Controllability of multi-d scalar conservation laws in the entropy framework and with a simple geometrical condition.

Vincent Perrollaz

Institut Denis Poisson, Université de Tours

Benasque, 20th August 2019
Outline of the talk

1. The simplest toy example
2. Controllability to trajectories
The simplest toy example

Controllability to trajectories
The simplest toy example

The case of the transport equation

- **Evolution:**
 \[
 \begin{align*}
 \partial_t y + c\partial_x y &= 0, & (t, x) \in (0, T) \times (0, L) \\
 y(t, 0) &= 0, & t \in (0, T).
 \end{align*}
 \]

- **Method of characteristics ⇒**
 \[
 y(t, x) = \begin{cases}
 y_0(x - ct) & \text{if } x > ct, \\
 0 & \text{otherwise}.
 \end{cases}
 \]

- **Conclusion:**
 \[t > \frac{L}{c} \Rightarrow y(t, \cdot) = 0.\]
A Family of Lyapunov Functionals

- Definition (for $\nu > 0$):

$$J_\nu(t) := \int_0^L y^2(t, x) e^{-\nu x} \, dx.$$

- Formally (at least):

$$\dot{J}_\nu(t) = \int_0^L 2y_t(t, x)y(t, x)e^{-\nu x} \, dx$$

$$= \int_0^L -2cy_x(t, x)y(t, x)e^{-\nu x} \, dx$$

$$= [-cy^2(t, x)e^{-\nu x}]_0^L - c\nu J_\nu(t)$$

$$\leq -c\nu J_\nu(t).$$

- Gronwall \Rightarrow

$$J_\nu(t) \leq e^{-c\nu t} J_\nu(0).$$
Return to the L^2 norm

- Norm equivalence
 \[\forall t \geq 0, \quad e^{-\nu L} \|y(t,.)\|_{L^2(0,L)}^2 \leq J_\nu(t) \leq \|y(t,.)\|_{L^2(0,L)}^2. \]

- Inequality on L^2
 \[\|y(t,.)\|_{L^2(0,L)}^2 \leq e^{-\nu c (t - \frac{L}{c})} \|y_0\|_{L^2(0,L)}^2, \]

- Conclusion:
 \[t > \frac{L}{c}, \quad \nu \to +\infty \quad \Rightarrow \quad y(t,.) = 0 \]
Remarks

- Can be adapted to general "transport" type equations.
- Good for robustness estimate and perturbation:
 \[y_t + cy_x = \epsilon g(y), \]
 \[y_t + cy_x = \epsilon y_{xx}. \]

(Systems and source term: Gugat, P., Rosier 2018)

- In certain cases, useful for exact controllability to trajectory.
The simplest toy example

Controllability to trajectories
Short tour on controllability and entropy solutions

Why: Robustness, interesting trajectories, sampled controls, global results...

Techniques:
- No linearization possible!
- Boundary conditions are tricky!
- Lax-Hopf formula.
- Generalized characteristics.
- Wave front tracking.
- Vanishing viscosity.

Restrictions: 1d and convex flux (or genuinely nonlinear families for systems)
Kruzkov definition

Consider $\Omega \in \mathbb{R}^d$ a domain, and $f : \mathbb{R} \to \mathbb{R}^d$ a C^1 function. A function $u \in L^{\infty}((0, +\infty) \times \Omega)$ is an entropy solution of

$$
\begin{aligned}
\begin{cases}
\partial_t u + \text{div}(f(u)) = 0, & x \in \Omega \\
u(0, x) = u_0(x), & x \in \Omega
\end{cases}
\end{aligned}
$$

when for any $k \in \mathbb{R}$ and any positive function $\phi \in C^1_c(\mathbb{R} \times \Omega)$ we have

$$
\begin{align*}
\int_{\mathbb{R}^+ \times \Omega} |u(t, x) - k| \partial_t \phi(t, x) + \text{sign}(u(t, x) - k)\langle f(u(t, x)) - f(k)| \nabla \phi(t, x) \rangle dx dt \\
+ \int_{\Omega} |u_0(x) - k| \phi(0, x) dx \geq 0
\end{align*}
$$
A "simple" geometric condition

Definition

Let I be a segment of \mathbb{R}. We say that it satisfy the replacement condition in time $T > 0$ if there exists a vector $w \in \mathbb{R}^d$ and a positive number c such that

$$L := \sup_{x \in \Omega} \langle w | x \rangle - \inf_{x \in \Omega} \langle w | x \rangle < +\infty.$$

$$\forall u \in I, \quad \langle f'(u) | w \rangle \geq c,$$

and $T = \frac{L}{c}$.

Vincent Perrollaz (IDP)
Conservation laws, controllability to trajectories
Benasque, 20th August 2019 11 / 15
Theorem (Donadello, P.)

- Let \(v \in L^\infty((0, +\infty) \times \Omega) \) be an entropy solution to
 \[
 \partial_t u + \text{div}(f(u)) = 0
 \]

 and \(u_0 \) be a function in \(L^\infty(\Omega) \).

- Suppose that both \(u_0 \) and \(v \) take value in a segment \(I \) such that \(\Omega, I \) and \(f \)
 satisfy the replacement condition in time \(T \).

- Then for any times \(T_1 \) and \(T_2 \) greater than \(T \) we have an entropy solution \(u \)
 of the previous equation satisfying

 \[
 u(0, x) = u_0(x), \quad u(T_1, x) = v(T_2, x) \quad \text{for almost all } x \in \Omega.
 \]
Idea of the proof

- Kruzkov formulation with boundary condition (Amar, Carillo, Wittbold 2006).
- Trace result of Vasseur for the boundary of the reference trajectory (Vasseur 2001).
- Doubling variable trick of Kruzkov with test function (Kruzkov 1970).
- Conclusion with Lyapunov functions.
Remarks

- No technical restriction on the flux (compared with the Cauchy-Problem).
- 1-d or n-d not different.
- Many reusable steps for the proof.
- Geometric condition clearly too restrictive, see controllability of Euler for further ideas?
THANK YOU FOR YOUR ATTENTION