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IBVP with space dependent damping

{
∂tρ+ ∂xJ = 0

∂tJ + ∂xρ = −2k(x)g(J)
x ∈ I = (0, 1), t > 0

• Initial conditions: (ρ0, J0) ∈ L∞(I)

• Boundary conditions: J(0, t) = J(1, t) = 0

• Damping: k ∈ L∞(I) , essinf k > 0 , g ∈ C1 , g′ > 0 , g(0) = 0

Invariant domain:

J

ρ
f+

f−

Mm
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Main result (Amadori, A., Dal Santo, JMPA 2019)

Theorem Let k(x) satisfy

0 < k1 ≤ k(x) ≤ k2 ∀x ∈ (0, 1)

and define

d1 = k1 min
J∈DJ

g′(J) > 0, d2 = k2 max
J∈DJ

g′(J)

where DJ is a closed bounded interval which is invariant for J .

Assume
that

e2d2 − 2d2 < e2d1

Then there exist Cj > 0, that depend only on the coefficients and on
data, such that for t ≥ 0

‖J∆x(·, t)‖∞ ≤ C1∆x+ C2e−C3t

‖ρ∆x(·, t)‖∞ ≤ C1∆x+ C2e−C3t .

where (ρ∆x, J∆x) are WB approximate solutions, ∆x = 1/N .
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Main result/Remarks

0 < d1 = k1 min g′ ≤ d2 = k2 max g′

‖J∆x(·, t)‖∞ ≤ C1∆x+ C2e−C3t

‖ρ∆x(·, t)‖∞ ≤ C1∆x+ C2e−C3t .

• If d1 = d2 = d (linear g, constant k) then the result holds for every
d > 0. Moreover one has

C3 =
1

2

∣∣log(1− 2d e−2d)
∣∣ ∼ d as d→ 0 .

• As ∆x→ 0, it provides an exp. decay in L∞ for the exact solution.
By density, extension to (ρ0, J0) ∈ L∞(I).

Remark:

Surprisingly, the total variation of J∆x does not necessarily vanish at
t→∞
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Sketch of the proof/1

• By iteration,

σ(tn+) = Bnσ(0+) , Bn=̇
[
B(n)B(n−1) · · ·B(2)B(1)

]
∈M2N .

• First, a proposition which relates the L∞-norm of J(·, tn), ρ(·, tn) as
n→∞ to the evolution of the `1–norm of the operator Bn.

Proposition:

There exists C̃1 > 0 independent on n, N such that for every
t ∈ (tn, tn+1)

‖J∆x(·, t)‖∞ ≤ C̃1 ∆x+ ‖Bnσ̃(0+)‖`1

‖ρ∆x(·, t)‖∞ ≤ C̃1 ∆x+ 2‖Bnσ̃(0+)‖`1

where σ̃(0+) is the projection of σ(0+) onto E−, the (2N − 2)-dim
eigenspace related to λi with |λi| < 1.
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Sketch of the proof/2

Use of Birkhoff decomposition (linear damping)

Let k(x) = k̄, g′ be constant. Then c = c(1, . . . , 1)

c =
d∆x

1 + d∆x
, d = k̄g′ , ∆x =

1

N
,

B(c) = (1− c)B(0) + cB1 =

(
1 +

d

N

)−1 [
B(0) +

d

N
B1

]

Proposition (nonlinear damping):

If 0 < d1 = k1 min g′(J) ≤ d2 = k2 max g′(J), then

B(cn) ≤
(

1 +
d1

N

)−1 [
B(0) +

d2

N
B1

]
∀n

(inequality entrywise) .
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Sketch of the proof/3

• Next, we prove that ‖Bnσ̃‖`1 decays exp. fast as n→∞ for every
σ̃ ∈ E−.

We focus on the power n = 2N ,

B2N =̇ B(2N)B(2N−1) · · ·B(2)B(1)

so that tn = 2N∆t = 2 , σ(2+) = B2N σ(0+) .

• Why?

x

1 2

0

1

t

x
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Sketch of the proof/4: an ”exponential” formula.

Theorem:

Let d > 0 and N ∈ 2N . Let I2N be the identity matrix in M2N . Then[
B(0) +

d

N
B1

]2N

= I2N + (2d)P̂ +

2N−1∑
j=0

ζj,NB(0)2jB2(0) +

2N−1∑
j=1

ηj,NB(0)2j

for a suitable P̂ ∈M2N (sum of two rank-one matrices).

Moreover

2N−1∑
j=0

ζj,N ≤ sinh(2d)− 2d+
1

N
f0(d) ,

2N−1∑
j=1

ηj,N ≤ cosh(2d)− 1 +
1

N
f1(d) .

Tools: hypergeometric functions, modified Bessel functions.

Key point: The first order in d is identified + estimate on higher order in
d.
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A contraction estimate
Thanks to a careful decomposition of σ̃ ∈ E−, we get:

Proposition:

There exists a constant CN = CN (d1, d2) such that as N →∞

CN → e−2d1(e2d2 − 2d2) =̇ C(d1, d2) < 1

and that ∥∥B2N σ̃
∥∥
`1
≤ CN

∥∥σ̃∥∥
`1
, σ̃ ∈ E−

... then, iterate the estimate above:

For h ≥ 0, 2h ≤ tn < 2(h+ 1), ∆t = N−1 one has

‖J∆x(·, tn)‖∞ ≤
1

2N
TV J̄0 + (CN )h

∥∥σ̃(0+)
∥∥
`1
.

A similar estimate holds for ‖ρ∆x(·, tn)‖∞
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IBVP with intermittent damping

{
∂tρ+ ∂xJ = 0

∂tJ + ∂xρ = −2k(x)α(t)g(J)
x ∈ I = (0, 1), t > 0

• Initial conditions: (ρ0, J0) ∈ L∞(I)

• Boundary conditions: J(0, t) = J(1, t) = 0

• Damping: k ∈ L∞(I) , essinf k > 0 , g ∈ C1 , g′ > 0 , g(0) = 0

• On-Off damping: for some 0 < T1 < T2 one has

α(t) =

{
1 t ∈ [0, T1),

0 t ∈ [T1, T2) .
, χ(t+ T2) = χ(t) ∀ t > 0 .
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T1 T2 T2 + T1

x

1 2

0

1

t

x

t

x

Figure: On-Off damping for some T1 and T2
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Convergence of energy (Martinez, Vancostenoble, 2002)

Assume k(x) ≥ k̄ > 0 and g(J) = J . Let T2 = qT1 with 2 ≤ q ∈ N .

• If

T1 ∈
{

1

q
, · · · , q − 1

q

}
, T1 >

1

q − 1
, q ≥ 3 .

Then there exists initial conditions for which the energy estimate remains
constant with time: E(t) = E(0) > 0 for all t ≥ 0.

• Otherwise the energy decays exponentially to 0 as t→∞.
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Main result

Theorem Assume T2 − T1 is integer, let k(x) satisfy

0 < k1 ≤ k(x) ≤ k2 ∀x ∈ (0, 1)

and define

d1 = k1 min
J∈DJ

g′(J) > 0, d2 = k2 max
J∈DJ

g′(J)

where DJ is a closed bounded interval which is invariant for J .

Assume
that

ed2 − d2 < ed1

Then there exist Cj > 0, that depend only on the coefficients and on
data, such that for t ≥ 0

‖J(·, t)‖L∞ ≤ C1e−C3t (‖J0‖L∞ + ‖ρ0‖L∞)

‖ρ(·, t)‖L∞ ≤ C2e−C3t (‖J0‖L∞ + ‖ρ0‖L∞) .

where (ρ, J) are the exact solution for the problem.
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Interactions
• We construct the WB approximate solutions as in the previous case for
initial data in BV (I).

J+
∗

J−∗

t = t̄
a+
` a+

r

a−` a−r

σ+
1σ+

−1

σ−1 σ−−1

δ−

δ+

Wave sizes change: c =
g′(s)δ

g′(s)δ + 1
∈ [0, 1)

(
σ−1

σ1

)+

=

(
1− c c
c 1− c

)(
σ−1

σ1

)−
+
g(J+
∗ )(δ+ − δ−)

1 + g′(s)δ

(
−1
+1

)
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Interactions/2

Set n1 = 2
[

T1

2∆t

]
, n2 = 2

[
T2

2∆t

]
, then

n1∆t ≤ T1 < (n1 + 2)∆t , n2∆t ≤ T2 < (n2 + 2)∆t .

a` ar

a` ar

σ+
1σ+

−1

σ−1 σ−−1
δ

Figure: on–off Interaction
at time n1∆t.

a` ar

a` ar

σ+
1σ+

−1

σ−1 σ−−1

δ

Figure: off–on Interaction
at time n2∆t.
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Iteration

• Let σ(tn+)=̇σn, for n = (h− 1)n2 + i, where 1 ≤ h ∈ N and
i = 1, · · · , n2, by iteration we have,

σn=



B(c)iσ(h−1)n2
1≤i<n1

B(c)iσ(h−1)n2
+G(h−1)n2+n1

i=n1

B(0)i−n1B(c)n1σ(h−1)n2
+B(0)i−n0G(h−1)n2+n1

n1<i<n2

B(0)n2−n1B(c)n1σ(h−1)n2
+B(0)n2−n1G(h−1)n2+n1

+Ghn2
i=n2

where

Gn =
(δ+ − δ−)

1 + g′(s)δ−

(
0,−g(J+

∗,1), g(J+
∗,1), · · · ,−g(J+

∗,N−1), g(J+
∗,N−1), 0

)T
.
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Exponential formula

• The exponential formula for the matrix B(c)N

Theorem:

Let d > 0 and N ∈ 2N . Then[
B(0) +

d

N
B1

]N
= B(0)N + (d)P̂ +

N−1∑
j=0

ζj,NB(0)2jB2(0) +

N−1∑
j=1

ηj,NB(0)2j

for a suitable P̂ ∈M2N (sum of two rank-one matrices).

Moreover

N−1∑
j=0

ζj,N ≤ sinh(d)− d+
1

N
f0(d) ,

2N−1∑
j=1

ηj,N ≤ cosh(d)− 1 +
1

N
f1(d) .
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Sketch of the proof

• First, a proposition to study the evolution of the the matrix using the
exponential formula for B(c)N .

Proposition:

For any σ ∈ R2N and for a suitable choice of v, the following holds true

max
v

∣∣B(c)Nσn · v
∣∣ ≤ d

2N

(
1 +

d

N

)−N
‖σ‖`1 + CN (d) max

v
|σn · v| ,

where

CN (d)=̇

(
1 +

d

N

)−N [
ed − d +

1

N
[f0(d) + f1(d)]

]
,

and CN (d)→ (1− de−d) as N →∞ .
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Sketch of the proof/2

• Then by iteration, for all tn with n = (h− 1)n2 + i, where
1 ≤ h ∈ N and i = 1, · · · , n2, there exist C1 that depend only on
the coefficients and on data, such that

‖J∆x(·, tn)‖∞ ≤ C1∆x+ (CN )h max
v
|σ0 · v|

where
max

v
|σ0 · v| = Jmax ≤ (‖J0‖L∞ + ‖ρ0‖L∞)

• Estimates for the exact solution: we pass to the limit using density
argument and this can be done for initial data in L∞.
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Work in progress

I For the system

∂tρ+ ∂xJ = 0 , ∂tJ + ∂xρ = −2k(x)g(J) x ∈ (0, 1)

• Study the case of localized source: k(x) > 0 on a subinterval of
(0, 1) and k = 0 otherwise, being g′ > 0

• Study the case of nonmonotone damping, that is the case where the
function g is not necessarily strictly increasing.

I Intermittent damping: Proof the results for any T1 and T2 with
1 ≤ T1 < T2.

Thank you!
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