First order mean-field games

Piermarco Cannarsa

University of Rome “Tor Vergata”

VIII PARTIAL DIFFERENTIAL EQUATIONS, OPTIMAL DESIGN AND NUMERICS

CCBPP, Benasque, Spain August 18-30, 2019

Organizers: G. Buttazzo, O. Glass. G. Leugering, and E. Zuazua
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
Outline

1. Introduction to Mean Field Games
2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions
3. Concluding remarks
 - Asymptotic behaviour
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
Mean field game theory is the study of strategic decision making in very large populations of small interacting agents. This class of problems was considered in the economics literature by B Jovanovic and RW Rosenthal, in the engineering literature by PE Caines and his co-workers, and independently and around the same time by mathematicians J-M Lasry and P-L Lions.

Figure: Jovanovic, Rosenthal, Caines, Lasry, and Lions
Motivations for studying MFG

Goal
To describe Nash equilibria in the collective behaviour of a large population of “small” rational agents

- large population \rightsquigarrow infinite number (a continuum) of players
- rational agents \rightsquigarrow each agent is controlling his/her dynamical own state

Figure: MFG impact: finance, crowd dynamics, smart grids
Lasry-Lions 1: the Hamilton-Jacobi equation

Main idea: to export the principle of statistical mechanics to interactions within rational particles by introducing a macroscopic description through a mean field model

- agents are identified with points \(x \in \bar{\Omega} \subset \mathbb{R}^n \)
- \(m(t, dx) \) is the distribution of agents at time \(t \)

Agent located in \(x \in \bar{\Omega} \) at time \(t \in [0, T] \) chooses a path \(\gamma_{t,x}(s), s \in [t, T] \), such that

\[
\begin{align*}
 u(t, x) &:= \min_{\gamma(t)=x} \left\{ \int_t^T \left[L(\gamma(s), \dot{\gamma}(s)) + F(\gamma(s), m(s)) \right] ds + G(\gamma(T), m(T)) \right\} \\
\end{align*}
\]

The value function \(u(t, x) \) satisfies the associated Hamilton-Jacobi equation

\[
\begin{cases}
 -\partial_t u + H(x, \nabla u) = F(x, m) & [0, T] \times \Omega \\
 u(T, x) = G(x, m(T))
\end{cases}
\]

where

\[
H(x, p) := \sup_{v \in \mathbb{R}^n} \left\{ -\langle p, v \rangle - L(x, v) \right\}
\]
Lasry-Lions 2: the continuity equation

The space gradient $\nabla u(t, x)$ of the solution to the Hamilton-Jacobi equation gives the optimal feedback $\gamma_{t,x}$ via the system

$$\gamma'(s) = -\partial_p H(\gamma(s), \nabla u(s, \gamma(s))) \quad (s \in [t, T])$$

for the minimization problem

$$\min_{\gamma(t) = x} \left\{ \int_t^T \left[L(\gamma(s), \dot{\gamma}(s)) + F(\gamma(s), m(s)) \right] ds + G(\gamma(T), m(T)) \right\}$$

Since $m(\cdot, dx)$ is just $m_0(dx)$ transported by such a flow, the continuity equation

$$\begin{cases}
\partial_t m - \text{div}(m \partial_p H(x, \nabla u)) = 0 & [0, T] \times \Omega \\
m(0, dx) = m_0(dx)
\end{cases}$$

must be satisfied.
Lasry-Lions 3: the MFG system

By coupling the Hamilton-Jacobi equation with the continuity equation above, one obtains the PDE system of Mean Filed Games

\[
\begin{align*}
-\partial_t u + H(x, \nabla u) - F(x, m) &= 0 \\
\partial_t m - \text{div}(m \partial_p H(x, \nabla u)) &= 0
\end{align*}
\]

In the last decade, system \((MFG)\) has been widely investigated for two main kinds of space domains

\[\Omega = \mathbb{T}^n, \mathbb{R}^n\]

main contributions by: Achdou, Bardi, Bensoussan, Camilli, Capuzzo Docetta, Cardaliaguet, Carmona, Delarue, Gomes, Guéant, Lachapelle, Porretta, . . .
Lasry-Lions 3: the MFG system

By coupling the Hamilton-Jacobi equation with the continuity equation above, one obtains the PDE system of Mean Filed Games

\[
\begin{align*}
-\partial_t u + H(x, \nabla u) - F(x, m) &= 0 \\
\partial_t m - \text{div}(m \partial_p H(x, \nabla u)) &= 0
\end{align*}
\]

\[
\begin{align*}
[0, T] \times \Omega \quad &\begin{cases}
u(T, x) = G(x, m(T)) \\
m(0, dx) = m_0(dx)
\end{cases}
\end{align*}
\]

(MFG)

In the last decade, system (MFG) has been widely investigated for two main kinds of space domains

\[\Omega = \mathbb{T}^n, \mathbb{R}^n\]

main contributions by: Achdou, Bardi, Bensoussan, Camilli, Capuzzo Docetta, Cardaliaguet, Carmona, Delarue, Gomes, Guéant, Lachapelle, Porretta, . . .
Mean Field Games

Solution of the MFG system

Reference: notes on Mean Field Games by P. Cardaliaguet, 2013 and 2015

- by vanishing viscosity

\[
\begin{aligned}
- \partial_t u - \epsilon \Delta u + H(x, \nabla u) &= F(x, m) \\
\partial_t m - \epsilon \Delta m - \text{div}(m \partial_p H(x, \nabla u_\mu)) &= 0
\end{aligned}
\]

- by a fixed point argument

\[
\begin{aligned}
\mu &\rightarrow u_\mu \\
- \partial_t u + H(x, \nabla u) &= F(x, \mu) \\
u(T, x) &= G(x, \mu(T))
\end{aligned} \quad \quad \rightarrow \quad \quad m_\mu \\
\begin{aligned}
\partial_t m - \text{div}(m \partial_p H(x, \nabla u_\mu)) &= 0 \\
m(0, dx) &= m_0(x)dx
\end{aligned}
\]

Very important facts:

- although nonsmooth, \(u \) is linearly semiconcave, which ensures a nice behaviour along minimizers

- if \(m_0 \) is absolutely continuous with respect to the Lebesgue measure, then \(m(t, \cdot) \) stays absolutely continuous,
Solution of the MFG system

Reference: notes on Mean Field Games
by P. Cardaliaguet, 2013 and 2015

- by vanishing viscosity

\[
\begin{aligned}
-\partial_t u - \epsilon \Delta u + H(x, \nabla u) &= F(x, m) \\
\partial_t m - \epsilon \Delta m - \text{div}(m \partial_p H(x, \nabla u)) &= 0
\end{aligned}
\]

- by a fixed point argument

\[
\begin{aligned}
\mu &\rightarrow u_\mu \\
\mu &\rightarrow m_\mu
\end{aligned}
\]

Very important facts:

- although nonsmooth, \(u \) is linearly semiconcave, which ensures a nice behaviour along minimizers
- if \(m_0 \) is absolutely continuous with respect to the Lebesgue measure, then \(m(t, \cdot) \) stays absolutely continuous
Solution of the MFG system

Reference: notes on Mean Field Games by P. Cardaliaguet, 2013 and 2015

- by vanishing viscosity
 \[
 \begin{cases}
 -\partial_t u - \epsilon \Delta u + H(x, \nabla u) = F(x, m) \\
 \partial_t m - \epsilon \Delta m - \text{div}(m \partial_p H(x, \nabla u_\mu)) = 0
 \end{cases}
 \]

- by a fixed point argument
 \[
 \begin{align*}
 \mu &\rightarrow u_\mu \\
 \mu &\rightarrow m_\mu
 \end{align*}
 \]

Very important facts:
- although nonsmooth, u is linearly semiconcave, which ensures a nice behaviour along minimizers
- if m_0 is absolutely continuous with respect to the Lebesgue measure, then $m(t)$ stays absolutely continuous
Solution of the MFG system

Reference: notes on Mean Field Games by P. Cardaliaguet, 2013 and 2015

- by vanishing viscosity
 \[
 \begin{cases}
 -\partial_t u - \epsilon \Delta u + H(x, \nabla u) = F(x, m) \\
 \partial_t m - \epsilon \Delta m - \text{div}(m \partial_p H(x, \nabla u_\mu)) = 0
 \end{cases}
 \]

- by a fixed point argument
 \[
 \mu \rightarrow u_\mu \quad \begin{cases}
 -\partial_t u + H(x, \nabla u) = F(x, \mu) \\
 u(T, x) = G(x, \mu(T))
 \end{cases} \quad \rightarrow \quad m_\mu \quad \begin{cases}
 \partial_t m - \text{div}(m \partial_p H(x, \nabla u_\mu)) = 0 \\
 m(0, dx) = m_0(x) dx
 \end{cases}
 \]

Very important facts:
- although nonsmooth, \(u \) is linearly semiconcave, which ensures a nice behaviour along minimizers
- if \(m_0 \) is absolutely continuous with respect to the Lebesgue measure, then \(m(t, \cdot) \) stays absolutely continuous
Does all this break down under state constraints?

Our goal: To study MFG problems with state constraints: \(x \in \overline{\Omega} \)

Difficulty
Agent distribution may concentrate on small sets

Then the above methods break down
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
A change of paradigm

- $\Omega \subset \mathbb{R}^n$ bounded domain with boundary of class C^2
- $\mathcal{P}(\overline{\Omega})$ Borel probability measures on $\overline{\Omega}$ with Katorovich-Rubinstein distance

\[
d_1(m_1, m_2) = \sup \left\{ \int_{\overline{\Omega}} f \, dm_1 - \int_{\overline{\Omega}} f \, dm_2 : |f(x) - f(y)| \leq |x - y| \right\}
\]

Recall that, given $m \in C([0, T]; \mathcal{P}(\overline{\Omega}))$, agents aim to attain

\[
\min_{\gamma(0) = x, \gamma(t) \in \overline{\Omega}} \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), m(t)) \right] dt + G(\gamma(T), m(T)) \]

but m cannot be fixed a priori as it evolves along optimal feedback.

Main idea to overcome such a difficulty:

to replace $m \in C([0, T]; \mathcal{P}(\overline{\Omega}))$

by a probability measure on the metric space $C([0, T]; \overline{\Omega})$

that is $C([0, T]; \mathcal{P}(\overline{\Omega})) \leftrightarrow \mathcal{P}(C([0, T]; \overline{\Omega}))$
A change of paradigm

- $\Omega \subset \mathbb{R}^n$ bounded domain with boundary of class C^2
- $\mathcal{P}(\overline{\Omega})$ Borel probability measures on $\overline{\Omega}$ with Katorovich-Rubinstein distance

$$d_1(m_1, m_2) = \sup \left\{ \int_{\Omega} f \, dm_1 - \int_{\Omega} f \, dm_2 \, : \, |f(x) - f(y)| \leq |x - y| \right\}$$

Recall that, given $m \in C([0, T]; \mathcal{P}(\Omega))$, agents aim to attain

$$\min_{\gamma(0) = x, \gamma(t) \in \overline{\Omega}} \left\{ \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), m(t)) \right] \, dt + G(\gamma(T), m(T)) \right\}$$

but m cannot be fixed a priori as it evolves along optimal feedback

Main idea to overcome such a difficulty:

to replace $m \in C([0, T]; \mathcal{P}(\Omega))$

by a probability measure on the metric space $C([0, T]; \Omega)$

that is $C([0, T]; \mathcal{P}(\Omega)) \leftrightarrow \mathcal{P}(C([0, T]; \Omega))$
A change of paradigm

- $\Omega \subset \mathbb{R}^n$ bounded domain with boundary of class C^2
- $\mathcal{P}(\Omega)$ Borel probability measures on Ω with Katorovich-Rubinstein distance

$$d_1(m_1, m_2) = \sup \left\{ \int_{\Omega} f \, dm_1 - \int_{\Omega} f \, dm_2 : |f(x) - f(y)| \leq |x - y| \right\}$$

Recall that, given $m \in \mathcal{C}([0, T]; \mathcal{P}(\Omega))$, agents aim to attain

$$\min_{\gamma(0)=x, \gamma(t) \in \Omega} \left\{ \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), m(t)) \right] \, dt + G(\gamma(T), m(T)) \right\}$$

but m cannot be fixed a priori as it evolves along optimal feedback

Main idea to overcome such a difficulty:

- to replace $m \in \mathcal{C}([0, T]; \mathcal{P}(\Omega))$
- by a probability measure on the metric space $\mathcal{C}([0, T]; \Omega)$

that is

$$\mathcal{C}([0, T]; \mathcal{P}(\Omega)) \leftrightarrow \mathcal{P}(\mathcal{C}([0, T]; \Omega))$$
Lagrangian approach

References

C – Capuani (2018)
C – Capuani – Cardaliaguet (2018), C – Capuani – Cardaliaguet (2019)

Notation

- constrained arcs

\[\Gamma = \left\{ \gamma \in AC([0, T]; \mathbb{R}^n) : \gamma(t) \in \overline{\Omega}, \forall t \in [0, T] \right\} \quad \text{with} \quad \| \cdot \|_\infty \]

\[\Gamma[x] = \left\{ \gamma \in \Gamma : \gamma(0) = x \right\} \quad (x \in \overline{\Omega}) \]

- \(\mathcal{P}(\Gamma) \) Borel probability measures on \(\Gamma \): metric space with \(d_1 \) metric

\[d_1(\mu_1, \mu_2) = \sup \left\{ \int_{\Gamma} f \, d\mu_1 - \int_{\Gamma} f \, d\mu_2 : |f(\gamma) - f(\xi)| \leq \|\gamma - \xi\|_\infty \right\} \]
Lagrangian approach

References

C – Capuani (2018)
C – Capuani – Cardaliaguet (2018), C – Capuani – Cardaliaguet (2019)

Notation

- **constrained arcs**

\[\Gamma = \left\{ \gamma \in AC([0, T]; \mathbb{R}^n) : \gamma(t) \in \bar{\Omega}, \forall t \in [0, T] \right\} \text{ with } \| \cdot \|_\infty \]

\[\Gamma[x] = \left\{ \gamma \in \Gamma : \gamma(0) = x \right\} \quad (x \in \bar{\Omega}) \]

- **\(\mathcal{P}(\Gamma) \)** Borel probability measures on \(\Gamma \): metric space with \(d_1 \) metric

\[d_1(\mu_1, \mu_2) = \sup \left\{ \int f \, d\mu_1 - \int f \, d\mu_2 : |f(\gamma) - f(\xi)| \leq \| \gamma - \xi \|_\infty \right\} \]
Lagrangian approach

References

C – Capuani (2018)
C – Capuani – Cardaliaguet (2018), C – Capuani – Cardaliaguet (2019)

Notation

- **constrained arcs**

 \[\Gamma = \left\{ \gamma \in AC([0,T];\mathbb{R}^n) : \gamma(t) \in \overline{\Omega}, \forall t \in [0,T] \right\} \]

 with \[\| \cdot \|_\infty \]

 \[\Gamma[x] = \left\{ \gamma \in \Gamma : \gamma(0) = x \right\} \quad (x \in \overline{\Omega}) \]

- \(\mathcal{P}(\Gamma) \) Borel probability measures on \(\Gamma \): metric space with \(d_1 \) metric

 \[d_1(\mu_1, \mu_2) = \sup \left\{ \int_{\Gamma} f \, d\mu_1 - \int_{\Gamma} f \, d\mu_2 : |f(\gamma) - f(\xi)| \leq \|\gamma - \xi\|_\infty \right\} \]
Relaxed MFG functional

The evaluation map $e_t : \Gamma \rightarrow \overline{\Omega}$ ($t \in [0, T]$) is defined by $e_t(\gamma) = \gamma(t)$

Push-forward

With any $\mu \in \mathcal{P}(\Gamma)$ and $t \in [0, T]$ one can associate the probability measure $e_t\#\mu$ on $\overline{\Omega}$ given by

$$\int_{\overline{\Omega}} f(x) \, e_t\#\mu(dx) = \int_{\Gamma} f(\gamma(t)) \, \mu(d\gamma) \quad \forall f \in C(\overline{\Omega})$$

$e_t\#\mu$ is the push-forward of μ by e_t

For any $\mu \in \mathcal{P}(\Gamma)$ we define

- the associated payoff functional

$$J_\mu[\gamma] = \int_0^T [L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), e_t\#\mu)] \, dt + G(\gamma(T), e_T\#\mu) \quad \forall \gamma \in \Gamma$$

- the family of minimizing arcs for J_μ at $x \in \overline{\Omega}$

$$\Gamma^\mu[x] = \{ \gamma \in \Gamma[x] : J_\mu[\gamma] = \min_{\Gamma[x]} J_\mu \}$$
Relaxed MFG functional

The evaluation map \(e_t : \Gamma \rightarrow \overline{\Omega} \ (t \in [0, T]) \) is defined by \(e_t(\gamma) = \gamma(t) \)

Push-forward

With any \(\mu \in \mathcal{P}(\Gamma) \) and \(t \in [0, T] \) one can associate the probability measure \(e_t \sharp \mu \) on \(\overline{\Omega} \) given by

\[
\int_{\overline{\Omega}} f(x) \, e_t \sharp \mu(dx) = \int_{\Gamma} f(\gamma(t)) \, \mu(d\gamma) \quad \forall f \in \mathcal{C}(\overline{\Omega})
\]

\(e_t \sharp \mu \) is the push-forward of \(\mu \) by \(e_t \)

For any \(\mu \in \mathcal{P}(\Gamma) \) we define

- the associated payoff functional

\[
J_\mu[\gamma] = \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), e_t \sharp \mu) \right] dt + G(\gamma(T), e_T \sharp \mu) \quad \forall \gamma \in \Gamma
\]

- the family of minimizing arcs for \(J_\mu \) at \(x \in \overline{\Omega} \)

\[
\Gamma^\mu[x] = \{ \gamma \in \Gamma[x] : J_\mu[\gamma] = \min_{\Gamma[x]} J_\mu \}
\]
Relaxed MFG functional

The evaluation map \(e_t : \Gamma \to \bar{\Omega} \) \((t \in [0, T])\) is defined by \(e_t(\gamma) = \gamma(t) \)

Push-forward

With any \(\mu \in \mathcal{P}(\Gamma) \) and \(t \in [0, T] \) one can associate the probability measure \(e_t \# \mu \) on \(\bar{\Omega} \) given by

\[
\int_{\bar{\Omega}} f(x) \, e_t \# \mu(dx) = \int_{\Gamma} f(\gamma(t)) \, \mu(d\gamma) \quad \forall f \in C(\bar{\Omega})
\]

\(e_t \# \mu \) is the push-forward of \(\mu \) by \(e_t \)

For any \(\mu \in \mathcal{P}(\Gamma) \) we define

- the associated payoff functional

\[
J_\mu[\gamma] = \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), e_t \# \mu) \right] dt + G(\gamma(T), e_T \# \mu) \quad \forall \gamma \in \Gamma
\]

- the family of minimizing arcs for \(J_\mu \) at \(x \in \bar{\Omega} \)

\[
\Gamma^\mu[x] = \{ \gamma \in \Gamma[x] : J_\mu[\gamma] = \min_{\Gamma[x]} J_\mu \}
\]
Relaxed MFG functional

The evaluation map \(e_t : \Gamma \to \overline{\Omega} \ (t \in [0, T]) \) is defined by \(e_t(\gamma) = \gamma(t) \)

Push-forward

With any \(\mu \in \mathcal{P}(\Gamma) \) and \(t \in [0, T] \) one can associate the probability measure \(e_t\#\mu \) on \(\overline{\Omega} \) given by

\[
\int_{\overline{\Omega}} f(x) \ e_t\#\mu(dx) = \int_{\Gamma} f(\gamma(t)) \ \mu(d\gamma) \quad \forall f \in C(\overline{\Omega})
\]

\(e_t\#\mu \) is the push-forward of \(\mu \) by \(e_t \)

For any \(\mu \in \mathcal{P}(\Gamma) \) we define

- the associated **payoff functional**

 \[
 J_\mu[\gamma] = \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), e_t\#\mu) \right] dt + G(\gamma(T), e_T\#\mu) \quad \forall \gamma \in \Gamma
 \]

- the family of **minimizing arcs** for \(J_\mu \) at \(x \in \overline{\Omega} \)

\[
\Gamma^\mu[x] = \{ \gamma \in \Gamma[x] : J_\mu[\gamma] = \min_{\Gamma[x]} J_\mu \}
\]
Relaxed equilibria

A Borel probability measure $\mu \in \mathcal{P}(\Gamma)$ is compatible with $m_0 \in \mathcal{P}(\overline{\Omega})$ if

$$e_0 \# \eta = m_0$$

Denote by $\mathcal{P}_{m_0}(\Gamma)$ the subspace consisting of all such measures.

Definition

$\mu \in \mathcal{P}_{m_0}(\Gamma)$ is called a relaxed (CMFG) equilibrium for m_0 if

$$\text{spt}(\mu) \subseteq \bigcup_{x \in \overline{\Omega}} \Gamma^\mu [x]$$

Equivalently,

$$J_\mu [\overline{\gamma}] = \min_{\gamma \in \Gamma[\overline{\gamma}(0)]} J_\mu [\gamma] \quad \text{for } \mu \text{-a.e. } \overline{\gamma} \in \Gamma$$

where

$$J_\mu [\gamma] = \int_0^T \left[L(\gamma(t), \dot{\gamma}(t)) + F(\gamma(t), e_t \# \mu) \right] dt + G(\gamma(T), e_T \# \mu)$$
Relaxed solutions

Let $m_0 \in \mathcal{P}(\Omega)$

Definition

$(u, m) \in C([0, T] \times \Omega) \times C([0, T]; \mathcal{P}(\Omega))$ is a relaxed solution to the CMFG problem if

$$m(t) = e^{t\#}\mu \quad \forall t \in [0, T]$$

for some relaxed equilibrium $\mu \in \mathcal{P}_{m_0}(\Gamma)$ and

$$u(t, x) = \min_{\gamma \in \Gamma, \gamma(t) = x} \left\{ \int_t^T [L(\gamma(s), \dot{\gamma}(s)) + F(\gamma(s), m(s))] \, dt + G(\gamma(T), m(T)) \right\}$$
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
Existence of relaxed equilibria and solutions

Theorem

For any $m_0 \in \mathcal{P}(\overline{\Omega})$ there is at least one relaxed equilibrium.

Corollary

For any $m_0 \in \mathcal{P}(\overline{\Omega})$ there is at least one relaxed solution (u, m) to the CMFG problem.
Existence of relaxed equilibria and solutions

Theorem

For any $m_0 \in \mathcal{P}(\overline{\Omega})$ *there is at least one relaxed equilibrium*

Corollary

For any $m_0 \in \mathcal{P}(\overline{\Omega})$ *there is at least one relaxed solution* (u, m) *to the CMFG problem*
Proof

Kakutani’s fixed-point theorem

- $S \neq \emptyset$ compact convex subset of a locally convex Hausdorff space
- $\phi: S \Rightarrow S$ nonempty convex-valued with closed graph

$\implies \phi$ has a fixed point.

Proof of theorem: construction of a fixed point of $E: \mathcal{P}_{m_0}(\Gamma) \Rightarrow \mathcal{P}_{m_0}(\Gamma)$

$$E(\eta) = \left\{ \mu \in \mathcal{P}_{m_0}(\Gamma) \mid \text{spt}(\mu_x) \subseteq \Gamma^\eta[x] \text{ for } m_0 - \text{a.e. } x \in \overline{\Omega} \right\} \quad (\eta \in \mathcal{P}_{m_0}(\Gamma))$$

where $\{\mu_x\}_{x \in \overline{\Omega}} \subset \mathcal{P}(\Gamma)$ is the family of probability measures which disintegrates μ

$$\mu = \int_{\overline{\Omega}} \mu_x \, dm_0(x) \quad \text{and} \quad \text{spt}(\mu_x) \subseteq \Gamma[x] \quad m_0 - \text{a.e. } x \in \overline{\Omega}$$

Indeed

$$\eta \in \mathcal{P}_{m_0}(\Gamma) \text{ relaxed equilibrium} \iff \eta \in E(\eta)$$

The existence of a fixed point of E follows from Kakutani’s Theorem
Proof

Kakutani’s fixed-point theorem

- \(S \neq \emptyset \) compact convex subset of a locally convex Hausdorff space
- \(\phi : S \Rightarrow S \) nonempty convex-valued with closed graph

\[\implies \phi \text{ has a fixed point.} \]

Proof of theorem: construction of a fixed point of \(E : \mathcal{P}_{m_0}(\Gamma) \Rightarrow \mathcal{P}_{m_0}(\Gamma) \)

\[E(\eta) = \left\{ \mu \in \mathcal{P}_{m_0}(\Gamma) \mid \text{spt}(\mu_x) \subseteq \Gamma[\eta][x] \text{ for } m_0-\text{a.e. } x \in \overline{\Omega} \right\} \quad (\eta \in \mathcal{P}_{m_0}(\Gamma)) \]

where \(\{\mu_x\}_{x \in \overline{\Omega}} \subseteq \mathcal{P}(\Gamma) \) is the family of probability measures which disintegrates \(\mu \)

\[\mu = \int_{\overline{\Omega}} \mu_x dm_0(x) \quad \text{and} \quad \text{spt}(\mu_x) \subseteq \Gamma[x] \quad m_0-\text{a.e. } x \in \overline{\Omega} \]

Indeed

\[\eta \in \mathcal{P}_{m_0}(\Gamma) \text{ relaxed equilibrium} \iff \eta \in E(\eta) \]

The existence of a fixed point of \(E \) follows from Kakutani’s Theorem
Proof

Kakutani’s fixed-point theorem

- $S \neq \emptyset$ compact convex subset of a locally convex Hausdorff space
- $\phi : S \Rightarrow S$ nonempty convex-valued with closed graph

$\implies \phi$ has a fixed point.

Proof of theorem: construction of a fixed point of $E : \mathcal{P}_{m_0}(\Gamma) \Rightarrow \mathcal{P}_{m_0}(\Gamma)$

$$E(\eta) = \left\{ \mu \in \mathcal{P}_{m_0}(\Gamma) \mid \text{spt}(\mu_x) \subseteq \Gamma^\eta[x] \text{ for } m_0 - \text{a.e. } x \in \Omega \right\} \quad (\eta \in \mathcal{P}_{m_0}(\Gamma))$$

where $\{\mu_x\}_{x \in \Omega} \subset \mathcal{P}(\Gamma)$ is the family of probability measures which disintegrates μ

$$\mu = \int_{\Omega} \mu_x \, dm_0(x) \quad \text{and} \quad \text{spt}(\mu_x) \subseteq \Gamma[x] \quad m_0 - \text{a.e. } x \in \Omega$$

Indeed

$$\eta \in \mathcal{P}_{m_0}(\Gamma) \text{ relaxed equilibrium } \iff \eta \in E(\eta)$$

The existence of a fixed point of E follows from Kakutani’s Theorem
Uniqueness

Theorem

Assume *monotonicity conditions*: for any \(m_1, m_2 \in \mathcal{P}(\Omega) \)

\[
\begin{cases}
\int_{\Omega} (G(x, m_1) - G(x, m_2)) \, d(m_1 - m_2)(x) \geq 0 \\
\int_{\Omega} (F(x, m_1) - F(x, m_2)) \, d(m_1 - m_2)(x) > 0 \quad \text{if} \ m_1 \neq m_2
\end{cases}
\]

If \((u_1, m_1)\) and \((u_2, m_2)\) are relaxed solutions to the CMFG problem, then

\[u_1 \equiv u_2 \quad \text{and} \quad m_1 = m_2 \]

\(F\) satisfies the strict monotonicity condition if \(F: \overline{\Omega} \times \mathcal{P}(\Omega) \to \mathbb{R}\) is of the form

\[F(x, m) = \int_{\Omega} f(y, (\phi \star m)(y)) \phi(x - y) \, dy \]

where \(\phi: \mathbb{R}^d \to \mathbb{R}\) is a smooth even kernel with compact support and

\(f: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}\) is smooth and \(f(x, \cdot)\) is strictly increasing.
Uniqueness

Theorem

Assume monotonicity conditions: for any \(m_1, m_2 \in \mathcal{P}(\Omega) \)

\[
\begin{cases}
\int_{\Omega} (G(x, m_1) - G(x, m_2))d(m_1 - m_2)(x) \geq 0 \\
\int_{\Omega} (F(x, m_1) - F(x, m_2))d(m_1 - m_2)(x) > 0 \quad \text{if } m_1 \neq m_2
\end{cases}
\]

If \((u_1, m_1)\) and \((u_2, m_2)\) are relaxed solutions to the CMFG problem, then

\[u_1 \equiv u_2 \quad \text{and} \quad m_1 = m_2 \]

\(F \) satisfies the strict monotonicity condition if \(F : \overline{\Omega} \times \mathcal{P}(\Omega) \to \mathbb{R} \) is of the form

\[
F(x, m) = \int_{\Omega} f(y, (\phi \ast m)(y)) \phi(x - y) \, dy
\]

where \(\phi : \mathbb{R}^d \to \mathbb{R} \) is a smooth even kernel with compact support and

\(f : \overline{\Omega} \times \mathbb{R} \to \mathbb{R} \) is smooth and \(f(x, \cdot) \) is strictly increasing
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
More notation and assumptions

Recall $\Omega \subset \mathbb{R}^n$ is bounded with $\partial \Omega \in C^2$. Consequently

- **distance** $d_\Omega(x) = \min_{y \in \overline{\Omega}} |x - y|$ of class $C^2(\Omega_\delta^+)$ for some $\delta > 0$ with $\Omega_\delta^+ = \{ x \in \mathbb{R}^n \setminus \Omega : d_\Omega(x) < \delta \}$

- **oriented boundary distance** $b_\Omega(x) = d_\Omega(x) - d_{\mathbb{R}^n \setminus \Omega}(x)$ of class $C^2(\Omega_\delta)$ on $\Omega_\delta = \{ x \in \mathbb{R}^n : |b_\Omega(x)| < \delta \}$
References

- Dubovitskii – Milyutin (1964)
- Malanowski (1978)
- Hager (1979)
- Vinter (2000)
- Frankowska (2006, 2009)
- Bettiol – Khalil – Vinter (2016)
Necessary conditions for smooth state constraints

Theorem

Given $x \in \overline{\Omega}$ *let* γ^* *minimize over* $\Gamma[x]$ *the functional*

$$
\gamma \mapsto \int_0^T \left[L(\gamma(s), \dot{\gamma}(s)) + f(s, \gamma(s)) \right] dt + g(\gamma(T))
$$

where $g \in C^1(\overline{\Omega})$ *and* $f : [0, T] \times \overline{\Omega} \to \mathbb{R}$ *satisfies* $|f_t| + |\nabla f| \leq C$

Then there exist

- $p^* : [0, T] \to \mathbb{R}^n$ *Lipschitz*
- $\nu \in \mathbb{R}$ *and* $\Lambda \in C_b([0, T] \times \Omega_\delta \times \mathbb{R}^n)$ *independent of* γ^*, p^*

such that $(\mathbb{I}_\partial \Omega = \text{characteristic function of} \, \partial \Omega)$

$$
\begin{align*}
\dot{\gamma}^* &= -\partial_p H(\gamma^*, p^*) \\
\dot{p}^* &= \nabla H(\gamma^*, p^*) - \nabla f(t, \gamma^*) - \Lambda(t, \gamma^*, p^*) \mathbb{I}_{\partial \Omega}(\gamma^*) \nabla b_\Omega(\gamma^*) \quad \forall t \in [0, T] \\
p^*(T) &= \nabla g(\gamma^*(T)) + \nu \mathbb{I}_{\partial \Omega}(\gamma^*(T)) \nabla b_\Omega(\gamma^*(T))
\end{align*}
$$

Consequently, $\gamma^* \in C^1_{\text{Lip}}([0, T]; \mathbb{R}^n)$ *and* $\|\dot{\gamma}^*\|_{\text{Lip}} \leq C(\Omega, H, f, g)$
Necessary conditions for smooth state constraints

Theorem

Given \(x \in \overline{\Omega} \) let \(\gamma^* \) minimize over \(\Gamma[x] \) the functional

\[
\gamma \mapsto \int_0^T \left[L(\gamma(s), \dot{\gamma}(s)) + f(s, \gamma(s)) \right] dt + g(\gamma(T))
\]

where \(g \in C^1(\overline{\Omega}) \) and \(f : [0, T] \times \overline{\Omega} \to \mathbb{R} \) satisfies \(|f_t| + |\nabla f| \leq C \)

Then there exist

- \(p^* : [0, T] \to \mathbb{R}^n \) Lipschitz
- \(\nu \in \mathbb{R} \) and \(\Lambda \in C_b([0, T] \times \Omega_\delta \times \mathbb{R}^n) \) (independent of \(\gamma^*, p^* \))

such that \((\mathbb{I}_{\partial \Omega} = \text{characteristic function of } \partial \Omega) \)

\[
\begin{aligned}
\dot{\gamma}^* &= -\partial_p H(\gamma^*, p^*) \\
\dot{p}^* &= \nabla H(\gamma^*, p^*) - \nabla f(t, \gamma^*) - \Lambda(t, \gamma^*, p^*) \mathbb{I}_{\partial \Omega}(\gamma^*) \nabla b_\Omega(\gamma^*) \quad \forall t \in [0, T] \\
p^*(T) &= \nabla g(\gamma^*(T)) + \nu \mathbb{I}_{\partial \Omega}(\gamma^*(T)) \nabla b_\Omega(\gamma^*(T))
\end{aligned}
\]

Consequently, \(\gamma^* \in C^1_{\text{Lip}}([0, T]; \mathbb{R}^n) \) and \(\|\dot{\gamma}^*\|_{\text{Lip}} \leq C(\Omega, H, f, g) \)
Necessary conditions for smooth state constraints

Theorem

Given $x \in \overline{\Omega}$ let γ^* minimize over $\Gamma[x]$ the functional

$$
\gamma \mapsto \int_0^T \left[L(\gamma(s), \dot{\gamma}(s)) + f(s, \gamma(s)) \right] dt + g(\gamma(T))
$$

where $g \in C^1(\overline{\Omega})$ and $f : [0, T] \times \overline{\Omega} \to \mathbb{R}$ satisfies $|f_t| + |\nabla f| \leq C$

Then there exist

- $p^* : [0, T] \to \mathbb{R}^n$ Lipschitz
- $\nu \in \mathbb{R}$ and $\Lambda \in C^b_b([0, T] \times \Omega_\delta \times \mathbb{R}^n)$ (independent of γ^*, p^*)

such that ($\mathbb{1}_{\partial \Omega} = \text{characteristic function of } \partial \Omega$)

$$
\begin{cases}
\dot{\gamma}^* = -\partial_p H(\gamma^*, p^*) \\
\dot{p}^* = \nabla H(\gamma^*, p^*) - \nabla f(t, \gamma^*) - \Lambda(t, \gamma^*, p^*) \mathbb{1}_{\partial \Omega}(\gamma^*) \nabla b_\Omega(\gamma^*) \quad \forall t \in [0, T] \\
p^*(T) = \nabla g(\gamma^*(T)) + \nu \mathbb{1}_{\partial \Omega}(\gamma^*(T)) \nabla b_\Omega(\gamma^*(T))
\end{cases}
$$

Consequently, $\gamma^* \in C^1_{Lip}([0, T]; \mathbb{R}^n)$ and $\|\dot{\gamma}^*\|_{Lip} \leq C(\Omega, H, f, g)$
Existence of Lipschitz solutions

Theorem

Let \(m_0 \in \mathcal{P}(\Omega) \) and suppose

\[
|F(x_1, m_1) - F(x_2, m_2)| + |G(x_1, m_1) - G(x_2, m_2)| \leq C \left(|x_1 - x_2| + d_1(m_1, m_2) \right)
\]

Then there exists at least one relaxed solution of CMFG problem \((u, m)\) such that

\[
 u \in Lip([0, T] \times \Omega) \quad \text{and} \quad m \in Lip([0, T]; \mathcal{P}(\Omega))
\]

Such a solution will be called a \textit{Lipschitz relaxed solution} of the CMFG problem.

The proof applies necessary conditions to construct a relaxed CMFG equilibrium

\[
\eta \in \mathcal{P}_{m_0}(\Gamma) \quad \text{such that} \quad m(t) := e_t \# \eta \quad \text{belongs to} \quad Lip([0, T]; \mathcal{P}(\Omega))
\]

and uses the Lipschitz continuity of \(m \) to deduce that \(u \in Lip([0, T] \times \Omega) \)
Existence of Lipschitz solutions

Theorem

Let \(m_0 \in \mathcal{P}(\Omega) \) and suppose

\[
|F(x_1, m_1) - F(x_2, m_2)| + |G(x_1, m_1) - G(x_2, m_2)| \leq C \left(|x_1 - x_2| + d_1(m_1, m_2) \right)
\]

Then there exists at least one relaxed solution of CMFG problem \((u, m)\) such that

\[
u \in \text{Lip}([0, T] \times \Omega) \quad \text{and} \quad m \in \text{Lip}([0, T]; \mathcal{P}(\Omega))\]

Such a solution will be called a **Lipschitz relaxed solution** of the CMFG problem.

The proof applies necessary conditions to construct a relaxed CMFG equilibrium

\[
\eta \in \mathcal{P}_{m_0}(\Gamma) \quad \text{such that} \quad m(t) := e^t \sharp \eta \quad \text{belongs to} \quad \text{Lip}([0, T]; \mathcal{P}(\Omega))
\]

and uses the Lipschitz continuity of \(m \) to deduce that \(u \in \text{Lip}([0, T] \times \Omega) \)
A quick look at semiconcave functions

\(\Omega \subseteq \mathbb{R}^n \) open
\(v : \Omega \to \mathbb{R} \) semiconcave with modulus \(\omega : [0, \infty[\to [0, \infty[\) if

\[
\lambda v(x) + (1 - \lambda) v(y) - v(\lambda x + (1 - \lambda)y) \leq \lambda(1 - \lambda)|x - y|\omega(|x - y|)
\]

for all \(x, y \) such that \([x, y] \subset \Omega\) and \(\lambda \in [0, 1] \)

Special cases:

- \(\omega(s) \equiv 0 \quad \rightarrow \quad \text{concave} \)

- \(\omega(s) = Cs \ (C > 0) \quad \rightarrow \quad \text{linearly semiconcave} \)

 In this case

\[
x \mapsto v(x) - \frac{C}{2} |x|^2
\]

(is concave on all convex subsets of \(\Omega \))

- \(\omega(s) = Cs^\alpha \ (C > 0, 0 < \alpha < 1) \quad \rightarrow \quad \text{fractionally semiconcave} \)

 In this case, (⋆) is no longer valid
Some references on semiconcave functions

- **control theory and sensitivity analysis**
 - Fleming – McEneaney 2000
 - Rifford 2000, 2002

- **nonsmooth and variational analysis**
 - Rockafellar 1982
 - Colombo – Marigonda 2006, Colombo – Nguyen 2010

- **differential geometry**
 - Perelman 1995, Petrunin 2007

- **monographs**
 - C – Sinestrari (Birkhäuser 2004)
 - Villani (Springer 2009)
Semiconcavity & nonsmooth analysis

For any semiconcave $v : \Omega \to \mathbb{R}$

- the superdifferential at $x \in \Omega$ coincides with Clarke’s gradient

 $$D^+ v(x) = \text{co } D^* v(x) = \partial v(x)$$

 where $D^* v(x) = \{ \lim_{i \to \infty} Dv(x_i) \mid x_i \to x \}$ reachable gradients

- $D^+ v(x) = \{ p \} \iff v$ differentiable
Semiconcavity of relaxed Lipschitz solution

Theorem

Any Lipschitz relaxed solution \((u, m)\) of CMFG problem is *locally semiconcave* on \([0, T[\times\bar{\Omega}\) with a *fractional modulus*:

\[
\forall \rho \in]0, T[\text{ there exists } C_\rho \geq 0 \text{ such that }
\]

\[
u(t + \tau, x + h) + u(t - \tau, x - h) - 2u(t, x) \leq C_\rho (|\tau| + |h|)^{3/2}
\]

for all \(t, t \pm \tau \in [0, T - \rho]\) and \(x, x \pm h \in \bar{\Omega}\)

Several proofs of the above result can be given.
An interesting method of proof uses *sensitivity relations* that we discuss next.
Adjoint state inclusion / sensitivity relations

Given

- a Lipschitz relaxed solution $\mathbf{(u, m)}$ of the CMFG problem
- $(t, x) \in [0, T] \times \bar{\Omega}$ and a solution $\gamma^\ast \in \Gamma$ to

$$\min_{\gamma \in \Gamma, \gamma(t) = x} \left\{ \int_t^T \left[L(\gamma(s), \dot{\gamma}(s)) + F(\gamma(s), m(s)) \right] dt + G(\gamma(T), m(T)) \right\}$$

- the adjoint state $p^\ast : [t, T] \to \mathbb{R}^n$ associated with γ^\ast

we have that

$$\left(H(\gamma^\ast(s), p^\ast(s)) - F(\gamma^\ast(s), m(s)), p^\ast(s) \right) \in D^+ u(s, \gamma^\ast(s)) \quad \forall s \in [t, T]$$

and $\forall \rho \in]0, T[$ there exists $C_\rho \geq 0$ such that $\forall t, t + \tau \in [0, T - \rho]$ and all $x + h \in \bar{\Omega}$

$$u(t + \tau, x + h) - u(t, x) - \tau (H(x, p^\ast(t)) - F(x, m(t))) - \langle p^\ast(t), h \rangle \leq C_\rho (|\tau| + |h|)^{3/2}$$
Adjoint state inclusion / sensitivity relations

Given

- a Lipschitz relaxed solution \((u, m)\) of the CMFG problem
- \((t, x) \in [0, T] \times \Omega\) and a solution \(\gamma^* \in \Gamma\) to

\[
\min_{\gamma \in \Gamma, \gamma(t) = x} \left\{ \int_t^T \left[L(\gamma(s), \dot{\gamma}(s)) + F(\gamma(s), m(s)) \right] dt + G(\gamma(T), m(T)) \right\}
\]

- the adjoint state \(p^* : [t, T] \rightarrow \mathbb{R}^n\) associated with \(\gamma^*\)

we have that

\[
\left(H(\gamma^*(s), p^*(s)) - F(\gamma^*(s), m(s)), p^*(s) \right) \in D^+ u(s, \gamma^*(s)) \quad \forall s \in [t, T[\]

and \(\forall \rho \in]0, T[\) there exists \(C_\rho \geq 0\) such that \(\forall t, t + \tau \in [0, T - \rho]\) and all \(x + h \in \overline{\Omega}\)

\[
u(t + \tau, x + h) - u(t, x) - \tau (H(x, p^*(t)) - F(x, m(t))) - \langle p^*(t), h \rangle \leq C_\rho (|\tau| + |h|)^{3/2}\]

P. Cannarsa (Rome Tor Vergata) first order mean field games 20/08/2019 29 / 43
Proof of sensitivity relation for $\tau = 0$

We want to show that $\forall t \in [0, T - \rho]$ and all $x + h \in \Omega$

$$u(t, x + h) - u(t, x) - \langle p(t), h \rangle \leq C\rho |h|^{3/2}$$

Let $0 < \sigma \leq \rho$ to be fixed later and define for all $s \in [t, T]$

$$\gamma_h(s) = \gamma^*(s) + \left(1 + \frac{t - s}{\sigma}\right)_+ h$$

$$\tilde{\gamma}_h(s) = \gamma_h(s) - d_{\partial\Omega}(\gamma_h(s)) Dd_{\partial\Omega}(\gamma_h(s))$$
Proof of sensitivity relation (continued)

By dynamic programming

\[u(t, x + h) - u(t, x) - \langle p(t), h \rangle \leq \int_t^{t+\sigma} \left[L(\hat{\gamma}_h, \dot{\gamma}_h) - L(\gamma^*, \dot{\gamma}^*) \right] ds \]

\[+ \int_t^{t+\sigma} \left[F(\hat{\gamma}_h, m) - F(\gamma^*, m) \right] ds - \langle p(t), h \rangle \]

We want to express \(\langle p(t), h \rangle \) so we expand

\[-\langle p(t), h \rangle = -\langle p(t + \sigma), \hat{\gamma}_h(t + \sigma) - \gamma^*(t + \sigma) \rangle + \int_t^{t+\sigma} \frac{d}{ds} \langle p, \hat{\gamma}_h - \gamma^* \rangle ds \]

\[= \int_t^{t+\sigma} \langle \dot{p}, \hat{\gamma}_h - \gamma^* \rangle ds + \int_t^{t+\sigma} \langle p, \dot{\hat{\gamma}}_h - \dot{\gamma}^* \rangle ds \]

By appealing to PMP to represent \(\langle \dot{p}, \hat{\gamma}_h - \gamma^* \rangle \) and \(\langle p, \dot{\hat{\gamma}}_h - \dot{\gamma}^* \rangle \) we obtain

\[u(t, x + h) - u(t, x) - \langle p(t), h \rangle \leq \ldots \]

\[\leq C \int_t^{t+\sigma} |\hat{\gamma}_h - \gamma^*|^2 ds + C \int_t^{t+\sigma} |\dot{\hat{\gamma}}_h - \dot{\gamma}^*|^2 ds + C \int_t^{t+\sigma} |\hat{\gamma}_h - \gamma^*| ds \]
Proof of sensitivity relation (completed)

Recalling

\[
\begin{align*}
\gamma_h(s) &= \gamma^*(s) + \left(1 + \frac{t-s}{\sigma}\right) h \\
\hat{\gamma}_h(s) &= \gamma_h(s) - d_\Omega(\gamma_h(s)) \text{D}d_\partial\Omega(\gamma_h(s))
\end{align*}
\]

we have that

\[|\hat{\gamma}_h(s) - \gamma^*(s)| \leq 2|h| \quad \forall s \in [t, t+\sigma]\]

Using the regularity of the distance functions one can also prove (technical)

\[
\int_t^{t+\sigma} |\dot{\gamma}_h(s) - \dot{\gamma}^*(s)|^2 \, ds \leq C \frac{|h|^2}{\sigma} + C|h|\sigma
\]

Therefore

\[
u(t, x + h) - u(t, x) - \langle p(t), h \rangle \leq C|h| \left(\frac{|h|}{\sigma} + \sigma \right) \leq 2C|h|^{3/2}
\]

by taking \(\sigma = |h|^{1/2}\)
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
Point-wise solutions of the HJ equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) \(u\) is a constrained viscosity solution of
\[
\begin{cases}
 -\partial_t u + H(x, \nabla u) = F(x, m) & \text{in }]0, T[\times \Omega \\
 u(T, x) = G(x, m(T)) & \forall x \in \Omega
\end{cases}
\]

Moreover, defining
\[
Q_m = \left\{ (t, x) \in]0, T[\times \Omega : x \in \text{spt}(m(t)) \right\}
\]
\[
\partial Q_m = \left\{ (t, x) \in]0, T[\times \partial \Omega : x \in \text{spt}(m(t)) \right\}
\]
the following holds true

(II) \(u\) is differentiable on \(Q_m\) and \(-\partial_t u + H(x, \nabla u) = F(x, m)\) on \(Q_m\)

(III) \(u\) has

time derivative, one-sided normal derivative, and tangential gradient on \(\partial Q_m\)

(IV) the tangential gradient \(\nabla^\tau u\) satisfies
\[
-\partial_t u + H^\tau(x, \nabla^\tau_x u) = F(x, m) \text{ on } \partial Q_m
\]

where \(H^\tau(x, p) = \sup \left\{ -\langle p, v \rangle - L(x, v) \mid \langle v, \nu(x) \rangle = 0 \right\}\)
Point-wise solutions of the HJ equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) \(u\) is a constrained viscosity solution of

\[
\begin{cases}
 -\partial_t u + H(x, \nabla u) = F(x, m) & \text{in }]0, T[\times \overline{\Omega} \\
 u(T, x) = G(x, m(T)) & \forall x \in \overline{\Omega}
\end{cases}
\]

Moreover, defining

\[
Q_m = \left\{ (t, x) \in]0, T[\times \Omega : x \in \text{spt}(m(t)) \right\}
\]

\[
\partial Q_m = \left\{ (t, x) \in]0, T[\times \partial \Omega : x \in \text{spt}(m(t)) \right\}
\]

the following holds true

(II) \(u\) is differentiable on \(Q_m\) and \(-\partial_t u + H(x, \nabla u) = F(x, m)\) on \(Q_m\)

(III) \(u\) has
time derivative, one-sided normal derivative, and tangential gradient on \(\partial Q_m\)

(IV) the tangential gradient \(\nabla^\tau u\) satisfies

\[
-\partial_t u + H^\tau(x, \nabla^\tau_x u) = F(x, m) \text{ on } \partial Q_m
\]

where \(H^\tau(x, \nu) = \sup \left\{ -\langle \nu, \xi \rangle - L(x, \xi) \mid \langle \nu, \nu(x) \rangle = 0 \right\}\)
Point-wise solutions of the HJ equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) \(u\) is a constrained viscosity solution of

\[
\begin{cases}
-\partial_t u + H(x, \nabla u) = F(x, m) & \text{in }]0, T[\times \Omega \\
u(T, x) = G(x, m(T)) & \forall x \in \overline{\Omega}
\end{cases}
\]

Moreover, defining

\[
Q_m = \left\{ (t, x) \in]0, T[\times \Omega : x \in \text{spt}(m(t)) \right\}
\]

\[
\partial Q_m = \left\{ (t, x) \in]0, T[\times \partial \Omega : x \in \text{spt}(m(t)) \right\}
\]

the following holds true

(II) \(u\) is differentiable on \(Q_m\) and \(-\partial_t u + H(x, \nabla u) = F(x, m)\) on \(Q_m\)

(III) \(u\) has
time derivative, one-sided normal derivative, and tangential gradient on \(\partial Q_m\)

(IV) the tangential gradient \(\nabla^\tau u\) satisfies

\[-\partial_t u + H^\tau(x, \nabla^\tau u) = F(x, m)\] on \(\partial Q_m\)

where \(H^\tau(x, p) = \sup \left\{ -\langle p, \nu \rangle - L(x, \nu) \mid \langle \nu, \nu(x) \rangle = 0 \right\}\)
Point-wise solutions of the HJ equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) \(u\) is a constrained viscosity solution of

\[
\begin{align*}
-\partial_t u + H(x, \nabla u) &= F(x, m) \quad \text{in }]0, T[\times \overline{\Omega} \\
 u(T, x) &= G(x, m(T)) \quad \forall x \in \overline{\Omega}
\end{align*}
\]

Moreover, defining

\[
Q_m = \left\{ (t, x) \in]0, T[\times \Omega : x \in spt(m(t)) \right\}
\]

\[
\partial Q_m = \left\{ (t, x) \in]0, T[\times \partial \Omega : x \in spt(m(t)) \right\}
\]

the following holds true

(II) \(u\) is differentiable on \(Q_m\) and \(-\partial_t u + H(x, \nabla u) = F(x, m)\) on \(Q_m\)

(III) \(u\) has

- time derivative,
- one-sided normal derivative, and
- tangential gradient on \(\partial Q_m\)

(IV) the tangential gradient \(\nabla^\tau u\) satisfies

\[-\partial_t u + H^\tau(x, \nabla^\tau_x u) = F(x, m) \quad \text{on } \partial Q_m\]

where \(H^\tau(x, p) = \sup \left\{ -\langle p, v \rangle - L(x, v) \mid \langle v, v(x) \rangle = 0 \right\}\)
Point-wise solutions of the HJ equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) \(u\) is a constrained viscosity solution of

\[
\begin{align*}
-\partial_t u + H(x, \nabla u) &= F(x, m) \quad \text{in }]0, T[\times \overline{\Omega} \\
u(T, x) &= G(x, m(T)) \quad \forall x \in \overline{\Omega}
\end{align*}
\]

Moreover, defining

\[
Q_m = \left\{ (t, x) \in]0, T[\times \Omega : x \in \text{spt}(m(t)) \right\}
\]

\[
\partial Q_m = \left\{ (t, x) \in]0, T[\times \partial \Omega : x \in \text{spt}(m(t)) \right\}
\]

the following holds true

(II) \(u\) is differentiable on \(Q_m\) and \(-\partial_t u + H(x, \nabla u) = F(x, m)\) on \(Q_m\)

(III) \(u\) has
time derivative, one-sided normal derivative, and tangential gradient on \(\partial Q_m\)

(IV) the tangential gradient \(\nabla^\tau u\) satisfies

\[-\partial_t u + H^\tau(x, \nabla^\tau_x u) = F(x, m) \quad \text{on } \partial Q_m\]

where \(H^\tau(x, p) = \sup \left\{ -\langle p, v \rangle - L(x, v) : \langle v, \nu(x) \rangle = 0 \right\}\)
Point-wise solutions of the HJ equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) \(u\) is a constrained viscosity solution of

\[
\begin{aligned}
-\partial_t u + H(x, \nabla u) &= F(x, m) \quad \text{in }]0, T[\times \overline{\Omega} \\
u(T, x) &= G(x, m(T)) \quad \forall x \in \overline{\Omega}
\end{aligned}
\]

Moreover, defining

\[
Q_m = \left\{ (t, x) \in]0, T[\times \Omega : x \in spt(m(t)) \right\}
\]
\[
\partial Q_m = \left\{ (t, x) \in]0, T[\times \partial \Omega : x \in spt(m(t)) \right\}
\]

the following holds true

(II) \(u\) is differentiable on \(Q_m\) and \(-\partial_t u + H(x, \nabla u) = F(x, m)\) on \(Q_m\)

(III) \(u\) has
time derivative, one-sided normal derivative, and tangential gradient on \(\partial Q_m\)

(IV) the tangential gradient \(\nabla^\tau u\) satisfies

\[
-\partial_t u + H^\tau(x, \nabla_x^\tau u) = F(x, m) \quad \text{on } \partial Q_m
\]

where \(H^\tau(x, p) = \sup \left\{ -\langle p, v \rangle - L(x, v) \mid \langle v, \nu(x) \rangle = 0 \right\}\)
Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) there exists a bounded continuous vector field \(V :]0, T] \times \overline{\Omega} \rightarrow \mathbb{R}^n\) such that \(m\) satisfies the continuity equation

\[
\partial_t m + \text{div}(mV) = 0 \quad \text{in }]0, T[\times \overline{\Omega}
\]

in the sense of distributions: \(\forall \phi \in C^1_c(]0, T[\times \overline{\Omega})\)

\[
\int^T_0 \int_{\overline{\Omega}} (\phi_t + \langle V, \nabla \phi \rangle) \, dm(t, dx) \, dt = 0
\]

(II) \(V\) is given by the optimal feedback on \(Q_m\), that is,

\[
V(t, x) = \begin{cases}
-\partial_p H(x, \nabla u(t, x)) & \forall (t, x) \in Q_m \\
-\partial_p H(x, \nabla^\top_x u(t, x) + \partial^+_{\nu_i} u(t, x) \nu_i(x)) & \forall (t, x) \in \partial Q_m
\end{cases}
\]
Analysis of the continuity equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) there exists a bounded continuous vector field \(V :]0, T] \times \overline{\Omega} \rightarrow \mathbb{R}^n\) such that \(m\) satisfies the continuity equation

\[
\partial_t m + \text{div}(mV) = 0 \quad \text{in }]0, T[\times \Omega
\]

in the sense of distributions: \(\forall \phi \in C^1_c(]0, T[\times \overline{\Omega})\)

\[
\int_0^T \int_{\Omega} \left(\phi_t + \langle V, \nabla \phi \rangle \right) dm(t, dx) dt = 0
\]

(II) \(V\) is given by the optimal feedback on \(Q_m\), that is,

\[
V(t, x) = \begin{cases}
-\partial_p H(x, \nabla u(t, x)) & \forall (t, x) \in Q_m \\
-\partial_p H(x, \nabla_x u(t, x) + \partial_{\nu_i}^+ u(t, x) \nu_i(x)) & \forall (t, x) \in \partial Q_m
\end{cases}
\]
Analysis of the continuity equation

Given a Lipschitz relaxed solution \((u, m)\) to CMFG problem, we have that

(I) there exists a \textbf{bounded continuous} vector field \(V :]0, T] \times \overline{\Omega} \rightarrow \mathbb{R}^n\) such that \(m\) satisfies the continuity equation

\[
\partial_t m + \text{div}(mV) = 0 \quad \text{in }]0, T[\times \overline{\Omega}
\]

in the sense of distributions: \(\forall \phi \in C^1_c(]0, T[\times \overline{\Omega})\)

\[
\int_0^T \int_{\overline{\Omega}} (\phi_t + \langle V, \nabla \phi \rangle) \, dm(t, dx) \, dt = 0
\]

(II) \(V\) is given by the \textbf{optimal feedback} on \(Q_m\), that is,

\[
V(t, x) = \begin{cases}
-\partial_p H(x, \nabla u(t, x)) & \forall (t, x) \in Q_m \\
-\partial_p H(x, \nabla^\tau_x u(t, x) + \partial^+_{\nu_i} u(t, x) \nu_i(x)) & \forall (t, x) \in \partial Q_m
\end{cases}
\]
Proof

Consider the continuous map \(V_m : Q_m \cup \partial Q_m \to \mathbb{R}^n \)

\[
V_m(t, x) = \begin{cases}
-\partial_p H(x, \nabla u(t, x)) & \forall (t, x) \in Q_m \\
-\partial_p H(x, \nabla^\tau u(t, x) + \partial_{\nu_i} u(t, x)\nu_i(x)) & \forall (t, x) \in \partial Q_m
\end{cases}
\]

and extend it to a continuous vector field \(V :]0, T[\times \overline{\Omega} \to \mathbb{R}^n \) by Tietze theorem

Let \(\eta \) be a constrained equilibrium associated with \((u, m)\): then

\[
(t, \gamma(t)) \in Q_m \cup \partial Q_m \quad \text{and} \quad \dot{\gamma}(t) = V(t, \gamma(t)) \quad \forall t \in]0, T[
\]

for \(\eta \)-a.e. \(\gamma \in \Gamma \)

So, \(\forall \phi \in C^1_\text{c}(]0, T[\times \overline{\Omega}) \) we use the change of variables \(m(t) = e^{t \# \eta} \) to compute

\[
\frac{d}{dt} \int_{\Omega} \phi(t, x)m(t, dx) = \frac{d}{dt} \int_{\Gamma} \phi(t, \gamma(t)) \eta(d\gamma)
\]

\[
= \int_{\Gamma} (\partial_t \phi(t, \gamma(t)) + \langle D\phi(t, \gamma(t)), \dot{\gamma}(t) \rangle) \eta(d\gamma) = V(t, \gamma(t))
\]

\[
= \int_{\overline{\Omega}} (\partial_t \phi(t, x) + \langle D\phi(t, x), V(t, x) \rangle) m(t, dx)
\]
Proof

Consider the continuous map $V_m : Q_m \cup \partial Q_m \rightarrow \mathbb{R}^n$

$$V_m(t, x) = \begin{cases}
-\partial_p H(x, \nabla u(t, x)) & \forall (t, x) \in Q_m \\
-\partial_p H(x, \nabla_x u(t, x) + \partial_{\nu_i} u(t, x)\nu_i(x)) & \forall (t, x) \in \partial Q_m
\end{cases}$$

and extend it to a continuous vector field $V :]0, T[\times \Omega \rightarrow \mathbb{R}^n$ by Tietze theorem

Let η be a constrained equilibrium associated with (u, m): then

$$(t, \gamma(t)) \in Q_m \cup \partial Q_m \quad \text{and} \quad \dot{\gamma}(t) = V(t, \gamma(t)) \quad \forall t \in]0, T[$$

for η-a.e. $\gamma \in \Gamma$

So, $\forall \phi \in C_c^1(]0, T[\times \Omega)$ we use the change of variables $m(t) = e_t\#\eta$ to compute

$$\frac{d}{dt} \int_{\Omega} \phi(t, x)m(t, dx) = \frac{d}{dt} \int_{\Gamma} \phi(t, \gamma(t))\eta(d\gamma)$$

$$= \int_{\Gamma} (\partial_t \phi(t, \gamma(t)) + \langle D\phi(t, \gamma(t)), \dot{\gamma}(t) \rangle)\eta(d\gamma)$$

$$= \int_{\Omega} (\partial_t \phi(t, x) + \langle D\phi(t, x), V(t, x) \rangle)m(t, dx)$$
Proof

- Consider the continuous map $V_m : Q_m \cup \partial Q_m \to \mathbb{R}^n$

$$V_m(t, x) = \begin{cases} -\partial_p H(x, \nabla u(t, x)) & \forall (t, x) \in Q_m \\ -\partial_p H(x, \nabla_x^\tau u(t, x) + \partial_{\nu_i}^+ u(t, x)\nu_i(x)) & \forall (t, x) \in \partial Q_m \end{cases}$$

and extend it to a continuous vector field $V : [0, T] \times \overline{\Omega} \to \mathbb{R}^n$ by Tietze theorem.

- Let η be a constrained equilibrium associated with (u, m): then

$$(t, \gamma(t)) \in Q_m \cup \partial Q_m \quad \text{and} \quad \dot{\gamma}(t) = V(t, \gamma(t)) \quad \forall t \in]0, T[$$

for η-a.e. $\gamma \in \Gamma$.

- So, $\forall \phi \in C^1_c([0, T] \times \overline{\Omega})$ we use the change of variables $m(t) = e^{t\#\eta}$ to compute

$$\frac{d}{dt} \int_{\Omega} \phi(t, x)m(t, dx) = \frac{d}{dt} \int_{\Gamma} \phi(t, \gamma(t)))\eta(d\gamma)$$

$$= \int_{\Gamma} (\partial_t \phi(t, \gamma(t)) + \langle D\phi(t, \gamma(t)), \dot{\gamma}(t) \rangle)\eta(d\gamma)$$

$$= \int_{\Omega} (\partial_t \phi(t, x) + \langle D\phi(t, x), V(t, x) \rangle)m(t, dx)$$
We have shown how to recover a fairly complete theory for the
- existence and uniqueness
- regularity
- pointwise behaviour
of solutions to constrained MFG systems

This opens the way to the study of at least two main problems
- Since constrained equilibria may develop singular parts (Dirac masses) induced by the presence of state constraints, are such singularities stable or do they disappear if constraints become inactive?
- How to describe the behaviour of the solution \((u^T, m^T)\) of the constrained Mean Field Games system

\[
\begin{aligned}
-\partial_t u^T(t, x) + \nabla_x u^T(t, x) &= F(x, m^T(t)), \quad \text{in }]0, T[\times \bar{\Omega} \\
\partial_t m^T(t) - \text{div} \left(m^T(t) D_p H(x, \nabla_x u^T(t, x)) \right) &= 0, \quad \text{in }]0, T[\times \bar{\Omega} \\
u^T(T, x) &= u^f(x), \quad m^T(0) = m_0, \quad \text{in } \bar{\Omega}.
\end{aligned}
\]

as \(T \to +\infty\)?
Conclusions

We have shown how to recover a fairly complete theory for the
- existence and uniqueness
- regularity
- pointwise behaviour
of solutions to constrained MFG systems

This opens the way to the study of at least two main problems
- Since constrained equilibria may develop singular parts (Dirac masses) induced by the presence of state constraints, are such singularities stable or do they disappear if constraints become inactive?
- How to describe the behaviour of the solution \((u^T, m^T)\) of the constrained Mean Field Games system

\[
\begin{aligned}
-\partial_t u^T(t, x) + H(x, \nabla_x u^T(t, x)) &= F(x, m^T(t)), \quad \text{in }]0, T[\times \Omega \\
\partial_t m^T(t) - \text{div} \left(m^T(t) D_p H(x, \nabla_x u^T(t, x)) \right) &= 0, \quad \text{in }]0, T[\times \Omega \\
u^T(T, x) &= u^f(x), \quad m^T(0) = m_0, \quad \text{in } \Omega.
\end{aligned}
\]

as \(T \to +\infty\)?
Conclusions

We have shown how to recover a fairly complete theory for the
- existence and uniqueness
- regularity
- pointwise behaviour

of solutions to constrained MFG systems

This opens the way to the study of at least two main problems

- Since constrained equilibria may develop singular parts (Dirac masses) induced by the presence of state constraints, are such singularities stable or do they disappear if constraints become inactive?
- How to describe the behaviour of the solution \((u^T, m^T)\) of the constrained Mean Field Games system

\[
\begin{aligned}
- \partial_t u^T(t, x) + H(x, \nabla_x u^T(t, x)) &= F(x, m^T(t)), \quad \text{in } [0, T] \times \Omega \\
\partial_t m^T(t) - \text{div} (m^T(t) D_p H(x, \nabla_x u^T(t, x))) &= 0, \quad \text{in } [0, T] \times \Omega \\
u^T(T, x) &= u^f(x), \quad m^T(0) = m_0, \quad \text{in } \Omega.
\end{aligned}
\]

as \(T \to +\infty\)?
Conclusions

We have shown how to recover a fairly complete theory for the
- existence and uniqueness
- regularity
- pointwise behaviour
of solutions to constrained MFG systems

This opens the way to the study of at least two main problems
- Since constrained equilibria may develop singular parts (Dirac masses) induced by the presence of state constraints, are such singularities stable or do they disappear if constraints become inactive?
- How to describe the behaviour of the solution \((u^T, m^T)\) of the constrained Mean Field Games system

\[
\begin{cases}
-\partial_t u^T(t, x) + H(x, \nabla_x u^T(t, x)) = F(x, m^T(t)), & \text{in }]0, T[\times \Omega \\
\partial_t m^T(t) - \text{div} \left(m^T(t) D_p H(x, \nabla_x u^T(t, x)) \right) = 0, & \text{in }]0, T[\times \Omega \\
u^T(T, x) = u^f(x), \quad m^T(0) = m_0, & \text{in } \Omega.
\end{cases}
\]

as \(T \to +\infty \)?
Conclusions

We have shown how to recover a fairly complete theory for the
- existence and uniqueness
- regularity
- pointwise behaviour
of solutions to constrained MFG systems

This opens the way to the study of at least two main problems
- Since constrained equilibria may develop singular parts (Dirac masses) induced by the presence of state constraints, are such singularities stable or do they disappear if constraints become inactive?
- How to describe the behaviour of the solution \((u^T, m^T)\) of the constrained Mean Field Games system

\[
\begin{cases}
-\partial_t u^T(t, x) + H(x, \nabla_x u^T(t, x)) = F(x, m^T(t)), & \text{in }]0, T[\times \bar{\Omega} \\
\partial_t m^T(t) - \text{div} \left(m^T(t) D_p H(x, \nabla_x u^T(t, x)) \right) = 0, & \text{in }]0, T[\times \bar{\Omega} \quad (CMFG) \\
u^T(T, x) = u^f(x), \quad m^T(0) = m_0, & \text{in } \bar{\Omega}.
\end{cases}
\]

as \(T \rightarrow +\infty \)?
Outline

1. Introduction to Mean Field Games

2. Mean Field Games with state constraints
 - The Lagrangian approach
 - Existence and uniqueness of relaxed equilibria
 - Regularity of relaxed solutions to constrained MFG
 - Point-wise properties of relaxed solutions

3. Concluding remarks
 - Asymptotic behaviour
Asymptotic behaviour: the unconstrained case

References

(i) P. Cardaliaguet (2013) on \mathbb{T}^n

(ii) joint work with W. Cheng, C. Mendico, and K. Wang (2019) in \mathbb{R}^n
under the following assumptions

(F1) There is a constant $C > 0$ such that for every $m_1, m_2 \in \mathcal{P}_1(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} (F(x, m_1) - F(x, m_2)) d(m_1 - m_2) \geq C \int_{\mathbb{R}^n} (F(x, m_1) - F(x, m_2))^2 dx$$

(F2) There exist a compact set $K_0 \subset \mathbb{R}^n$ and a constant $\delta_0 > 0$ such that

$$\min_{x \in K_0} \left\{ L(x, 0) + F(x, m) \right\} \leq \inf_{x \in \mathbb{R}^n \setminus K_0} \left\{ L(x, 0) + F(x, m) \right\} - \delta_0, \quad \forall m \in \mathcal{P}_1(\mathbb{R}^n)$$
Asymptotic behaviour: the unconstrained case

References

(i) P. Cardaliaguet (2013) on \mathbb{T}^n

(ii) joint work with W. Cheng, C. Mendico, and K. Wang (2019) in \mathbb{R}^n

under the following assumptions

(F1) There is a constant $C > 0$ such that for every $m_1, m_2 \in \mathcal{P}_1(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} (F(x, m_1) - F(x, m_2)) d(m_1 - m_2) \geq C \int_{\mathbb{R}^n} (F(x, m_1) - F(x, m_2))^2 dx$$

(F2) There exist a compact set $K_0 \subset \mathbb{R}^n$ and a constant $\delta_0 > 0$ such that

$$\min_{x \in K_0} \left\{ L(x, 0) + F(x, m) \right\} \leq \inf_{x \in \mathbb{R}^n \setminus K_0} \left\{ L(x, 0) + F(x, m) \right\} - \delta_0, \quad \forall m \in \mathcal{P}_1(\mathbb{R}^n)$$
The limit behaviour of solutions is captured by the Ergodic Mean Field Games (EMFG) system

\[
\begin{aligned}
H(x, Du(x)) &= c_H(m) + F(x, m) \quad \text{in} \quad \mathbb{R}^n \\
\text{div}(m \nabla_p H(x, Du(x))) &= 0 \quad \text{in} \quad \mathbb{R}^n \\
\int_{\mathbb{R}^n} m(dx) &= 1
\end{aligned}
\]

where Mañé’s critical value \(c_H(m) \) is defined by

\[
c_H(m) := \inf \{ c \in \mathbb{R} : \exists u \in C(\mathbb{R}^n) \text{ viscosity solution of } H(x, Du) = c + F(x, m) \}
\]

see A. Fathi, ”Weak KAM Theorem in Lagrangian dynamics”
The limit behaviour of solutions is captured by

Ergodic Mean Field Games (EMFG) system

\[
\begin{align*}
H(x, Du(x)) &= c_H(m) + F(x, m) \quad \text{in} \quad \mathbb{R}^n \\
\text{div} \left(m \nabla_p H(x, Du(x)) \right) &= 0 \quad \text{in} \quad \mathbb{R}^n \\
\int_{\mathbb{R}^n} m(dx) &= 1
\end{align*}
\]

where Mañé’s critical value \(c_H(m) \) is defined by

\[
c_H(m) := \inf \left\{ c \in \mathbb{R} : \exists u \in C(\mathbb{R}^n) \text{ viscosity solution of } H(x, Du) = c + F(x, m) \right\}
\]

see A. Fathi, ”Weak KAM Theorem in Lagrangian dynamics”
Solution of \((EMFG)\)

\[
\begin{cases}
H(x, D\bar{u}(x)) = c_H(\bar{m}) + F(x, \bar{m}), & \text{in } \mathbb{R}^n \\
\text{div}(\bar{m} \nabla \rho H(x, D\bar{u}(x))) = 0, & \text{in } \mathbb{R}^n \\
\int_{\mathbb{R}^n} \bar{m}(dx) = 1.
\end{cases}
\]

Theorem (existence of solutions – uniqueness of critical values)

\[(i)\] There exists at least one solution \((\bar{u}, \bar{m}, c_H(\bar{m}))\) of system \(EMFG\)

\[(ii)\] Let \((\bar{u}_1, \bar{m}_1, c_H(\bar{m}_1)), (\bar{u}_2, \bar{m}_2, c_H(\bar{m}_2))\) solve \((EMFG)\). Then,

\[c_H(\bar{m}_1) = c_H(\bar{m}_2) \text{ and } F(x, \bar{m}_1) = F(x, \bar{m}_2), \forall x \in \mathbb{R}^n\]
Conclusions

Asymptotic behaviour

Convergence of MFG solution

Theorem

Let \((\bar{u}, \bar{m}, c_H(\bar{m}))\) be any solution of

\[
\begin{aligned}
H(x, Du(x)) &= c_H(\bar{m}) + F(x, \bar{m}), \quad \text{in} \quad \mathbb{R}^n \\
\text{div}\left(\bar{m} \nabla_p H(x, Du(x))\right) &= 0, \quad \text{in} \quad \mathbb{R}^n \\
\int_{\mathbb{R}^n} \bar{m}(dx) &= 1.
\end{aligned}
\]

\((EMFG)\)

Then, for any sufficiently large \(R > 0\) there exists a constant \(C(R) > 0\) such that for every \(T \geq 1\) the solution \((u^T, m^T)\) of the MFG system satisfies

\[
\sup_{t \in [0, T]} \frac{\|u^T(t, \cdot) - c_H(\bar{m})(t - T)\|_{\infty, B_R}}{T} \leq \frac{C(R)}{T^{1/(n+2)}},
\]

\((2)\)

\[
\frac{1}{T} \int_0^T \|F(\cdot, m^T(s)) - F(\cdot, \bar{m})\|_{\infty, B_R} ds \leq \frac{C(R)}{T^{1/(n+2)}}.
\]

\((3)\)
Thank you for your attention!

Figure: Rational agents at work, Benasque 2019