(Ω)

)
,

and

(7) ‖ψtt(·, t)‖2
W−s,2(Ω)

≤
(
‖ψ0‖2

W
s,2
0 (Ω)

+ ‖ψ1‖2
L2(Ω)

)
.

2 We have that ψ ∈ C([0,T );D((−∆)sD)) ∩ L∞((0,T ); L2(Ω)).

3 The mapping [0,T ) 3 t 7→ Nsψ(·, t) ∈ L2(RN \ Ω), can be analytically extended to the
half-plane ΣT := {z ∈ C : Re(z) < T}.
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Strong damped nonlocal wave equation

Controllability problems

The set of reachable states is given by

R((u0, u1),T ) =
{

(u(·,T ), ut(·,T )) : g ∈ L2((0,T );W s,2(RN \ Ω))
}
.

We shall consider the following three notions of controllability.
I The system is said to be null controllable at T > 0, if

(0, 0) ∈ R((u0, u1),T ).

I The system is said to be exact controllable at T > 0, if

R((u0, u1),T ) = L2(Ω)×W−s,2(Ω).

I The system is said to be approximately controllable at T > 0, if

R((u0, u1),T ) is dense in L2(Ω)×W−s,2(Ω),
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Strong damped nonlocal wave equation

Lemma

The following assertions hold.

1 The system (2) is null controllable if and only if for each initial condition

(u0, u1) ∈W s,2
0 (Ω)× L2(Ω), there exists a control function g such that the solution

(ψ,ψt) of the dual system (4) satisfies

(u1, ψ(·, 0))L2(Ω) − 〈u0, ψt(·, 0)〉 1
2
,− 1

2
+ 〈u0, δ(−∆)sψ(·, 0)〉 1

2
,− 1

2

=

∫ T

0

∫
RN\Ω

(
g(x , t) + δgt(x , t)

)
Nsψ(x , t)dxdt,

for each (ψ0, ψ1) ∈ L2(Ω)×W−s,2(Ω).

2 The system (2) is exact controllable at time T > 0, if and only if there exists a control
function g such that the solution (ψ,ψt) of (4) satisfies

−(ut(·,T ), ψ0)L2(Ω) + 〈u(·,T ), ψ1〉 1
2
,− 1

2
− 〈u(·,T ), δ(−∆)sψ0〉 1

2
,− 1

2

=

∫ T

0

∫
RN\Ω

(
g(x , t) + δgt(x , t)

)
Nsψ(x , t)dxdt,

for each (ψ0, ψ1) ∈ L2(Ω)×W−s,2(Ω).
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Main results

Lack of controllability

Theorem 1

Let δ > 0. Then the system (2) is not exact or null controllable at time T > 0.

Definition

The system (2) is said to be spectrally controllable if any finite linear combination
of eigenvectors, that is,

u0 =
M∑
n=1

u0,nϕn, u1 =
M∑
n=1

u1,nϕn, M ≥ 1 arbitrary,

can be steered to zero by a control function g .
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Main results

Remark

Taking the limit in the Lemma as s ↑ 1−, we can deduce that

(u1, ψ(·, 0))L2(Ω) − 〈u0, ψt(·, 0)〉1,−1 − 〈u0, δ∆ψ(·, 0)〉1,−1

=

∫ T

0

∫
∂Ω

(
g(x , t) + δgt(x , t)

)∂ψ(x , t)

∂ν
dσdt,

for every (ψ0, ψ1) ∈ L2(Ω)× (W 1,2
0 (Ω))?, and

−(ut(·,T ), ψ0)L2(Ω) + 〈u(·,T ), ψ1〉1,−1 − 〈u(·,T ), δ∆ψ0〉1,−1

=

∫ T

0

∫
∂Ω

(
g(x , t) + δgt(x , t)

)∂ψ(x , t)

∂ν
dσdt,

respectively.
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Main results

These are the notions of null and exact controllabilities, respectively, of the
following (possible) strong damping local wave equation:

(8)


utt −∆u − δ∆ut = 0 in Ω× (0,T ),

u = gχω×(0,T ) on ∂Ω× (0,T );

u(·, 0) = u0, ut(·, 0) = u1 in Ω.

Remark:

Following the techniques we developed, we anticipate that the lack of exact/null
controllability of the system (8) proved by Rosier and Rouchona for one space
dimension, is also valid for any dimension N ≥ 1.

aL. Rosier and P. Rouchon. On the controllability of a wave equation with
structural damping. Int. J. Tomogr. Stat, 5(W07):79–84, 2007.
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Main results

Unique Continuation Property

Theorem 2

Let (ψ0, ψ1) ∈W s,2
0 (Ω)× L2(Ω) and let (ψ,ψt) be the unique weak solution of

(4). Let O ⊂ RN \ Ω be an arbitrary non-empty open set. If

Nsψ = 0 in O × (0,T ), then ψ = 0 in Ω× (0,T ).

Here, Nsψ is the nonlocal normal derivative of ψ.

Proof: By hand, using the series representation of the nonlocal normal derivative

Nsψ(x , t) =
∞∑
n=1

(
ψ0,nAn(T − t)− ψ1,nBn(T − t)

)
Nsϕn(x),

and complex analysis (residue Theorem).
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Main results

Approximate controllability

Theorem 3

The system (2) is approximately controllable for any T > 0 and
g ∈ L2(O × (0,T )), where O ⊂ RN \ Ω is an arbitrary non-empty open set.
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Main results

Remark

Using similar ideas we can also prove that the following nonlocal Sobolev–Galpern
type equation, known as nonlocal Barenblatt–Zheltov–Kochina equation,

yt + (−∆)sy + δ(−∆)syt = 0 in Ω× (0,T ),

y = gχO×(0,T ) in (RN \ Ω)× (0,T ),

y(·, 0) = y0 in Ω,

(9)

satisfy the following controllability properties:

I The system (9) is not exact or null controllable at time T > 0.

I The system (9) is approximately controllable for any T > 0 and
g ∈ L2(O × (0,T )), where O ⊂ RN \ Ω is an arbitrary non-empty open set.
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Nonlocal Heat Equation

Nonlocal Heat Equation

We are interested in the null controllability of the fractional heat equation in the
interval (−1, 1). That is,

∂tu + (−∂2
x )su = 0 in (−1, 1)× (0,T ),

u = gχO×(0,T ) in (R \ (−1, 1))× (0,T ),

u(·, 0) = u0 in (−1, 1).

(10)

More precisely, given u0, find g such that the solution of (10) satisfies:

u(·,T ) = 0, in (−1, 1).

Here O ⊂ (R \ (−1, 1)).
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Nonlocal Heat Equation

Main result

Theorem 4

Let 0 < s < 1 and let O ⊂ (R \ (−1, 1)) be an arbitrary nonempty open set. Then
the following assertions hold.

(a) If 1
2 < s < 1, then the system (10) is null controllable at any time T > 0.

(b) If 0 < s ≤ 1
2 , then the system (10) is not null controllable at time T > 0.

(b) If 1
2 < s < 1, then the system (10) is exactly controllable to the trajectories

at any time T > 0.
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Proof of Theorem

The system (10) is null controllable if and only if the following observability
inequality holds for the dual system: there exists a constant C > 0 such that

‖ψ(·, 0)‖2
L2(−1,1) ≤ C

∫ T

0

∫
O
|Nsψ(x , t)|2 dxdt.(11)

Using the representations of ψ and Nsψ, and employing the orthonormality of the
eigenfunctions in L2(−1, 1), then the observability inequality (11) becomes

∞∑
n=1

|ψ0,n|2e−2λnT ≤ C

∫ T

0

∫
O

∣∣∣∣∣
∞∑
n=1

ψ0,ne
−λn(T−t)Nsϕn(x)

∣∣∣∣∣
2

dxdt.
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Nonlocal Heat Equation

Proof of Theorem...

IF ‖Nsϕn‖L2(O) IS UNIFORMLY BOUNDED FROM BELOW BY η > 0, we can
deduce that∫ T

0

∫
O

∣∣∣∣∣
∞∑
n=1

ψ0,ne
−λn(T−t)Nsϕn(x)

∣∣∣∣∣
2

dxdt ≥ η2

∫ T

0

∣∣∣∣∣
∞∑
n=1

ψ0,ne
−λn(T−t)

∣∣∣∣∣
2

dt.

Thus, the observability inequality (11) holds if the following estimate is proved:∥∥∥∥∥
∞∑
n=1

ψ0,ne
−λnt

∥∥∥∥∥
2

L2(0,T )

≥ C
∞∑
n=1

|ψ0,n|2e−2λnT .(12)

It is a well known result for parabolic equations, that an inequality of the type
(12) holds if and only if the eigenvalues {λn}n∈N satisfy the following Müntz
condition. That is, the series

∞∑
n=1

1

λn
(13)

is convergent.
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Nonlocal Heat Equation

Proof of Theorem...

The eigenvalues {λn}n≥1 satisfy

λn =

(
nπ

2
− (2− 2s)π

8

)2s

+ O

(
1

n

)
as n→∞.(14)

Therefore, we have the following two situations.

I If 0 < s ≤ 1
2 , then the series (13) will have the behavior of the harmonic

series, which implies that it is divergent.

I On the other hand, if 1
2 < s < 1, hence, 2s > 1, then using (14) we can

deduce that the series (13) is convergent.

The proof of Parts (a) and (b) is complete.
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Lemma

Let {ϕk}k∈N be the orthogonal basis of normalized eigenfunctions associated with
the eigenvalues {λk}k∈N. Then, for every nonempty open set O ⊂ (R \ (−1, 1)),
there exists a scalar η > 0 such that for every k ∈ N, the function Nsϕk is
uniformly bounded from below by η in L2(O). Namely,

∃ η > 0, ∀ k ∈ N, ‖Nsϕk‖L2(O) ≥ η.
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