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Applications

• Traffic flow
• Supply chains
• Sedimentation models

and especially in the case where multiple spatial variables are considered
• Crowd dynamics: Look around behavior of individuals
• Particle size evolution: multi-dimensional nonlocal population balance equations

(PBE) describe the dynamics of the particle “shape” distribution
• ... if the growth kinetics of particles depend on information of the whole population (e.g.

total surface or total mass)...
• ... and if the particles are described by multiple parameters (e.g. length and width of

needle shaped particles or polygonal approximation of the shape of crystals)
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Mathematical formulation

We call q : ΩT → R with ΩT := (0,T)×Rn a (weak) solution iff it satisfies the following
initial value problem (in a weak sense)

qt (t,x) + divx

(
λ

[
W [q,γ,A ]

]
(t,x)q(t,x)

)
= 0 (t,x) ∈ ΩT

q(0,x) = q0(x) x ∈ Ω

W [q,γ,A ](t,x) :=
∫∫

A (t)

γ(t,x,y)q(t,y)dy (t,x) ∈ ΩT

λ [W [q,γ,A ]] (t,x) := λ (W [q,γ,A ](t,x), t,x) (t,x) ∈ ΩT

with
• q0 ∈ L1(Rn)∩L∞(Rn), γ ∈ C([0,T ];C1

b(Rn×Rn))
• λ ∈ C1(R;C([0,T ];C1(Rn;Rn))) satisfying for given W ∈ C([0,T ];C1

b(Rn)) the
following estimates:

∃A ∈ L∞
loc(R>−1) : ‖D3λ [W ]‖C([0,T ];C(Rn;Rn×n)) ≤ A

(
‖W‖C([0,T ];C(Rn))

)
∃B ∈ L∞

loc(R>−1) : ‖∂1λ [W ]‖C([0,T ];C(Rn;Rn)) ≤ B
(
‖W‖C([0,T ];C(Rn))

)
.
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Multi-dimensional nonlocal balance laws in the literature

• In [A. Aggarwal, R.M. Colombo, and P. Goatin. Nonlocal systems of conservation
laws in several space dimensions. SIAM Journal on Numerical Analysis, 2015]
convergence of a subsequence of solutions to a modified Lax-Friedrichs scheme
resulting in a weak Entropy solution, also known as Kružkov solution, is shown

• In [R.M. Colombo and M. Lécureux-Mercier. Nonlocal crowd dynamics models for
several populations. Acta Mathematica Scientia, 2012] this PDE is considered

∂t q(t,x) + divx (q(t,x)v ((q ∗η)(t,x))~v(x)) = 0 (t,x) ∈ ΩT

q(0,x) = q0(x) x ∈ Ω

together with the setting

v ∈ C2
b(R), ~v ∈ C2(Rn;Sn−1)∩W 2,1(Rn;Sn−1), η ∈ C2

b(Rn; [0,1]) with ‖η‖L1(R) = 1.

The setting in the previous slide covers this already for

v ∈ C1
b(R) ~v ∈ C1

b(Rn;Rn) η ∈ C1
b(Rn).

⇒ Generalization by the here presented framework; also no further Entropy conditions are
required
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Feasible integration areae in the nonlocal term

• For n ∈ N≥1,K ∈ R≥0 we define the sets

M n := {A ∈L (Rn) : (A ∈Lb(Rn)∨ (Rn \A ) ∈Lb(Rn))

∧ ∂A (n−1)-rectifiable}
M n

K := {A ∈M n : H n−1(∂A )≤ K}

C([0,T ];M n
K ) :=

{
F : [0,T ]→M n

K : lim
[0,T ]3t→s

dn
∆(F (t),F (s)) = 0,

∀s ∈ [0,T ]
}
.

• C([0,T ];M n
K ) is called the set of feasible integration areae (of the nonlocal term)

for given K ∈ R≥0. For A ,B ∈L (Rn) the term dn
∆(A ,B) denotes the

n-dimensional Lebesgue-measure of the symmetric difference of both sets.
• Roughly speaking: The continuity condition will ensure the continuity of solutions of

the nonlocal balance laws w.r.t. time and the rectifiability condition a contraction
property in a later required fixed-point equation
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Characteristics

Let T ∈ R>0 and a nonlocal term w ∈ C([0,T1];C1
b(Rn)) be given. We call ξ w for

(t,x) ∈ (0,T)×Rn satisfying

ξ w [t,x](τ) = x +
∫

τ

t
λ [w]

(
s,ξ w [t,x](s)

)
ds, τ ∈ [0,T ]

the characteristics corresponding to the velocity function λ [w].

0 x
x2

τ

t0

t1

x0 x1

ξ [t1,x1](·)

ξ [t0,x1](·)

ξ [t0,x0](·)

Figure 1: Characteristics for different initial values x0,x1,x2 ∈ R and times t0, t1 ∈ (0,T ] with ξ [0,x2](t1) = ξ [t1,x1](0)
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Main theorem

Theorem (Existence and uniqueness of a weak solution on any finite
time horizon)

For any T ∈ R>0 and n ∈ N≥1 and the assumptions
• q0 ∈ L1(Rn)∩L∞(Rn)
• γ ∈ C([0,T ];C1

b(Rn×Rn))
• λ ∈ C1(R;C([0,T ];C1(Rn;Rn))) satisfying for given W ∈ C([0,T ];C1

b(Rn)) the
following estimates:

∃A ∈ L∞
loc(R>−1) : ‖D3λ [W ]‖C([0,T ];C(Rn;Rn×n)) ≤ A

(
‖W‖C([0,T ];C(Rn))

)
∃B ∈ L∞

loc(R>−1) : ‖∂1λ [W ]‖C([0,T ];C(Rn;Rn)) ≤ B
(
‖W‖C([0,T ];C(Rn))

)
and for A ∈ C([0,T ];M n

K ) with K ∈ R≥0 the nonlocal balance law admits a unique
weak solution q ∈ C([0,T ];L1(Rn)).
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Sketch of proof

• Assumption: the nonlocal term W [q,γ,A ](t,x) is given by w(t,x), a function
explicitly depending only on t,x

• Obtaining a linear balance law by plugging it in the nonlocal balance law⇒ unique
solution of linear balance law

• Banach’s Fixed Point Theorem: Unique solution of the fixed-point equation F[w] = w
for small times with

F :


C([0,T1];C1

b(Rn)) → C([0,T1];C1
b(Rn))

w 7→

(
(t,x) 7→

∫∫
ξ w [t,A (t)](0)

γ(t,x,ξ w [0,y](t))q0(y)dy

)
• Specific class of test functions and the fundamental lemma of calculus of variation
→ unique solution of the nonlocal balance law for small times (no Entropy condition
needed!)

• Clustering argument in time→ solution up to time t = T
• Solution representation

qw∗(t,x) := q0(ξw∗ [t,x](0))∂2ξw∗ [t,x](0)

with the unique solution of the fixed-point equation w∗.
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Ingredients for contraction I/II

• In the fixed-point equation: When showing the contraction/Lipschitz continuity of the
fixed-point mapping F, we obtain:

‖F[w]−F[w̃]‖ ≤ d∆(ξ w [t,A (t)](0),ξ w̃ [t,A (t)](0)) + other terms.

⇒ Goal: d∆(ξ w [t,A (t)](0),ξ w̃ [t,A (t)](0))≤ C‖ξ w −ξ w̃‖ ≤ Ĉ‖w− w̃‖.
• In the following, the two inequalities in the upper goal will be addressed (starting by

the second one)

Lemma (Stability of characteristics w.r.t. nonlocal terms)

For every t,τ ∈ [0,T ] and w, w̃ ∈ C(ΩT ;Rn) with ‖w‖C(ΩT ;Rn) ≤ M and
‖w̃‖C(ΩT ;Rn)} ≤ M for a M ∈ R>0 we obtain

‖ξ w [t, ·](τ)−ξ w̃ [t, ·](τ)‖C(Rn;Rn)

≤ |t− τ|‖w− w̃‖C([0,T ];C(Rn))‖B‖L∞((0,M)) · eT(‖B‖L∞((0,M))‖∇w̃‖C(ΩT ;Rn)+‖A‖L∞((0,M))).
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Motivation: symmetric difference of sets and characteristics

• W.l.o.g.: ξ w [t, ·](0)≡ Id. Define B(t) := ξ w̃ [t,A (t)](0) where
A ∈ C([0,T ];M n

K ) and A (t) is a circle with radius R ∈ R>0

• r := ‖ξ w [·,∗](0)− ξ̃ w̃ [·,∗](0)‖C([0,T ]×Rn;Rn)

A (t)

B(t)

(∂A (t))≤r

r

Figure 2: Estimating the Lebesgue-measure of the symmetric difference by analyzing the Lebesgue-measure of parallel sets.

In this case: d∆(ξ w [t,A (t)](0),ξ w̃ [t,A (t)](0))

≤ π((R + r)2− (R− r)2) = 4πRr

= 2H 1(∂A (t))‖ξ w [·,∗](0)− ξ̃ w̃ [·,∗](0)‖C([0,T ]×Rn;Rn).
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Ingredients for contraction II/II

Lemma (Estimate for the volume of the symmetric difference w.r.t.
characteristics)

For n ∈ N≥1 and T ∈ R>0 let A ∈ C([0,T ];M n
K ) for a K ∈ R≥0 be given. Moreover,

define for ξ w and ξ w̃ and w, w̃ ∈ C([0,T ];C1
b(Rn)) for every t,s ∈ [0,T ]

Lw,w̃ (t,s) := max
{
‖det(D2ξ w [t, ·](s))‖C(Rn) , ‖det(D2ξ w̃ [t, ·](s))‖C(Rn)

}
.

Then we obtain

dn
∆

(
ξ w [t,A (t)](s),ξ w̃ [t,A (t)](s)

)
≤ 4KLw,w̃ (t,s)‖ξ w [t, ·](s)−ξ w̃ [t, ·](s)‖C(Rn).

Moreover, Lw,w̃ (t,s) can be bounded uniformly in t,s ∈ [0,T ], i.e.

‖Lw,w̃‖C([0,T ]2) ≤ ‖max{det(D2ξ w ) ,det(D2ξ w̃ )}‖C(ΩT×[0,T ]).
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Remark: Minimizing topological boundaries

Figure 3: Topological boundary in red and minimized topological boundary in blue.

• In PBE itself the Lebesgue-measure λ n of A is used but not the Hausdorff-measure
of ∂A

• Question: How to “minimize” the topological boundary such that the Lebesgue
measure does not change but the Hausdorff measure decreases

• Answer: If A ∈M n is a Borel-set, then exists a Borel set Ã ∈ Rn so that
dn

∆(A ,Ã ) = 0 where the topological boundary of Ã satisfies

∂ Ã =
{

x ∈ Rn : 0 < λ n(A ∩Br (x))
λ n(Br (x))

< 1 ∀r ∈ R>0

}
.

• Roughly speaking: Neglection of points with Lebesgue density zero (isolated points,
lines, etc.) or one (points, lines, etc. in the interior of the set)
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Example 1: Moving cuboid I/II

qt (t,x) + div2 (λ [W [q]](t,x)q(t,x)) = 0

q(0,x) := χ[− 1
2 ,

1
2 ]2 (x)

λ [W [q]](t,x) =

(
W [q](t)
W [q](t)

)
W [q](t) =

∫∫
[0,2]2

q(t,y)dy.

x1

x2

t = 0

1

2

2

t = 1

t = 2

t→ ∞

0 1 2 3

0

0.5

1

t

w
(t

)

0 1 2 3
0

1

2

t

‖ξ
[0
,0

](
t)
‖ ∞

Figure 4: Top right: Illustration of the “moving” support of the solution q. Bottom: nonlocal term and the L∞-norm of the initial
characteristic.
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Example 1: Moving cuboid II/II

qt (t,x) + div2 (λ [W [q]](t,x)q(t,x)) = 0

q(0,x) := χ[− 1
2 ,

1
2 ]2 (x)

λ [W [q]](t,x) =

(
W [q](t)
W [q](t)

)
W [q](t) =

∫∫
[0,2]2

q(t,y)dy.

x1

x2

t = 0

1

2

2

t = 1

t = 2

t→ ∞

0
2 0

20

1

x1
x2

t = 0

0
2 0

20

1

x1
x2

t = 1

0
2 0

20

1

x1
x2

t = 2

0
2 0

20

1

x1
x2

t = 3

Figure 5: A time series of the solution q, gray area denotes the nonlocal area of integration, illustrated for t ∈ {0,1,2,3}.
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Example 2: Moving and shrinking cuboid I/II

qt (t,x) + div2 (λ [W [q]](t,x)q(t,x)) =− 1
4 q(t,x)

q(0,x) := χ[− 1
2 ,

1
2 ]2 (x)

λ [W [q]](t,x) =

(
W [q](t)
W [q](t)

)
W [q](t) =

∫∫
[0,2]2

q(t,y)dy.

x1

x2

t = 0

1

2

2

t ≈ 1.15

t ≈ 2.77

t→ ∞

0 1 2 3

0

0.5

1

t

w
(t

)

0 1 2 3
0

1

2

t

‖ξ
[0
,0

](
t)
‖ ∞

Figure 6: Top right: Illustration of the “moving” support of the shrinking solution q. Bottom: nonlocal term and the L∞-norm of the
initial characteristic.
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Example 2: Moving and shrinking cuboid II/II

qt (t,x) + div2 (λ [W [q]](t,x)q(t,x)) =− 1
4 q(t,x)

q(0,x) := χ[− 1
2 ,

1
2 ]2 (x)

λ [W [q]](t,x) =

(
W [q](t)
W [q](t)

)
W [q](t) =

∫∫
[0,2]2

q(t,y)dy.
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Figure 7: A time series of the solution q, gray area denotes the nonlocal area of integration, illustrated for t ∈ {0,1.5,2.5,3.43}.
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Example 3: Rotation of increasing partial annulus I/II

qt (t,x) + div2 (λ [W [q]](t,x)q(t,x)) = 0

q(0,x) := χA(x)

A = {x ∈ R2 : 1≤ ‖x‖2 ≤ 3, 0≤ x2 ≤ x1}

λ [W [q]](t,x) = W [q](t)

(
1 −1
1 1

)
x

W [q](t) =
∫∫

B2(0)

q(t,y)dy.
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t = 0

t = t1

0 1 2 3

0

0.5
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t

w
(t

)

0 1 2 3
0

0.5

1

1.5

2

t

‖ξ
[0
,(

1,
0)

t ](
t)
‖ 2

Figure 8: Top right: Illustration of rotating and increasing partial annulus (solution). Bottom: The nonlocal term w(t) for
t ∈ [0,3] and the Euclidean norm of the characteristic curve starting from (1,0)t for t ∈ [0,3].
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Example 3: Rotation of increasing partial annulus II/II

qt (t,x) + div2 (λ [W [q]](t,x)q(t,x)) = 0

q(0,x) := χA(x)

A = {x ∈ R2 : 1≤ ‖x‖2 ≤ 3, 0≤ x2 ≤ x1}

λ [W [q]](t,x) = W [q](t)

(
1 −1
1 1

)
x

W [q](t) =
∫∫

B2(0)

q(t,y)dy.
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Figure 9: Top right: Illustration of rotating and increasing partial annulus (solution). Bottom: A time series of the solution q, gray
area denotes the nonlocal area of integration, illustrated for t ∈ {0,0.5,2,42}.
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Conclusion

Summary

• Generalization of results in the solution theory for multi-dimensional nonlocal balance
laws w.r.t. weights γ , velocity function λ and feasible integration areas A

• Presentation of solution approach basing on solving characteristic equations and
fixed-point equations in the nonlocal term

• Illustration of several analytical examples

Further research

• Integration areas A depending on x → look around of individuals in a crowd
• A = Rn

>xmin
→ relevant for ripening processes in chemical engineering

• Non-dissipative numerical scheme based on characteristics

Thanks for listening.
Any questions? Then please, feel free to ask!
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